搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吉瓦级强流相对论多注电子束二极管的优化设计与实验研究

刘振帮 金晓 黄华 王腾钫 李士锋

引用本文:
Citation:

吉瓦级强流相对论多注电子束二极管的优化设计与实验研究

刘振帮, 金晓, 黄华, 王腾钫, 李士锋

Optimal design and experimental research of several-gigawatt multiple electron beam diode

Liu Zhen-Bang, Jin Xiao, Huang Hua, Wang Teng-Fang, Li Shi-Feng
PDF
HTML
导出引用
  • 多注相对论速调管放大器可在较高的工作频段实现GW级功率微波产生, 在很多领域得到了发展和应用. 多注相对论速调管中强流相对论多注电子束相互之间存在空间电磁场的作用, 使得多注电子束从二极管引入多注漂移管, 以及在多注漂移管中的传输运动受到影响, 导致电子束会轰击到管壁上, 早期实验中多注电子束的传输通过率较低. 本文对功率数GW的强流相对论多注电子束在二极管与多注漂移管中的运动过程进行了理论分析与粒子仿真模拟, 得到强流相对论多注电子束的传输运动规律. 对多注二极管的结构进行了优化设计, 仿真设计实现强流相对论多注电子束的传输通过率达到99%, 并且开展了验证实验研究, 实验在电子束电压为801 kV, 电流为9.3 kA的情况下, 电子束的传输通过率达到92%.
    The relativistic klystron amplifier (RKA) is one of the most efficient sources to amplify a high-power microwave signal due to its intrinsic merit of high-power conversion efficiency, high gain and stable operating frequency. However, the transverse dimensions of the RKA dramatically decrease when the operating frequency increases to X band, and the power capacity of the RKA is limited by the transverse dimensions. An X-band multiple-beam relativistic klystron amplifier is proposed to overcome the radiation power limitation. Each electron beam propagates in separate drift tubes and shares the same coaxial interaction cavities in the multiple-beam relativistic klystron amplifier, and the transverse dimensions of the multiple-beam relativistic klystron amplifier are free from the operating frequency restriction and a microwave power of over 1 GW is generated in the experiment. For a high-power electron device, the transmission of electron beam is critical, and the power conversion efficiency of the device is affected. In this paper, we conduct an investigation into the transmission process of the intense relativistic multiple electron beams, and the number of the multiple electron beams is set to be 16. It is found that when the multiple electron beam is transmitted in the device, the electron beam rotates around the center of the whole device, causing the electron beam to deviate from the drift tube channel. At the same time, each electron beam rotates around itself, and the cross section of the electron beam is deformed and expanded. In the improper design of electron beam and drift tube parameters, two kinds of rotating motions cause beam to lose. A multiple-electron-beam diode structure is optimized by the particle-in-cell simulation to reduce beam loss, with the effects of the related factors taken into account. Each pole of the cathodes is made up of graphite and stainless steel. The cathode head is made up of graphite, for the graphite has a lower emission threshold. The cathode base and cathode pole are made up of stainless steel, for the stainless steel has a higher emission threshold. Also the shape and structure of cathode pole, cathode head and anode are optimized to reduce the electric field intensity on the cathode pole and enhance the electric field intensity on the end face of cathode head. At the same time, the electric field distribution of the cathode head is uniform to improve the electron beam emission uniformity. The simulation results demonstrate that the transmission efficiency of multiple electron beams can reach 99%. In the experiment, the transmission efficiency of multiple electron beams is 92% with a beam voltage and beam current of 801 kV and 9.3 kA, respectively.
      通信作者: 刘振帮, liu9559@yeah.net
    • 基金项目: 高功率微波技术重点实验室基金(批准号: 6142605180203, JCKYS2018212035, 6142605190201)资助的课题
      Corresponding author: Liu Zhen-Bang, liu9559@yeah.net
    • Funds: Project supported by the Science Foundation of the High Power Microwave Laboratory, China (Grant Nos. 6142605180203, JCKYS2018212035, 6142605190201)
    [1]

    Benford J, Swegle J A 著 (江伟华, 张弛 译) 2009 高功率微波 (第二版) (中译本) (北京: 国防工业出版社) 第3−5页

    Benford J, Swegle J A (translated by Jiang W H, Zhang C) 2008 High Power Microwave (2nd Ed.) (Beijing: National Defense Industry Press) pp3−5 (in Chinese)

    [2]

    丁耀根 2010 大功率速调管的制造和应用 (北京: 国防工业出版社) 第7−13页

    Ding Y G 2010 Design, Manufacture and Application of High Power Klystron (Beijing: National Defense Industry Press) pp7−13 (in Chinese)

    [3]

    Robert J B, Edl S 2005 高功率微波源与技术 (中译本) (北京: 清华大学出版社) 第282−289页

    Robert J B, Edl S 2005 High Power Microwave Sources and Technologies (Beijing: Tsinghua University Press) pp282−289 (in Chinese)

    [4]

    黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸 2018 物理学报 67 088402Google Scholar

    Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402Google Scholar

    [5]

    吴洋, 许州, 周霖, 李文君, 唐传祥 2012 物理学报 61 224101Google Scholar

    Wu Y, Xu Z, Zhou L, Li W J, Tang C X 2012 Acta Phys. Sin. 61 224101Google Scholar

    [6]

    Thomas H, Adam B, Rasheda B, Heinz B, Mark C, Edward E, Deepika G, Armand S, Brad S, Lou Z 2010 IEEE Trans. Plasma Sci. 38 1264Google Scholar

    [7]

    Ding Y G, Shen B, Cao J, et al. 2009 IEEE Trans. Electron Dev. 56 870Google Scholar

    [8]

    Li R J, Ruan C J, Zhang H F 2018 Phys. Plasmas 25 033107Google Scholar

    [9]

    Friedman M, Pasour J, Smithe D 1997 Appl. Phys. Lett. 71 3724Google Scholar

    [10]

    魏元璋, 李士锋, 王战亮, 黄华, 刘振帮, 何琥, 宫玉彬 2018 强激光与粒子束 30 063007Google Scholar

    Wei Y Z, Li S F, Wang Z L, Huang H, Liu Z B, He H, Gong Y B 2018 High Power Laser and Particle Beams 30 063007Google Scholar

    [11]

    Edward B A, Andrew N D, Mikhail I F, et al. 2002 IEEE Trans. Plasma Sci. 30 1041Google Scholar

    [12]

    Zhang W, Ju J C, Zhang J, Zhou Y X, Zhong H H 2019 Phys. Plasmas 26 053102Google Scholar

    [13]

    Qi Z M, Zhang J, Zhang Q, Zhong H H, Xu L R, Yang L 2016 IEEE Electron Device Lett. 37 782Google Scholar

    [14]

    刘振帮, 金晓, 黄华, 陈怀璧 2012 物理学报 61 128401Google Scholar

    Liu Z B, Jin X, Huang H, Chen H B 2012 Acta Phys. Sin. 61 128401Google Scholar

    [15]

    刘振帮, 黄华, 金晓, 袁欢, 戈弋, 何琥, 雷禄容 2015 物理学报 64 018401Google Scholar

    Liu Z B, Huang H, Jin X, Yuan H, Ge Y, He H, Lei L R 2015 Acta Phys. Sin. 64 018401Google Scholar

    [16]

    Liu Z B, Huang H, Jin X, Lei L R, Zhu L, Li L L, Li S F, Yan W K, He H 2016 Phys. Plasmas 23 093110Google Scholar

    [17]

    刘振帮, 金晓, 黄华, 陈怀璧, 王淦平 2012 物理学报 61 248401Google Scholar

    Liu Z B, Jin X, Huang H, Chen H B, Wang G P 2012 Acta Phys. Sin. 61 248401Google Scholar

    [18]

    王淦平, 金晓, 黄华, 刘振帮 2017 物理学报 66 044102Google Scholar

    Wang G P, Jin X, Huang H, Liu Z B 2017 Acta Phys. Sin. 66 044102Google Scholar

    [19]

    谢家麟, 赵永翔 1966 速调管群聚理论 (北京: 科学出版社) 第104—108, 208—209页

    Xie J L, Zhao Y X 1966 Bunching Theory of Klystron (Beijing: Science Press) pp104–108, 208–209 (in Chinese)

    [20]

    王文祥 2009 微波工程技术 (北京: 国防工业出版社) 第44, 45页

    Wang W X 2009 Microwave Project and Technology (Beijing: National Defense Industry Press) pp44, 45 (in Chinese)

  • 图 1  强流多注电子束二极管结构示意图 (a) y-z截面; (b)漂移管处x-y截面

    Fig. 1.  Sketch structure of the multiple electron beams diode: (a) The y-z section; (b) the x-y section of drift tubes.

    图 2  多注电子束到达阳极端面时绕系统中心的旋转距离Δl0随引导磁场的变化

    Fig. 2.  Rotation distance Δl0 vs. Bz at different U0. Δl0 represents the rotation distance of the multi-beams around the center of the system when they reach the anode end face

    图 3  多注电子束在漂移管中的旋转角速度${r_0}\dot \theta_2$随引导磁场的变化

    Fig. 3.  Rotation angular velocity ${r_0} \dot\theta_2$ vs. Bz at different U0. ${r_0} \dot\theta_2$ represents the rotation angular velocity of multi-beams in drift tube.

    图 4  多注电子束绕束自身旋转角速度${r_{\rm{b}}}{{\mathop \theta \limits^. }_3}$随引导磁场的变化

    Fig. 4.  Angular velocity of the multi-beams rotation around themselves ${r_{\rm{b}}}{{\mathop \theta \limits^. }_3}$ vs. Bz at different U0. ${r_{\rm{b}}}{{\mathop \theta \limits^. }_3}$ represents the angular velocity of the multi-beams rotation around themselves.

    图 5  优化设计前后的多注阴极结构与电场分布 (a)改进设计前; (b)改进设计后

    Fig. 5.  Electric field distribution of the multi-beam cathodes: (a) Before the improved design; (b) improved design.

    图 6  多注电子束在二极管和漂移管中传输

    Fig. 6.  Tracks of the multiple electron beams in the diode and drift tubes.

    图 7  多注电子束在离阴极头端面不同距离处的束斑 (a)距离 1 mm; (b)距离40 mm; (c)距离640 mm

    Fig. 7.  Transections of the multiple electron beams with different distance between the cathode head: (a) The distance of 1 mm; (b) the distance of 40 mm; (c) the distance of 640 mm.

    图 8  多注电子束束流测量实验示意图

    Fig. 8.  Sketch structure of the experimental system for multi-beams measurement.

    图 9  电子束电压、电流与法拉第筒电流波形

    Fig. 9.  Voltage, current, and Faraday-cup current of the electron beam.

    图 10  多注漂移管末端的电子束束斑

    Fig. 10.  Spots of the multiple electron beams at the end of the drift tube.

    图 11  多注电子束束斑尺寸分布

    Fig. 11.  Size of the multiple electron beams spots

    表 1  电子束电压、电流以及末端法拉第筒电流参数

    Table 1.  Electron beam voltage, current and terminal Faraday tube current parameters.

    序号电压/kV电流/kA末端电流/kA通过率/%
    18009.38.692.4
    28059.38.692.4
    37999.28.592.4
    平均8019.38.692.4
    下载: 导出CSV
  • [1]

    Benford J, Swegle J A 著 (江伟华, 张弛 译) 2009 高功率微波 (第二版) (中译本) (北京: 国防工业出版社) 第3−5页

    Benford J, Swegle J A (translated by Jiang W H, Zhang C) 2008 High Power Microwave (2nd Ed.) (Beijing: National Defense Industry Press) pp3−5 (in Chinese)

    [2]

    丁耀根 2010 大功率速调管的制造和应用 (北京: 国防工业出版社) 第7−13页

    Ding Y G 2010 Design, Manufacture and Application of High Power Klystron (Beijing: National Defense Industry Press) pp7−13 (in Chinese)

    [3]

    Robert J B, Edl S 2005 高功率微波源与技术 (中译本) (北京: 清华大学出版社) 第282−289页

    Robert J B, Edl S 2005 High Power Microwave Sources and Technologies (Beijing: Tsinghua University Press) pp282−289 (in Chinese)

    [4]

    黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸 2018 物理学报 67 088402Google Scholar

    Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402Google Scholar

    [5]

    吴洋, 许州, 周霖, 李文君, 唐传祥 2012 物理学报 61 224101Google Scholar

    Wu Y, Xu Z, Zhou L, Li W J, Tang C X 2012 Acta Phys. Sin. 61 224101Google Scholar

    [6]

    Thomas H, Adam B, Rasheda B, Heinz B, Mark C, Edward E, Deepika G, Armand S, Brad S, Lou Z 2010 IEEE Trans. Plasma Sci. 38 1264Google Scholar

    [7]

    Ding Y G, Shen B, Cao J, et al. 2009 IEEE Trans. Electron Dev. 56 870Google Scholar

    [8]

    Li R J, Ruan C J, Zhang H F 2018 Phys. Plasmas 25 033107Google Scholar

    [9]

    Friedman M, Pasour J, Smithe D 1997 Appl. Phys. Lett. 71 3724Google Scholar

    [10]

    魏元璋, 李士锋, 王战亮, 黄华, 刘振帮, 何琥, 宫玉彬 2018 强激光与粒子束 30 063007Google Scholar

    Wei Y Z, Li S F, Wang Z L, Huang H, Liu Z B, He H, Gong Y B 2018 High Power Laser and Particle Beams 30 063007Google Scholar

    [11]

    Edward B A, Andrew N D, Mikhail I F, et al. 2002 IEEE Trans. Plasma Sci. 30 1041Google Scholar

    [12]

    Zhang W, Ju J C, Zhang J, Zhou Y X, Zhong H H 2019 Phys. Plasmas 26 053102Google Scholar

    [13]

    Qi Z M, Zhang J, Zhang Q, Zhong H H, Xu L R, Yang L 2016 IEEE Electron Device Lett. 37 782Google Scholar

    [14]

    刘振帮, 金晓, 黄华, 陈怀璧 2012 物理学报 61 128401Google Scholar

    Liu Z B, Jin X, Huang H, Chen H B 2012 Acta Phys. Sin. 61 128401Google Scholar

    [15]

    刘振帮, 黄华, 金晓, 袁欢, 戈弋, 何琥, 雷禄容 2015 物理学报 64 018401Google Scholar

    Liu Z B, Huang H, Jin X, Yuan H, Ge Y, He H, Lei L R 2015 Acta Phys. Sin. 64 018401Google Scholar

    [16]

    Liu Z B, Huang H, Jin X, Lei L R, Zhu L, Li L L, Li S F, Yan W K, He H 2016 Phys. Plasmas 23 093110Google Scholar

    [17]

    刘振帮, 金晓, 黄华, 陈怀璧, 王淦平 2012 物理学报 61 248401Google Scholar

    Liu Z B, Jin X, Huang H, Chen H B, Wang G P 2012 Acta Phys. Sin. 61 248401Google Scholar

    [18]

    王淦平, 金晓, 黄华, 刘振帮 2017 物理学报 66 044102Google Scholar

    Wang G P, Jin X, Huang H, Liu Z B 2017 Acta Phys. Sin. 66 044102Google Scholar

    [19]

    谢家麟, 赵永翔 1966 速调管群聚理论 (北京: 科学出版社) 第104—108, 208—209页

    Xie J L, Zhao Y X 1966 Bunching Theory of Klystron (Beijing: Science Press) pp104–108, 208–209 (in Chinese)

    [20]

    王文祥 2009 微波工程技术 (北京: 国防工业出版社) 第44, 45页

    Wang W X 2009 Microwave Project and Technology (Beijing: National Defense Industry Press) pp44, 45 (in Chinese)

  • [1] 潘佳萍, 张冶文, 李俊, 吕天华, 郑飞虎. 结合电子束辐照与压电压力波法空间电荷分布实时测量的空间电荷包迁移行为的研究. 物理学报, 2024, 73(2): 027701. doi: 10.7498/aps.73.20231353
    [2] 王淦平, 金晓, 黄华, 刘振帮. 强流相对论多注电子束在空心圆柱波导中的漂移. 物理学报, 2017, 66(4): 044102. doi: 10.7498/aps.66.044102
    [3] 李杰, 高进, 万发荣. 电子束辐照下的注氘铝的结构变化. 物理学报, 2016, 65(2): 026102. doi: 10.7498/aps.65.026102
    [4] 季乐, 杨盛志, 蔡杰, 李艳, 王晓彤, 张在强, 侯秀丽, 关庆丰. 强流脉冲电子束辐照诱发纯钼表面的损伤效应及结构缺陷. 物理学报, 2013, 62(23): 236103. doi: 10.7498/aps.62.236103
    [5] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究. 物理学报, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [6] 左应红, 王建国, 范如玉. 空间电荷效应对热场致发射中诺廷汉效应的影响. 物理学报, 2013, 62(24): 247901. doi: 10.7498/aps.62.247901
    [7] 彭凯, 刘大刚. 三维热场致发射模型的数值模拟与研究. 物理学报, 2012, 61(12): 121301. doi: 10.7498/aps.61.121301
    [8] 张岭梓, 左玉华, 曹权, 薛春来, 成步文, 张万昌, 曹学蕾, 王启明. 单载流子光电探测器的高速及高饱和功率的研究. 物理学报, 2012, 61(13): 138501. doi: 10.7498/aps.61.138501
    [9] 左应红, 王建国, 范如玉. 二极管间隙距离对场致发射过程中空间电荷效应的影响. 物理学报, 2012, 61(21): 215202. doi: 10.7498/aps.61.215202
    [10] 吴涛, 黄华, 王淦平, 金晓, 刘振帮, 陈昭福, 任屹灏, 陈永东, 王清源. 扇形多注强流相对论电子束的产生与传输研究. 物理学报, 2012, 61(18): 184218. doi: 10.7498/aps.61.184218
    [11] 刘振帮, 金晓, 黄华, 陈怀璧, 王淦平. 强流多注相对论速调管中电子束特性的初步研究. 物理学报, 2012, 61(24): 248401. doi: 10.7498/aps.61.248401
    [12] 杜广星, 钱宝良. 准矩形截面强流相对论带状电子束的传输. 物理学报, 2010, 59(7): 4626-4633. doi: 10.7498/aps.59.4626
    [13] 袁永腾, 郝轶聃, 赵宗清, 侯立飞, 缪文勇. 空间电荷效应对X射线条纹相机动态范围影响的研究. 物理学报, 2010, 59(10): 6963-6968. doi: 10.7498/aps.59.6963
    [14] 程笃庆, 关庆丰, 朱健, 邱东华, 程秀围, 王雪涛. 强流脉冲电子束诱发纯镍表层纳米结构的形成机制. 物理学报, 2009, 58(10): 7300-7306. doi: 10.7498/aps.58.7300
    [15] 张永鹏, 刘国治, 邵浩, 杨占峰, 宋志敏, 林郁正. 一维漂移空间内强流电子束的稳态传输特性. 物理学报, 2009, 58(10): 6973-6978. doi: 10.7498/aps.58.6973
    [16] 孙 霞, 尤四方, 肖 沛, 丁泽军. 电子束光刻的邻近效应及其模拟. 物理学报, 2006, 55(1): 148-154. doi: 10.7498/aps.55.148
    [17] 胡 旻, 祝大军, 刘盛纲. 强流相对论电子束双腔纵向自调制研究. 物理学报, 2005, 54(6): 2633-2637. doi: 10.7498/aps.54.2633
    [18] 关庆丰, 安春香, 秦 颖, 邹建新, 郝胜志, 张庆瑜, 董 闯, 邹广田. 强流脉冲电子束应力诱发的微观结构. 物理学报, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [19] 张永辉, 马乔生, 向 飞, 甘延青, 常安碧, 刘 忠, 周传明. 重复脉冲强流电子束传输技术研究. 物理学报, 2005, 54(7): 3111-3115. doi: 10.7498/aps.54.3111
    [20] 谢家麟. 多次聚束的空间电荷波理论. 物理学报, 1957, 13(1): 16-29. doi: 10.7498/aps.13.16
计量
  • 文章访问数:  4672
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-14
  • 修回日期:  2020-09-09
  • 上网日期:  2021-01-24
  • 刊出日期:  2021-02-05

/

返回文章
返回