搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体制备自修复超疏水涂层纤维

韩乾翰 张亚容 赖玉玲 徐利云 郭颖 张菁 俞建勇 石建军

引用本文:
Citation:

等离子体制备自修复超疏水涂层纤维

韩乾翰, 张亚容, 赖玉玲, 徐利云, 郭颖, 张菁, 俞建勇, 石建军

Self-healing super-hydrophobically coated fiber prepared by plasma treatment

Han Qian-Han, Zhang Ya-Rong, Lai Yu-Ling, Xu Li-Yun, Guo Ying, Zhang Jing, Yu Jian-Yong, Shi Jian-Jun
PDF
HTML
导出引用
  • 通过低温等离子体聚合交联作用, 制备了基于PDMS@ZnO纳米颗粒复合涂层的超耐久、自修复超疏水涤纶纤维. 研究了制备工艺对超疏水性、自修复性以及涂层的耐久性和稳定性的影响. 结果显示, PET-g-PDMS@ZnO织物表面的水接触角(WCA)可达162.7°, 滚动角(SA)为7.5°, 经过300次水洗循环和1300次摩擦循环后仍然保持超疏水特性, WCA和SA分别为150.0°和35.0°. 分别采用等离子体和加热方法对磨损破坏的涂层进行自修复处理, 结果表明等离子体修复效果明显, 而热修复只在小载荷下效果明显, 并利用扫描电子显微镜、纳米压痕以及X射线光电子能谱测量结果探讨了自修复机理. 该研究为等离子体技术在超疏水织物制备中的开发和应用提供理论和技术支撑.
    The ultra-durable, self-healing superhydrophobic polyester fabric based on ZnO@PDMS nanoparticle composite coating (PET-g-PDMS@ZnO fiber) is prepared by low-temperature plasma polymerization. The influences of the preparation process on the superhydrophobicity, self-healing property, durability and stability of the coating are studied. The results show that the water contact angle on the surface of PET-g-PDMS@ZnO fabric can reach 162.7°, and the sliding angle is 7.5°. After 300 washing cycles and 1300 rubbing cycles, the superhydrophobic property is still maintained. Both plasma method and heating method are used to repair the worn coating, and it is found that the repair effect of plasma is obvious, while the heating repair is effective only in the case of small loads. Moreover, scanning electron microscope, nanoindentation and X-ray photoelectron spectroscopy measurement are used to explore the self-healing mechanism. This research provides the theoretical and technical support for the development and application of plasma technology in the preparation of superhydrophobic fabrics.
      通信作者: 郭颖, guoying@dhu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11875104, 11475043)资助的课题
      Corresponding author: Guo Ying, guoying@dhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875104, 11475043)
    [1]

    Dimitrakellis P, Gogolides E 2018 Adv. Colloid Interface Sci. 254 1Google Scholar

    [2]

    Tsougeni K, Vourdas N, Tserepi A, Gogolides E, Cardinaud C 2009 Langmuir 25 11748Google Scholar

    [3]

    王奔, 念敬妍, 铁璐, 张来斌, 郭志光 2013 物理学报 62 146801Google Scholar

    Wang B, Nian J Y, Tie L, Zhang Y B, Guo Z G 2013 Acta Phys. Sin. 62 146801Google Scholar

    [4]

    Liu H, Huang J Y, Chen Z, Chen G Q, Zhang K Q, Al-Deyab S S, Lai Y K 2017 Chem. Eng. J. 330 26Google Scholar

    [5]

    Zimmermann J, Reifler F A, Fortunato G, Gerhardt L C, Seeger S 2008 Adv. Funct. Mater. 18 3662Google Scholar

    [6]

    Deng B, Cai R, Yu Y, Jiang H Q, Wang C L, Li J A, Li L F, Yu M, Li J Y, Xie L D, Huang Q, Fan C H 2010 Adv. Mater. 22 5473Google Scholar

    [7]

    Xue C H, Li X, Jia S T, Guo X J, Li M 2016 RSC Adv. 6 84887Google Scholar

    [8]

    Liu S, Zhou H, Wang H X, Yang W D, Shao H, Fu S D, Zhao Y, Liu D Q, Feng Z H, Lin T 2017 Small 13 1701891Google Scholar

    [9]

    Kong L Z, Tu K K, Guan H, Wang X Q 2017 Appl. Surf. Sci. 407 479Google Scholar

    [10]

    Fu S D, Zhou H, Wang H X, Ding J, Liu S, Zhao Y, Niu H T, Rutledge G C, Lin T 2018 RSC Adv. 8 717Google Scholar

    [11]

    Abbas R, Khereby M A, Sadik W A, El Demerdash A G M 2015 Cellulose 22 887Google Scholar

    [12]

    Zhao Q, Wu L, Huang H, Liu Y C 2016 Mater. Des. 92 541Google Scholar

    [13]

    Oh J H, Ko T J, Moon M W, Park C H 2017 RSC Adv. 7 25597Google Scholar

    [14]

    Su X J, Li H Q, Lai X J, Zhang L, Wang J, Liao X F, Zeng X R 2017 ACS Appl. Mater. Interfaces 9 28089Google Scholar

    [15]

    Li Y, Li L, Sun J Q 2010 Angew. Chem.Int. Ed. 49 6129Google Scholar

    [16]

    Zhang H, Hou C P, Song L X, Ma Y, Ali Z, Gu J W, Zhang B L, Zhang H P, Zhang Q Y 2018 Chem. Eng. J. 334 598Google Scholar

    [17]

    Xu L Y, Yang L L, Yang S, Xu Z, Lin G J, Shi J J, Zhang R Y, Yu J Y, Ge D T, Guo Y 2021 ACS Appl. Mater. Interfaces 13 6758Google Scholar

    [18]

    Lee J, Hwang S, Cho D H, Hong J, Shin J H, Byun D 2017 Appl. Surf. Sci. 394 543Google Scholar

    [19]

    Jiang C, Liu W Q, Yang M P, Liu C H, He S, Xie Y K, Wang Z F 2019 Appl. Surf. Sci. 463 34Google Scholar

    [20]

    Zhao N, Xie Q D, Weng L H, Wang S Q, Zhang X Y, Xu J 2005 Macromolecules 38 8996Google Scholar

    [21]

    Qian Z Y, Risan J, Stadnick B, McKenna G B 2018 J. Polym. Sci., Part B: Polym. Phys. 56 414Google Scholar

  • 图 1  (a) 超疏水织物的制备流程; (b) 不同液滴在超疏水织物表面的铺展图; 不同纤维表面的SEM图像, 其中图(c)—(e)分别对应(c) 涤纶纤维原样, (d) PET-g-PDMS, (e) PET-g-PDMS@ZnO; 不同纤维表面的AFM图像, 其中图(f)—(h)分别对应(f) 涤纶纤维原样, (g) PET-g-PDMS, (h) PET-g-PDMS@ZnO

    Fig. 1.  (a) Preparation process of superhydrophobic fabric. (b) Spreading image of different droplets on the surface of superhydrophobic fabric. SEM images of different fiber surfaces: (c) Untreated; (d) PET-g-PDMS; (e) PET-g-PDMS@ZnO. AFM images of different fiber surfaces: (f) Untreated; (g) PET-g-PDMS; (h) PET-g-PDMS@ZnO.

    图 2  (a)气体压强、(b)功率、(c)放电时间和(d)循环次数对PET-g-PDMS@ZnO织物水接触角的影响; 不同放电时间处理的纤维表面的SEM图像, 其中图(e), (f)对应的放电时间分别为(e) 15 s; (f) 100 s

    Fig. 2.  Effects of (a) gas pressure, (b) power, (c) discharge time, and (d) washing times on the WCA of PET-g-PDMS@ZnO fabric; SEM images of fiber surface treated with different discharge time: (e) 15 s; (f) 100 s.

    图 3  (a) 水接触角和滚动角与摩擦循环之间的关系; (b) 自修复流程图; 水接触角与(c)等离子体和(d)加热自修复循环次数之间的关系

    Fig. 3.  (a) Relationship of WCA and sliding angle to friction cycle; (b) self-healing flow chart; relationship of WCA to the number of (c) plasma and (d) heating self-healing cycles.

    图 4  PET-g-PDMS@ZnO纤维自修复前后SEM图像, 其中图(a)—(d)分别对应(a) PET-g-PDMS@ZnO纤维原样, (b) 磨擦400次后, (c) 等离子体处理修复后, (d) 加热(80 ℃, 30 min)修复后; (e) PDMS膜的纳米压痕

    Fig. 4.  SEM images of PET-g-PDMS@ZnO fiber before and after self-healing: (a) PET-g-PDMS@ZnO fiber; (b) 400 rubs; (c) plasma treatment; (d) heating (80 ℃, 30 min). (e) Nanoindentation of PDMS film on the surface of PET-g-PDMS fiber.

    图 5  自修复前后织物表面C 1s元素的XPS图像 (a) 原样; (b) PET-g-PDMS@ZnO织物; (c) 摩擦400次; (d) 等离子体法修复; (e) 加热法修复

    Fig. 5.  XPS images of C 1s elements on the fabric surface before and after self-healing: (a) Fabric; (b) PET-g-PDMS@ZnO fabric; (c) rubbing 400 times; (d) plasma repairing; (e) heating repair.

    表 1  不同样品表面元素含量

    Table 1.  Surface element content of different samples.

    结合能/eV化学键原样PET-g-PDMS@ZnO织物摩擦400次等离子体法修复加热法修复
    289.3O—C=O8.945.673.23
    286.8C=O18.566.7510.297.519.54
    284.8C—C72.5193.2584.0492.4989.23
    下载: 导出CSV
  • [1]

    Dimitrakellis P, Gogolides E 2018 Adv. Colloid Interface Sci. 254 1Google Scholar

    [2]

    Tsougeni K, Vourdas N, Tserepi A, Gogolides E, Cardinaud C 2009 Langmuir 25 11748Google Scholar

    [3]

    王奔, 念敬妍, 铁璐, 张来斌, 郭志光 2013 物理学报 62 146801Google Scholar

    Wang B, Nian J Y, Tie L, Zhang Y B, Guo Z G 2013 Acta Phys. Sin. 62 146801Google Scholar

    [4]

    Liu H, Huang J Y, Chen Z, Chen G Q, Zhang K Q, Al-Deyab S S, Lai Y K 2017 Chem. Eng. J. 330 26Google Scholar

    [5]

    Zimmermann J, Reifler F A, Fortunato G, Gerhardt L C, Seeger S 2008 Adv. Funct. Mater. 18 3662Google Scholar

    [6]

    Deng B, Cai R, Yu Y, Jiang H Q, Wang C L, Li J A, Li L F, Yu M, Li J Y, Xie L D, Huang Q, Fan C H 2010 Adv. Mater. 22 5473Google Scholar

    [7]

    Xue C H, Li X, Jia S T, Guo X J, Li M 2016 RSC Adv. 6 84887Google Scholar

    [8]

    Liu S, Zhou H, Wang H X, Yang W D, Shao H, Fu S D, Zhao Y, Liu D Q, Feng Z H, Lin T 2017 Small 13 1701891Google Scholar

    [9]

    Kong L Z, Tu K K, Guan H, Wang X Q 2017 Appl. Surf. Sci. 407 479Google Scholar

    [10]

    Fu S D, Zhou H, Wang H X, Ding J, Liu S, Zhao Y, Niu H T, Rutledge G C, Lin T 2018 RSC Adv. 8 717Google Scholar

    [11]

    Abbas R, Khereby M A, Sadik W A, El Demerdash A G M 2015 Cellulose 22 887Google Scholar

    [12]

    Zhao Q, Wu L, Huang H, Liu Y C 2016 Mater. Des. 92 541Google Scholar

    [13]

    Oh J H, Ko T J, Moon M W, Park C H 2017 RSC Adv. 7 25597Google Scholar

    [14]

    Su X J, Li H Q, Lai X J, Zhang L, Wang J, Liao X F, Zeng X R 2017 ACS Appl. Mater. Interfaces 9 28089Google Scholar

    [15]

    Li Y, Li L, Sun J Q 2010 Angew. Chem.Int. Ed. 49 6129Google Scholar

    [16]

    Zhang H, Hou C P, Song L X, Ma Y, Ali Z, Gu J W, Zhang B L, Zhang H P, Zhang Q Y 2018 Chem. Eng. J. 334 598Google Scholar

    [17]

    Xu L Y, Yang L L, Yang S, Xu Z, Lin G J, Shi J J, Zhang R Y, Yu J Y, Ge D T, Guo Y 2021 ACS Appl. Mater. Interfaces 13 6758Google Scholar

    [18]

    Lee J, Hwang S, Cho D H, Hong J, Shin J H, Byun D 2017 Appl. Surf. Sci. 394 543Google Scholar

    [19]

    Jiang C, Liu W Q, Yang M P, Liu C H, He S, Xie Y K, Wang Z F 2019 Appl. Surf. Sci. 463 34Google Scholar

    [20]

    Zhao N, Xie Q D, Weng L H, Wang S Q, Zhang X Y, Xu J 2005 Macromolecules 38 8996Google Scholar

    [21]

    Qian Z Y, Risan J, Stadnick B, McKenna G B 2018 J. Polym. Sci., Part B: Polym. Phys. 56 414Google Scholar

  • [1] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [2] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [3] 耿读艳, 谢红娟, 万晓伟, 徐桂芝. 基于DNA损伤的蛋白调控网络研究. 物理学报, 2014, 63(1): 018702. doi: 10.7498/aps.63.018702
    [4] 王奔, 念敬妍, 铁璐, 张亚斌, 郭志光. 稳定超疏水性表面的理论进展. 物理学报, 2013, 62(14): 146801. doi: 10.7498/aps.62.146801
    [5] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 电负性等离子体磁鞘的玻姆判据. 物理学报, 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [6] 公茂刚, 许小亮, 曹自立, 刘远越, 朱海明. 两步法制备超疏水性ZnO纳米棒薄膜. 物理学报, 2009, 58(3): 1885-1889. doi: 10.7498/aps.58.1885
    [7] 顾春元, 狄勤丰, 施利毅, 吴 非, 王文昌, 余祖斌. 纳米粒子构建表面的超疏水性能实验研究. 物理学报, 2008, 57(5): 3071-3076. doi: 10.7498/aps.57.3071
    [8] 赵建明, 张临杰, 李昌勇, 贾锁堂. 里德伯原子向超冷等离子体的自发转化. 物理学报, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [9] 张晓丹, 张发荣, Amanatides Elefterious, Mataras Dimitris, 赵 颖. 硅薄膜沉积中等离子体辉光功率和阻抗的测试分析. 物理学报, 2007, 56(9): 5309-5313. doi: 10.7498/aps.56.5309
    [10] 赵国伟, 王之江, 徐跃民, 粱志伟, 徐 杰. 射频激励等离子体非线性效应的FDTD数值模拟. 物理学报, 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [11] 安治永, 李应红, 吴 云, 苏长兵, 宋慧敏. 对称等离子体激励器系统电场仿真研究. 物理学报, 2007, 56(8): 4778-4784. doi: 10.7498/aps.56.4778
    [12] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析. 物理学报, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [13] 张秋菊, 武慧春, 王兴海, 盛政明, 张 杰. 超短激光脉冲在等离子体中的分裂以及类孤子结构的形成. 物理学报, 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [14] 张 民, 吴振森. 脉冲波在空间等离子体介质中传播的矩分析及其应用. 物理学报, 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
    [15] 田杨萌, 王彩霞, 姜 明, 程新路, 杨向东. 惰性物质等离子体物态方程研究. 物理学报, 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [16] 张 丽, 李向东, 蒋新革. 等离子体效应对类氦氖Kα线系电偶极辐射的影响. 物理学报, 2006, 55(9): 4501-4505. doi: 10.7498/aps.55.4501
    [17] 谢鸿全, 刘濮鲲. 磁化等离子体填充螺旋线的色散方程. 物理学报, 2006, 55(5): 2397-2402. doi: 10.7498/aps.55.2397
    [18] 黄勤超, 罗家融, 王华忠, 李 翀. EAST装置等离子体放电位形快速识别研究. 物理学报, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [19] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析. 物理学报, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [20] 张军, 张杰, 陈清, 彭练矛, 苍宇, 王怀斌, 仲佳勇. 利用飞秒激光等离子体产生的超热电子进行衍射实验的可行性研究. 物理学报, 2002, 51(8): 1764-1767. doi: 10.7498/aps.51.1764
计量
  • 文章访问数:  5755
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 修回日期:  2021-04-05
  • 上网日期:  2021-04-27
  • 刊出日期:  2021-05-05

/

返回文章
返回