搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti, V, Co, Ni掺杂二维CrSi2材料的电学、磁学及光学性质的第一性原理研究

叶建峰 秦铭哲 肖清泉 王傲霜 何安娜 谢泉

引用本文:
Citation:

Ti, V, Co, Ni掺杂二维CrSi2材料的电学、磁学及光学性质的第一性原理研究

叶建峰, 秦铭哲, 肖清泉, 王傲霜, 何安娜, 谢泉

First-principles study of electronic structure , magnetic and optical properties of Ti, V, Co and Ni doped two-dimensional CrSi2 materials

Ye Jian-Feng, Qing Ming-Zhe, Xiao Qing-Quan, Wang Ao-Shuang, He An-Na, Xie Quan
PDF
HTML
导出引用
  • 二维磁性材料的研究是一大热点, 其中单层CrSi2表现出优良的磁性, 有望应用于自旋电子学等领域, 但金属性限制了其部分层面的应用与发展. 采用基于密度泛函理论的第一性原理赝势平面波方法研究了不同元素(Ti, V, Co, Ni)、不同掺杂浓度(原子百分比为3.70%, 7.41%, 11.1%)对二维CrSi2电子结构、磁学及光学性质的影响, 期望改善二维CrSi2材料的相关性质, 也为开发基于二维CrSi2的电子器件提供有效的理论基础. 研究表明: 二维CrSi2在远红外以及紫外范围内的吸收系数与反射系数都很强, 表现出优异的光学性质. 在原子百分比为3.70%的浓度下掺杂Ti, V, Ni后, 成功打开了二维CrSi2的带隙, 导致其分别向间接半导体、稀磁半导体和半金属铁磁体转变, 同时, 掺杂能对单分子层CrSi2的磁性进行有效的调控. 掺杂后的二维CrSi2拥有良好的光学性质, 多数掺杂体系的光学性质峰值增大并发生蓝移, 但在原子百分比为11.1%的掺杂浓度下, 吸收峰红移. 二维CrSi2有望成为高稳定性的新型自旋电子器件的制备材料.
    Two-dimensional materials have shown excellent optical, mechanical, thermal or magnetic properties, and have promising applications in the high performance electronic, optical, spintronic devices and energy transfer, energy storage, etc. Monolayer transition metal silicide CrSi2 has shown ferromagnetism and metal properties in previous studies, and it is expected to become a new two-dimensional material. The Ti, V, Co, Ni doped two-dimensional CrSi2 are studied with different doping concentrations by using the first-principal pseudopotential plane wave method based on density functional theory, and electronic structure, magnetic and optical properties are calculated and analyzed. The results show that the density of states in the two-dimensional CrSi2 system is asymmetric, and the crystal cells have obvious ferromagnetism with a magnetic moment of 3.55 μB. Two-dimensional CrSi2 has strong absorptivity and reflectivity in the far infrared and ultraviolet range, showing excellent optical properties.The electronic structures and magnetic properties of Ti, V, Co or Ni doped CrSi2 with different concentrations are calculated and analyzed, and the results show that the magnetic moment of the two-dimensional CrSi2 varies after doping different elements at a doping concentration of 3.70 at%. After doping Ti, the magnetic moment of the system changes to 0 μB at a doping concentration of 3.70 at%, showing that it is an indirect semiconductor. After doping V, the magnetic moment becomes smaller at a doping concentration of 3.70 at%, and the system has two degrees of freedom: electron charge and spin, showing the properties of diluted magnetic semiconductors. After doping Ni, the band gap Eg=0.09 eV appears in the spin-up band of the system at a doping concentration of 3.70 at%, while the spin-down band is metallic, and the system shows semi-metallic properties. The magnetic moment changes to 3.71 μB after doping Ti at a doping concentration of 7.41 at%. After doping Co and Ni, the magnetic moment of the system becomes smaller at the doping concentration of 7.41 at%, and the spin-down 3d orbital electrons of ferromagnetic elements take the dominant position. After doping Ni, the magnetic moment becomes 0.37 μB at the doping concentration of 7.41 at%. After doping Ti, the magnetic moment becomes 2.79 μB at a doping concentration of 33.3 at at%, after doping V, the magnetic moment becomes 2.27 μB, and the degree of spin becomes weaker at a doping concentration of 11.1 at%. After doping Co, the magnetic moment becomes 1.81 μB at the doping concentration of 11.1 at%. The magnetic moment becomes 1.5 μB after doping Ni at the doping concentration of 11.1 at%, which proves that the spin-up d orbital has less electronic contribution to the magnetic moment. The energy band range of each system is enlarged, and the interaction between atoms is enlarged, and the energy level splitting energy is enlarged at the doping concentration of 11.1 at%, which indicates that the effective mass of the system becomes smaller, the mobility of carriers turns stronger, and the metallization of materials grows stronger.The optical properties of Ti, V, Co or Ni doped CrSi2 with different concentrations are calculated and analyzed, and the results show that the two-dimensional CrSi2 after being doped has good optical properties. For most of systems, their optical properties are improved and blue-shifted at the doping concentrations of 3.70 at% and 7.41 at%, but the absorption peak is red-shifted at the doping concentration of 11.1 at%. By studying the properties of doped two-dimensional CrSi2, it is found that the two-dimensional CrSi2 has excellent electronic structure and optical properties, and the electronic structure, magnetic and optical properties of the two-dimensional CrSi2 can be effectively changed by doping. Two-dimensional CrSi2 is expected to be a promising material for preparing new high reliability and high stability spintronic devices, and the present research provides an effective theoretical basis for developing the two-dimensional CrSi2 based devices.
      通信作者: 肖清泉, qqxiao@gzu.edu.cn
    • 基金项目: 贵州省留学回国人员科技活动择优资助项目(批准号: [2018]09)、贵州省高层次创新型人才培养项目(批准号: [2015]4015)、贵州省研究生科研基金(批准号: [2020]035)和贵州大学智能制造产教融合创新平台及研究生联合培养基地建设项目(批准号: 2020-520000-83-01-324061)资助的课题.
      Corresponding author: Xiao Qing-Quan, qqxiao@gzu.edu.cn
    • Funds: Project supported by the Foundation for Sci-tech Activities for the Returned Overseas Chinese Scholars of Guizhou Province, China (Grant No. [2018]09), the High-level Creative Talent Training Program of Guizhou Province, China (Grant No. [2015]4015), the Graduate Research Fund of Guizhou Province, China (Grant No. [2020]035), and the Construction Project of Intelligent Manufacturing Industry and Education Integration Innovation Platform and Graduate Joint Training Base of Guizhou University, China (Grant No. 2020-520000-83-01-324061).
    [1]

    Novoselov K S, Geim A K, Morozov S V 2004 Science 306 666Google Scholar

    [2]

    Lee C, Wei X, Kysar J W 2008 Science 321 385Google Scholar

    [3]

    Zhang Y, Tan Y W, Stormer H L 2005 Nature 438 201Google Scholar

    [4]

    Balandin A A, Ghosh S, Bao W 2008 Nano Lett 8 902Google Scholar

    [5]

    Nair R R, Blake P, Grigorenko A N 2008 Science 320 1308Google Scholar

    [6]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [7]

    Ribeiro-Palau R, Zhang C, Watanabe K, Taniguchi T, Hone J, Dean C R 2018 Science 361 690Google Scholar

    [8]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [9]

    王铄, 王文辉, 吕俊鹏, 倪振华 2021 物理学报 70 026802Google Scholar

    Wang S, Wang W H, Lv J P, Ni Z H 2021 Acta Phys. Sin. 70 026802Google Scholar

    [10]

    黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根 2021 物理学报 70 027802Google Scholar

    Huang S Y, Zhang G W, Wang F J, Lei Y C, Yan H G 2021 Acta Phys. Sin. 70 027802Google Scholar

    [11]

    王盼, 宗易昕, 文宏玉, 夏建白, 魏钟鸣 2021 物理学报 70 026801Google Scholar

    Wang P, Zong Y X, Wen H Y, Xia J B, Wei Z M 2021 Acta Phys. Sin. 70 026801Google Scholar

    [12]

    Luo J C, Gao S J, Luo H, Wang L, Huang X W, Guo Z, Lai X J, Lin L W, Li R K Y, Gao J F 2021 Chem. Eng. J. 406 126898Google Scholar

    [13]

    Li L K, Kim J, Jin C H, et al. 2017 Nat. Nanotechnol. 12 21Google Scholar

    [14]

    Shen X, Zheng Q B, Kim J K 2021 Prog. Mater. Sci. 115 100708Google Scholar

    [15]

    Faisal S, Mohamed A, Christine B H, Babak A, Soon M H, Chong M K, Yury G 2016 Science 353 1137Google Scholar

    [16]

    Zhu X H, Zhang Y Y, Liu M L, Liu Y 2021 Biosens. Bioelectron. 171 112730Google Scholar

    [17]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [18]

    Li L, Yu Y, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L 2014 Nat. Nanotechnol. 9 372Google Scholar

    [19]

    Feng B J, Zhang J, Zhong Q 2016 Nat. Chem. 8 564Google Scholar

    [20]

    Mannix A J, Zhou X F, Kiraly B 2015 Science 350 1513Google Scholar

    [21]

    Zhong H X, Quhe R G, Wang Y Y 2015 Chin.Phys.B 24 87Google Scholar

    [22]

    Lin Y, Williams T V, Connell J W 2010 J. Phys. Chem. Lett. 1 277Google Scholar

    [23]

    Wang X, Maeda K, Thomas A 2009 Nat. Mater. 8 76Google Scholar

    [24]

    Naguib M, Mochalin V N, Barsoum M W 2014 Adv. Mater. 26 992Google Scholar

    [25]

    Liu H, Du Y C, Deng Y X 2015 Chem. Soc. Rev. 44 2732Google Scholar

    [26]

    Chhowalla M, Liu Z F, Zhang H 2015 Chem. Soc. Rev. 44 2584Google Scholar

    [27]

    Chhowalla M, Shin H S, Eda G 2013 Nat. Chem. 5 263Google Scholar

    [28]

    Xu M S, Liang T, Shi M M 2013 Chem. Rev. 113 3766Google Scholar

    [29]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232Google Scholar

    [30]

    Wang Q, O’hare D 2012 Chem. Rev. 112 4124Google Scholar

    [31]

    Dzade N, Obodo Y, Adjokatse K O 2010 J. Phys. Condens. Matter 22 375502Google Scholar

    [32]

    Voon L C L Y, Guzman-Verri G G 2014 MRS Bull. 39 366Google Scholar

    [33]

    Kara A, Enriquez H, Seitsonen A P, Lee Y V L C, Vizzini S, Aufray B, Oughaddou H 2012 Surf. Sci. Rep. 67 1Google Scholar

    [34]

    Bisi O, Calandra C 1981 J. Phys. C 14 5479Google Scholar

    [35]

    Abdul B, Hubby I, Bambang H, Toto S 2021 Int. J. Refract. Met. Hard Mater. 96 105497Google Scholar

    [36]

    Fei L, He J L, Sheng Y G, Xi Y Y, Qian G F 2019 Surf. Coat. Technol. 374 966Google Scholar

    [37]

    Wang X Q, Li H D, Wang J T 2012 Phys. Chem. Chem. Phys. 14 3031Google Scholar

    [38]

    Zhang C W, Yan S S 2012 J. Phys. Chem. C 116 4163Google Scholar

    [39]

    Kaloni T P, Gangopadhyay S, Singh N 2013 Phys. Rev. B 88 235418Google Scholar

    [40]

    Dasgupta T, Etourneau J, Chevalier B, Matar S F, Umarji A M 2008 J. Appl. Phys. 103 113516Google Scholar

    [41]

    Nagai H, Takamatsul T, Iijima Y, Hayashi K, Miyazaki Y 2018 JJAP 57 121801Google Scholar

    [42]

    Naval K U, Kumaraswamidhas L A, Bhasker G, Sivaiah B, Saravanan M, Radhey S, Nagendra S C, Ruchi B, Ajay D 2018 J. Alloys Compd. 765 412Google Scholar

    [43]

    闫万珺, 周士芸, 谢泉, 郭本华, 张春红 2012 光学学报 32 171

    Yan W J, Zhou S Y, Xie Q, Guo B H, Zhang C H 2012 Acta Opt. Sin. 32 171

    [44]

    闫万珺, 张忠政, 郭笑天, 桂放, 谢泉, 周士芸, 杨娇 2014 光学学报 34 193Google Scholar

    Yan W J, Zhang Z Z, Guo X T, Gui F, Xie Q, Zhou S Y, Yang J 2014 Acta Opt. Sin. 34 193Google Scholar

    [45]

    Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nat. Nanotechnol. 59 794Google Scholar

    [46]

    Maassen J, Ji W, Guo H 2011 Nano Lett. 11 151Google Scholar

    [47]

    Parkin S, Yang S H 2015 Nat. Nanotechnol. 10 195Google Scholar

    [48]

    Parkin S S, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [49]

    Eda G, Fujita T, Yamaguchi H, Voiry D 2012 ACS Nano 6 7311Google Scholar

    [50]

    Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y 2010 Nat. Mater. 9 430Google Scholar

    [51]

    Zhang H, Liu L M, Lau W M 2013 J. Mater. Chem. A 1 10821Google Scholar

    [52]

    Krijn M P, Eppenga R 1991 Phys. Rev. B 44 9042Google Scholar

    [53]

    Mattheiss L F 1991 Phys. Rev. B 43 12549Google Scholar

    [54]

    Viet Q B, Pham T T, Nguyen H, Le H M 2013 J. Phys. Chem. C 117 23364Google Scholar

    [55]

    Chen S B, Yan W J 2019 J. Supercond. Novel Magn. 32 1341Google Scholar

    [56]

    Chen S B, Chen Y, Yan W J, Zhou S Y, Xiong W, Yao X X, Qin X M 2018 J. Supercond. Novel Magn. 31 2759Google Scholar

    [57]

    Chen S B, Zhou S Y, Yan W J, Chen Y, Qin X M, Xiong W 2019 Journal of Superconductivity and Novel Magnetism 32 1341

    [58]

    Chen S B, Chen Y, Yan W J, Zeng Z Y, Chen X R, Qin X M 2021 J. Supercond. Novel Magn. 34 305Google Scholar

    [59]

    Krijn E, Eppenga E 1991 Physics Review B 44 9042

    [60]

    Borisenko V E 2000 Semiconducting Silicides (Berlin: Spinger) pp85–87

    [61]

    Zeng Z Y, Yin Z. Y, Huang X, Li H, He Q Y, Lu G, Boey F, Zhang H 2011 Angew. Chem. Int. Ed. 50 11093Google Scholar

    [62]

    Chen S B, Ying Chen, Yan W J, Zhou S Y, Qin X M, Xiong W, Liu L 2018 Appl. Sci. 8 1885Google Scholar

    [63]

    Kronik L, Jain M, Chelikowsky J 2003 Phys. Rev. B 68 104411Google Scholar

    [64]

    Park M S, Kwon S K, Min B I 2002 Phys. Rev. B 65 161201Google Scholar

    [65]

    Donald K, Colin N 2005 Science 309 75Google Scholar

    [66]

    陈娜, 张盈祺, 姚可夫 2017 物理学报 66 176113Google Scholar

    Chen N, Zhang Y Q, Yao K F 2017 Acta Phys. Sin. 66 176113Google Scholar

    [67]

    Sun F, Zhao G Q, Escanhoela C A, et al. 2017 Phys. Rev. B 95 094412Google Scholar

    [68]

    Tu N T, Hai P N, Anh L D, Tanaka M 2016 Appl. Phys. Lett. 108 192401Google Scholar

    [69]

    Coey M, Ackland K, Venkatesan M, Sen S 2016 Nat. Phys. 12 694Google Scholar

    [70]

    邓正, 赵国强, 靳常青 2019 物理学报 68 167502Google Scholar

    Deng Z, Zhao G Q, Jin C Q 2019 Acta Phys. Sin. 68 167502Google Scholar

    [71]

    Yun S J, Duong D L, Ha D M, Singh K, Phan T L, Choi W, Kim Y M, Lee Y H 2020 Adv. Sci. 7 1906076Google Scholar

    [72]

    张浩杰, 张茹菲, 傅立承, 顾轶伦, 智国翔, 董金瓯, 赵雪芹, 宁凡龙 2021 物理学报 70 107501Google Scholar

    Zhang H J, Zhang R F, Fu L C, Gu Z L, Zhi G X, Dong J O, Zhao X Q, Ning F L 2021 Acta Phys. Sin. 70 107501Google Scholar

    [73]

    Shi Q, Zhang X, Yang E, Yan J, Yu X Y, Sun C, Li S, Chen Z W 2018 Results Phys. 11 1004Google Scholar

    [74]

    Wu C T, Halterman K 2018 Phys. Rev. B 98 054518Google Scholar

    [75]

    Liu H X, Kawami T, Moges K, Uemura T, Yamamoto M, Shi F, Voyles P M 2015 J. Phys. D 48 164001Google Scholar

    [76]

    Fujii S 2014 IEEE Trans. Magn. 50 1Google Scholar

    [77]

    Liu Y, Ren L, Zheng Y, He S, Teo K L 2018 AIP Adv. 8 056328Google Scholar

  • 图 1  三维CrSi2晶体模型

    Fig. 1.  Three-dimensional CrSi2 crystal model.

    图 2  三维CrSi2晶体的成键模型

    Fig. 2.  Bonding models of three dimensional CrSi2 crystals.

    图 3  二维CrSi2结构模型

    Fig. 3.  Two-dimensional structure model of CrSi2.

    图 4  不同浓度下Ti掺杂二维CrSi2的模型 (a)原子百分比为3.70%; (b) 原子百分比为7.41 %; (c) 原子百分比为11.1%

    Fig. 4.  Model of Ti doped two-dimensional CrSi2 at different concentrations: (a) Atomic percentage is 3.70%; (b) atomic percentage is 7.41%; (c) atomic percentage is 11.1%.

    图 5  截断能与总能量的关系

    Fig. 5.  Relationship between truncation energy and total energy.

    图 6  能带结构图 (a)三维CrSi2的能带结构图; (b)二维CrSi2的上旋电子能带结构; (c)二维CrSi2的下旋电子能带结构

    Fig. 6.  Energy band structure diagram: (a)Energy band structure diagram of three-dimensional CrSi2; (b) spin up electron band structure of two-dimensional CrSi2; (c) spin down electron band structure of two-dimensional CrSi2.

    图 7  Ti, V, Co和Ni在3.70%, 7.41%, 11.1%浓度掺杂下二维CrSi2的能带结构 (a)上旋电子能带结构; (b)下旋电子能带结构

    Fig. 7.  Band structure of Ti, V, Co and Ni in two-dimensional CrSi2 doped with the concentration of 3.70%, 7.41% and 11.1%: (a) Spin up electron band structure; (b) spin down electron band structure.

    图 8  CrSi2的态密度图 (a)三维CrSi2; (b)二维CrSi2

    Fig. 8.  Density of state of CrSi2: (a) Three dimensional CrSi2; (b) two dimensional CrSi2.

    图 9  二维CrSi2的电荷密度图

    Fig. 9.  Charge density diagram of two-dimensional CrSi2.

    图 10  不同浓度掺杂后二维CrSi2的态密度图 (a) Ti-3.70%; (b) V-3.70%; (c) Co-3.70%; (d) Ni-3.70%; (e) Ti-7.41%; (f) V-7.41%; (g) Co-7.41%; (h) Ni-7.41%

    Fig. 10.  Density of states of two-dimensional CrSi2 doped with different concentrations: (a) Ti-3.70%; (b) V-3.70%; (c) Co-3.70%; (d) Ni-3.70%; (e) Ti-7.41%; (f) V-7.41%; (g) Co-7.41%; (h) Ni-7.41%.

    图 11  二维CrSi2未掺杂及掺杂不同浓度的Ti, V, Co, Ni元素的磁矩

    Fig. 11.  Magnetic moments of two-dimensional CrSi2 undoped and doped with Ti, V, Co and Ni elements of different concentrations.

    图 12  三维及二维CrSi2的复介电函数图

    Fig. 12.  Three-dimensional and two-dimensional complex dielectric function diagrams of CrSi2.

    图 13  3.70%及7.41%浓度下掺杂后的复介电函数图 (a) Ti; (b) V; (c) Co; (d) Ni

    Fig. 13.  Complex dielectric function diagrams of doping at 3.70% and 7.41% concentrations: (a) Ti; (b) V; (c) Co; (d) Ni.

    图 14  11.1%浓度下掺杂后的复介电函数图 (a) Ti, V; (b) Co, Ni

    Fig. 14.  Complex dielectric function of doping at 11.1 % concentration: (a) Ti, V; (b) Co, Ni.

    图 15  三维和二维CrSi2的吸收系数

    Fig. 15.  Absorption coefficient of three-dimensional and two-dimensional CrSi2.

    图 16  3.70%及7.41%浓度下掺杂后的吸收系数 (a) Ti; (b) V; (c) Co; (d) Ni

    Fig. 16.  Absorption coefficient of doping at 3.70 % and 7.41% concentrations: (a) Ti; (b) V; (c) Co; (d) Ni.

    图 17  三维和二维CrSi2的反射系数

    Fig. 17.  Reflection coefficient of CrSi2 in three and two dimensions.

    图 18  3.70%及7.41%浓度下掺杂后的反射系数 (a) Ti; (b) V; (c) Co; (d) Ni

    Fig. 18.  Reflection coefficient of doping at 3.70% and 7.41% concentrations: (a) Ti; (b) V; (c) Co; (d) Ni.

    图 19  三维和二维CrSi2的能量损失函数

    Fig. 19.  Energy loss function diagrams of three-dimensional and two-dimensional CrSi2.

    图 20  3.70%及7.41%浓度下掺杂后的能量损失函数 (a) Ti; (b) V; (c) Co; (d) Ni

    Fig. 20.  Energy loss function after doping at the concentration of 3.70% and 7.41%: (a) Ti; (b) V; (c) Co; (d) Ni.

    表 1  三维CrSi2的基本性质

    Table 1.  Basic properties of three-dimensional CrSi2

    CrSi2SiCr
    带隙类型[44,55-58]间接带隙间接带隙无带隙
    带隙/eV[44,55-58]0.380.8530.00
    磁矩/μB[55-58]0.000.000.00
    基态能/eV[55-58]–32199.360.000.00
    热导率/(W·MK–1)[40]1015091.3
    电导率/(Ω·cm)[40]103
    下载: 导出CSV

    表 2  三维及二维CrSi2的结构优化结果

    Table 2.  Structural optimization results of three-dimensional and two-dimensional CrSi2.

    Modela/nmb/nmc/nmVo/nm3
    3D-CrSi20.4380.4380.6320.107
    2D-CrSi20.4410.4411.52.274
    下载: 导出CSV

    表 3  过渡金属元素3d壳层的电子结构

    Table 3.  Electronic structure of 3d shell of transition metal elements.

    原子序数21222324252627282930
    元素名ScTiVCrMnFeCoNiCuZn
    磁性顺磁性顺磁性顺磁性反铁磁性反铁磁性铁磁性铁磁性铁磁性无磁性无磁性
    轨道结构3d14s23d24s23d34s23d54s13d54s23d64s23d74s23d84s23d104s13d104s2
    3d电子数及其自旋排布










    ↑↓



    ↑↓
    ↑↓


    ↑↓
    ↑↓
    ↑↓

    ↑↓
    ↑↓
    ↑↓
    ↑↓
    ↑↓
    ↑↓
    ↑↓
    ↑↓
    ↑↓
    ↑↓
    4s轨道电子数2221222212
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V 2004 Science 306 666Google Scholar

    [2]

    Lee C, Wei X, Kysar J W 2008 Science 321 385Google Scholar

    [3]

    Zhang Y, Tan Y W, Stormer H L 2005 Nature 438 201Google Scholar

    [4]

    Balandin A A, Ghosh S, Bao W 2008 Nano Lett 8 902Google Scholar

    [5]

    Nair R R, Blake P, Grigorenko A N 2008 Science 320 1308Google Scholar

    [6]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [7]

    Ribeiro-Palau R, Zhang C, Watanabe K, Taniguchi T, Hone J, Dean C R 2018 Science 361 690Google Scholar

    [8]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [9]

    王铄, 王文辉, 吕俊鹏, 倪振华 2021 物理学报 70 026802Google Scholar

    Wang S, Wang W H, Lv J P, Ni Z H 2021 Acta Phys. Sin. 70 026802Google Scholar

    [10]

    黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根 2021 物理学报 70 027802Google Scholar

    Huang S Y, Zhang G W, Wang F J, Lei Y C, Yan H G 2021 Acta Phys. Sin. 70 027802Google Scholar

    [11]

    王盼, 宗易昕, 文宏玉, 夏建白, 魏钟鸣 2021 物理学报 70 026801Google Scholar

    Wang P, Zong Y X, Wen H Y, Xia J B, Wei Z M 2021 Acta Phys. Sin. 70 026801Google Scholar

    [12]

    Luo J C, Gao S J, Luo H, Wang L, Huang X W, Guo Z, Lai X J, Lin L W, Li R K Y, Gao J F 2021 Chem. Eng. J. 406 126898Google Scholar

    [13]

    Li L K, Kim J, Jin C H, et al. 2017 Nat. Nanotechnol. 12 21Google Scholar

    [14]

    Shen X, Zheng Q B, Kim J K 2021 Prog. Mater. Sci. 115 100708Google Scholar

    [15]

    Faisal S, Mohamed A, Christine B H, Babak A, Soon M H, Chong M K, Yury G 2016 Science 353 1137Google Scholar

    [16]

    Zhu X H, Zhang Y Y, Liu M L, Liu Y 2021 Biosens. Bioelectron. 171 112730Google Scholar

    [17]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [18]

    Li L, Yu Y, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L 2014 Nat. Nanotechnol. 9 372Google Scholar

    [19]

    Feng B J, Zhang J, Zhong Q 2016 Nat. Chem. 8 564Google Scholar

    [20]

    Mannix A J, Zhou X F, Kiraly B 2015 Science 350 1513Google Scholar

    [21]

    Zhong H X, Quhe R G, Wang Y Y 2015 Chin.Phys.B 24 87Google Scholar

    [22]

    Lin Y, Williams T V, Connell J W 2010 J. Phys. Chem. Lett. 1 277Google Scholar

    [23]

    Wang X, Maeda K, Thomas A 2009 Nat. Mater. 8 76Google Scholar

    [24]

    Naguib M, Mochalin V N, Barsoum M W 2014 Adv. Mater. 26 992Google Scholar

    [25]

    Liu H, Du Y C, Deng Y X 2015 Chem. Soc. Rev. 44 2732Google Scholar

    [26]

    Chhowalla M, Liu Z F, Zhang H 2015 Chem. Soc. Rev. 44 2584Google Scholar

    [27]

    Chhowalla M, Shin H S, Eda G 2013 Nat. Chem. 5 263Google Scholar

    [28]

    Xu M S, Liang T, Shi M M 2013 Chem. Rev. 113 3766Google Scholar

    [29]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232Google Scholar

    [30]

    Wang Q, O’hare D 2012 Chem. Rev. 112 4124Google Scholar

    [31]

    Dzade N, Obodo Y, Adjokatse K O 2010 J. Phys. Condens. Matter 22 375502Google Scholar

    [32]

    Voon L C L Y, Guzman-Verri G G 2014 MRS Bull. 39 366Google Scholar

    [33]

    Kara A, Enriquez H, Seitsonen A P, Lee Y V L C, Vizzini S, Aufray B, Oughaddou H 2012 Surf. Sci. Rep. 67 1Google Scholar

    [34]

    Bisi O, Calandra C 1981 J. Phys. C 14 5479Google Scholar

    [35]

    Abdul B, Hubby I, Bambang H, Toto S 2021 Int. J. Refract. Met. Hard Mater. 96 105497Google Scholar

    [36]

    Fei L, He J L, Sheng Y G, Xi Y Y, Qian G F 2019 Surf. Coat. Technol. 374 966Google Scholar

    [37]

    Wang X Q, Li H D, Wang J T 2012 Phys. Chem. Chem. Phys. 14 3031Google Scholar

    [38]

    Zhang C W, Yan S S 2012 J. Phys. Chem. C 116 4163Google Scholar

    [39]

    Kaloni T P, Gangopadhyay S, Singh N 2013 Phys. Rev. B 88 235418Google Scholar

    [40]

    Dasgupta T, Etourneau J, Chevalier B, Matar S F, Umarji A M 2008 J. Appl. Phys. 103 113516Google Scholar

    [41]

    Nagai H, Takamatsul T, Iijima Y, Hayashi K, Miyazaki Y 2018 JJAP 57 121801Google Scholar

    [42]

    Naval K U, Kumaraswamidhas L A, Bhasker G, Sivaiah B, Saravanan M, Radhey S, Nagendra S C, Ruchi B, Ajay D 2018 J. Alloys Compd. 765 412Google Scholar

    [43]

    闫万珺, 周士芸, 谢泉, 郭本华, 张春红 2012 光学学报 32 171

    Yan W J, Zhou S Y, Xie Q, Guo B H, Zhang C H 2012 Acta Opt. Sin. 32 171

    [44]

    闫万珺, 张忠政, 郭笑天, 桂放, 谢泉, 周士芸, 杨娇 2014 光学学报 34 193Google Scholar

    Yan W J, Zhang Z Z, Guo X T, Gui F, Xie Q, Zhou S Y, Yang J 2014 Acta Opt. Sin. 34 193Google Scholar

    [45]

    Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nat. Nanotechnol. 59 794Google Scholar

    [46]

    Maassen J, Ji W, Guo H 2011 Nano Lett. 11 151Google Scholar

    [47]

    Parkin S, Yang S H 2015 Nat. Nanotechnol. 10 195Google Scholar

    [48]

    Parkin S S, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [49]

    Eda G, Fujita T, Yamaguchi H, Voiry D 2012 ACS Nano 6 7311Google Scholar

    [50]

    Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y 2010 Nat. Mater. 9 430Google Scholar

    [51]

    Zhang H, Liu L M, Lau W M 2013 J. Mater. Chem. A 1 10821Google Scholar

    [52]

    Krijn M P, Eppenga R 1991 Phys. Rev. B 44 9042Google Scholar

    [53]

    Mattheiss L F 1991 Phys. Rev. B 43 12549Google Scholar

    [54]

    Viet Q B, Pham T T, Nguyen H, Le H M 2013 J. Phys. Chem. C 117 23364Google Scholar

    [55]

    Chen S B, Yan W J 2019 J. Supercond. Novel Magn. 32 1341Google Scholar

    [56]

    Chen S B, Chen Y, Yan W J, Zhou S Y, Xiong W, Yao X X, Qin X M 2018 J. Supercond. Novel Magn. 31 2759Google Scholar

    [57]

    Chen S B, Zhou S Y, Yan W J, Chen Y, Qin X M, Xiong W 2019 Journal of Superconductivity and Novel Magnetism 32 1341

    [58]

    Chen S B, Chen Y, Yan W J, Zeng Z Y, Chen X R, Qin X M 2021 J. Supercond. Novel Magn. 34 305Google Scholar

    [59]

    Krijn E, Eppenga E 1991 Physics Review B 44 9042

    [60]

    Borisenko V E 2000 Semiconducting Silicides (Berlin: Spinger) pp85–87

    [61]

    Zeng Z Y, Yin Z. Y, Huang X, Li H, He Q Y, Lu G, Boey F, Zhang H 2011 Angew. Chem. Int. Ed. 50 11093Google Scholar

    [62]

    Chen S B, Ying Chen, Yan W J, Zhou S Y, Qin X M, Xiong W, Liu L 2018 Appl. Sci. 8 1885Google Scholar

    [63]

    Kronik L, Jain M, Chelikowsky J 2003 Phys. Rev. B 68 104411Google Scholar

    [64]

    Park M S, Kwon S K, Min B I 2002 Phys. Rev. B 65 161201Google Scholar

    [65]

    Donald K, Colin N 2005 Science 309 75Google Scholar

    [66]

    陈娜, 张盈祺, 姚可夫 2017 物理学报 66 176113Google Scholar

    Chen N, Zhang Y Q, Yao K F 2017 Acta Phys. Sin. 66 176113Google Scholar

    [67]

    Sun F, Zhao G Q, Escanhoela C A, et al. 2017 Phys. Rev. B 95 094412Google Scholar

    [68]

    Tu N T, Hai P N, Anh L D, Tanaka M 2016 Appl. Phys. Lett. 108 192401Google Scholar

    [69]

    Coey M, Ackland K, Venkatesan M, Sen S 2016 Nat. Phys. 12 694Google Scholar

    [70]

    邓正, 赵国强, 靳常青 2019 物理学报 68 167502Google Scholar

    Deng Z, Zhao G Q, Jin C Q 2019 Acta Phys. Sin. 68 167502Google Scholar

    [71]

    Yun S J, Duong D L, Ha D M, Singh K, Phan T L, Choi W, Kim Y M, Lee Y H 2020 Adv. Sci. 7 1906076Google Scholar

    [72]

    张浩杰, 张茹菲, 傅立承, 顾轶伦, 智国翔, 董金瓯, 赵雪芹, 宁凡龙 2021 物理学报 70 107501Google Scholar

    Zhang H J, Zhang R F, Fu L C, Gu Z L, Zhi G X, Dong J O, Zhao X Q, Ning F L 2021 Acta Phys. Sin. 70 107501Google Scholar

    [73]

    Shi Q, Zhang X, Yang E, Yan J, Yu X Y, Sun C, Li S, Chen Z W 2018 Results Phys. 11 1004Google Scholar

    [74]

    Wu C T, Halterman K 2018 Phys. Rev. B 98 054518Google Scholar

    [75]

    Liu H X, Kawami T, Moges K, Uemura T, Yamamoto M, Shi F, Voyles P M 2015 J. Phys. D 48 164001Google Scholar

    [76]

    Fujii S 2014 IEEE Trans. Magn. 50 1Google Scholar

    [77]

    Liu Y, Ren L, Zheng Y, He S, Teo K L 2018 AIP Adv. 8 056328Google Scholar

  • [1] 潘凤春, 林雪玲, 王旭明. 应变对(Ga, Mo)Sb磁学和光学性质影响的理论研究. 物理学报, 2022, 71(9): 096103. doi: 10.7498/aps.71.20212316
    [2] 宋蕊, 王必利, 冯凯, 姚佳, 李霞. 应力调控对单层TiOCl2电子结构及光学性质的影响. 物理学报, 2022, 71(7): 077101. doi: 10.7498/aps.71.20212023
    [3] 陈蓉, 王远帆, 王熠欣, 梁前, 谢泉. 过渡金属原子X (X = Mn, Tc, Re) 掺杂二维WS2第一性原理研究. 物理学报, 2022, 71(12): 127301. doi: 10.7498/aps.71.20212439
    [4] 邢海英, 郑智健, 张子涵, 吴文静, 郭志英. 应力调控BlueP/X Te2 (X = Mo, W)范德瓦耳斯异质结电子结构及光学性质理论研究. 物理学报, 2021, 70(6): 067101. doi: 10.7498/aps.70.20201728
    [5] 王丹, 邱荣, 陈博, 包南云, 康冬冬, 戴佳钰. 二维冰相I的电子和光学性质. 物理学报, 2021, 70(13): 133101. doi: 10.7498/aps.70.20210708
    [6] 熊子谦, 张鹏程, 康文斌, 方文玉. 一种新型二维TiO2的电子结构与光催化性质. 物理学报, 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [7] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [8] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [9] 李建华, 崔元顺, 曾祥华, 陈贵宾. ZnS结构相变、电子结构和光学性质的研究. 物理学报, 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [10] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [11] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [12] 张小超, 赵丽军, 樊彩梅, 梁镇海, 韩培德. 过渡金属(Fe,Co,Ni,Zn)掺杂金红石TiO2的电子结构和光学性质. 物理学报, 2012, 61(7): 077101. doi: 10.7498/aps.61.077101
    [13] 吴海平, 陈栋国, 黄德财, 邓开明. SrCoO3电子结构和磁学性质的第一性原理研究. 物理学报, 2012, 61(3): 037101. doi: 10.7498/aps.61.037101
    [14] 陈海川, 杨利君. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算. 物理学报, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [15] 王江龙, 葛志启, 李慧玲, 刘洪飞, 于威. 后钙钛矿CaRhO3的电子结构和磁学性质的第一性原理研究. 物理学报, 2011, 60(4): 047107. doi: 10.7498/aps.60.047107
    [16] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [17] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究. 物理学报, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [18] 陈秋云, 赖新春, 王小英, 张永彬, 谭世勇. UO2的电子结构及光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4945-4949. doi: 10.7498/aps.59.4945
    [19] 崔冬萌, 谢泉, 陈茜, 赵凤娟, 李旭珍. Si基外延Ru2Si3电子结构及光学性质研究. 物理学报, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [20] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究. 物理学报, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
计量
  • 文章访问数:  6310
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-30
  • 修回日期:  2021-07-19
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回