搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TaC微粒对Ti-6Al-4V合金微弧氧化层结构和性能的影响

丁智松 高巍 魏敬鹏 金耀华 赵晨 杨巍

引用本文:
Citation:

TaC微粒对Ti-6Al-4V合金微弧氧化层结构和性能的影响

丁智松, 高巍, 魏敬鹏, 金耀华, 赵晨, 杨巍

Effects of TaC microparticles on structure and properties of micro-arc oxidation coating on Ti-6Al-4V alloy

Ding Zhi-Song, Gao Wei, Wei Jing-Peng, Jin Yao-Hua, Zhao Chen, Yang Wei
PDF
HTML
导出引用
  • 为了提高钛合金表面微弧氧化层在海洋环境中的抗腐蚀和耐磨损性能, 在硅酸盐系电解液中添加不同浓度粒径在1 μm左右的TaC微粒, 制备了TaC掺杂微弧氧化层. 通过扫描电子显微镜、能谱仪和X射线光电子能谱仪等对微弧氧化层的形貌、元素组成及其化学状态进行表征与分析, 并对比评价了钛合金表面TaC掺杂微弧氧化层的厚度、表面粗糙度、硬度、耐磨性以及耐蚀性. 结果表明: 通过向电解液中添加TaC微粒, 钛合金表面微弧氧化层中存在TaC和Ta2O5; 较未添加TaC微粒制备微弧氧化层, 其表面形貌更为致密, 硬度提高了约83.2%, 在模拟海水中的摩擦系数由0.2降到了0.148, 由磨粒磨损转变为粘着磨损, 腐蚀电流密度下降了2个数量级, 并通过构建微弧氧化层在模拟海水中的磨损和腐蚀失效模型, 揭示了微弧氧化层中掺入TaC微粒对改善其抗腐耐磨性能的内在机理.
    In order to improve the corrosion resistance and wear properties of the micro arc oxidatin (MAO) coatings on Ti-6Al-4V alloy in the marine environment, TaC-doped MAO coatings are prepared by adding different concentrations of TaC microparticles with a particle size of about 1 μm into the silicate-based electrolyte. The morphology, elemental distribution and composition of the coatings are characterized and analyzed by SEM, EDS and XPS. The thickness, roughness, hardness, wear resistance and corrosion resistance for each of the three MAO coatings are evaluated and their corresponding values of these coatings are compared with each other. The results show that by adding TaC microparticles into the base electrolyte, TaC and Ta2O5 are present in the MAO coatings on titanium alloy. Compared with the MAO coating without TaC, the surface morphology of the coating with TaC is dense and the hardness is increased by about 83.2%. The friction coefficient of the coating in the simulated seawater decreases from 0.2 to 0.148, changing from serious abrasive wear to slight adhesive wear. The corrosion current density of this coating decreases by two orders of magnitude. Furthermore, by constructing the wear and corrosion failure model of the MAO coatings in the simulated seawater, the internal mechanism of doping TaC microparticles into the MAO coating to improve its corrosion resistance and wear resistance is revealed.
      通信作者: 高巍, gaowei@xatu.edu.cn ; 杨巍, yangwei_smx@163.com
    • 基金项目: 国家自然科学基金(批准号: 52071252)和陕西省自然科学基金(批准号: 2018JQ2075)资助的课题
      Corresponding author: Gao Wei, gaowei@xatu.edu.cn ; Yang Wei, yangwei_smx@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52071252) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2018JQ2075)
    [1]

    Hu J L, Li H X, Wang X Y, Yang L, Chen M, Wang R X, Qin G W, Chen D F, Zhang E L 2020 Mater. Sci. Eng., C 115 110921Google Scholar

    [2]

    Li G Q, Wang Y P, Zhang S F, Zhao R F, Zhang R F, Li X Y, Chen C M 2019 Surf. Coat. Technol. 378 124951Google Scholar

    [3]

    He D H, Du J, Liu P, Liu X K, Chen X H, Li W, Zhang K, Ma F C 2019 Surf. Coat. Technol. 365 242Google Scholar

    [4]

    Yang W, Xu D P, Guo Q Q, Chen T, Chen J 2018 Surf. Coat. Technol. 349 522Google Scholar

    [5]

    Lin J Z, Chen W D, Tang Q Q, Cao L Y, Su S H 2021 Surf. Interfaces 22 100805Google Scholar

    [6]

    Chen C A, Jian S Y, Lu C H, Lee C Y, Aktug S L, Ger M D 2020 J. Mater. Res. Technol. 9 13902Google Scholar

    [7]

    Wang X, Yan H G, Hang R Q, Shi H X, Wang L F, Mao J C, Liu X P, Yao X H 2021 J. Mater. Res. Technol. 11 2354Google Scholar

    [8]

    武上焜, 杨巍, 高羽, 苏霖深, 刘晓鹏, 陈建 2019 表面技术 48 142

    Wu S K, Yang W, Gao Y, Su L S, Liu X P, Chen J 2019 Surf. Technol. 48 142

    [9]

    Fazel M, Salimijazi H R, Golozar M A, Garsivaz jazi M R 2015 Appl. Surf. Sci. 324 751Google Scholar

    [10]

    Shen Y Z, Tao H J, Lin Y B, Zeng X F, Wang T, Tao J, Pan L 2017 Rare Met. Mater. Eng. 46 0023Google Scholar

    [11]

    Costa A I, Sousa L, Alves A C, Topta F 2020 Corros. Sci. 166 108467Google Scholar

    [12]

    Chen L, Jin X Y, Qu Y, Wei K J, Zhang Y F, Liao B, Xue W B 2018 Surf. Coat. Technol. 347 29Google Scholar

    [13]

    Wang Y M, Lei T Q, Jia D C, Zhou Y, Ouyang J H 2007 Key Eng. Mater. 336 1734

    [14]

    王亚明, 蒋百灵, 雷廷权, 郭立新 2003 摩擦学学报 23 371Google Scholar

    Wang Y M, Jiang B L, Lei T Q, Guo L X 2003 Tribology 23 371Google Scholar

    [15]

    Mohammadi M, Chorbani M 2011 J. Coat. Technol. Res. 8 527Google Scholar

    [16]

    Zheng Z R, Zhao M C, Tan L L, Zhao Y C, Xie B, Yin D F, Yang K, Andrej A 2020 Surf. Coat. Technol. 386 125456Google Scholar

    [17]

    Chen Q Z, Jiang Z Q, Tang S G, Dong W B, Tong Q, Li W Z 2017 Appl. Surf. Sci. 423 939Google Scholar

    [18]

    Lu X P, Blawert C, Kainer K U, Zhang T, Wang F H, Mikhail L 2018 Surf. Coat. Technol. 352 1Google Scholar

    [19]

    Aliofkhaxraei M, Sabour Rouhaghdam A, Shahrabi T 2010 Surf. Coat. Technol. 205 S41Google Scholar

    [20]

    赵坚, 宋仁国, 李红霞, 陈小明, 李杰, 卢果 2010 材料热处理学报 31 125

    Zhao J, Song R G, Li H X, Chen X M, Li J 2010 Trans Mater. Heat Treat. 31 125

    [21]

    杜楠, 王帅星, 赵晴, 朱文辉 2013 稀有金属材料与工程 42 621Google Scholar

    Du N, Wang S X, Zhao Q, Zhu W H 2013 Rare Met. Mater. Eng. 42 621Google Scholar

    [22]

    Mu M, Liang J, Zhou X J, Xiao Q 2012 Surf. Coat. Technol. 214 124

    [23]

    王佳营, 俞礽安, 李志丹 2020 中国矿业报 2 14

    Wang J Y, Yu N A, Li Z D 2020 Chin. Min. News 2 14

    [24]

    张欣雨, 毛小南, 王可, 陈茜 2021 材料导报 35 01162

    Zhang X Y, Mao X N, Wang K, Chen Q 2021 Mater. Rep. 35 01162

    [25]

    Mohammad F, Morteza S, Hamid R S 2020 Biotribology 23 100131Google Scholar

    [26]

    Wang J L, Yang W, Xu D P, Yao X F 2017 Acta Metal. Sin. 30 110 9

    [27]

    Yuan X H, Tan F, Xu H T, Zhang S J, Qu F Z, Liu J 2016 J. Prosthodont. Res. 61 297

    [28]

    M. Vargas, H. A. Castillo, E. Restrepo-Parra, W. De La Cruz 2013 Appl. Surf. Sci. 279 7Google Scholar

    [29]

    曹飞, 吕凯, 张雅萍, 陈伟东, 刘小鱼 2020 热加工工艺 49 84

    Cao F, Lv K, Zhang Y P, Chen W D, Liu X Y 2020 Hot Working Technol. 49 84

    [30]

    沈雁, 谢荣, 王红 2019 船舶工程 41 101

    Shen Y, Xie R, Wang H F 2019 Ship Eng. 41 101

    [31]

    任冰, 万熠, 王桂森, 王滕, 曹恩源 2018 表面技术 47 160

    Ren B, Wan Y, Wang G S, Wang T, Cao E Y 2018 Surf. Technol. 47 160

    [32]

    李文冠, 张瑞志, 罗方伟, 向勇 2020 涂料工业 50 81Google Scholar

    Li W G, Zhang R Z, Luo F W, Xiang Y 2020 Paint Coat. Ind. 50 81Google Scholar

  • 图 1  微弧氧化流程图

    Fig. 1.  Preparation process of MAO coating with TaC microparticles addition.

    图 2  在含不同浓度TaC微粒的电解液中制备的微弧氧化层的表面形貌 (a) 0 g/L; (b) 2 g/L; (c) 5 g/L; (d) 图(c)的局部放大图

    Fig. 2.  Surface morphologies of MAO coating with different TaC microparticles addition: (a) Without TaC; (b) 2 g/L; (c) 5 g/L; (d) partial enlarged view of Figure (c).

    图 3  在含不同浓度TaC微粒的电解液中制备的微弧氧化层的截面形貌 (a) 0 g/L TaC微粒; (b) 2 g/L TaC微粒; (c) 5 g/L TaC微粒

    Fig. 3.  Cross-sectional morphologies of MAO coatings with different content of TaC microparticles in electrolyte: (a) 0 g/L; (b) 2 g/L; (c) 5 g/L.

    图 4  添加不同含量TaC微粒制备微弧氧化层表面XPS全谱及Ti, Si, O和Ta的高分辨图谱 (a) XPS全谱; (b) Ti 2p高分辨率光谱; (c) Si 2p高分辨率光谱; (d) O 1s高分辨率光谱; (e) Ta 4f高分辨率光谱

    Fig. 4.  XPS survey spectra and high-resolution spectra of MAO coating with TaC addition: (a) XPS full spectra; (b) typical Ti 2p; (c) typical Si 2p; (d) typical O 1s; (e) typical Ta 4f.

    图 5  添加0, 2和5 g/L TaC微粒制备微弧氧化层在模拟海水中的摩擦曲线

    Fig. 5.  Friction curves of ceramic coatings prepared by adding 0, 2, 5 g/L TaC miaroparticles in simulated seawater.

    图 6  添加不同含量TaC微粒微弧氧化层的磨痕形貌 (a) 0 g/L; (b) 2 g/L; (c) 5 g/L

    Fig. 6.  Wear scar morphologies of ceramic coatings with different contents of TaC microparticles: (a) 0 g/L; (b) 2 g/L; (c) 5 g/L.

    图 7  添加不同含量TaC微粒制备微弧氧化层的极化曲线

    Fig. 7.  Polarization curve of ceramic coatings with different contents of TaC particles.

    图 8  添加TaC微粒前后制备微弧氧化层的磨损示意图 (a), (b)未添加; (c), (d)添加

    Fig. 8.  Wear schematic diagram of ceramic coating: (a), (b) Without TaC; (c), (d) with TaC.

    图 9  添加TaC微粒前后制备微弧氧化层的电化学腐蚀示意图 (a)未添加; (b)添加

    Fig. 9.  Schematic diagram of electrochemical corrosion of ceramic coating: (a) Without TaC; (b) with TaC.

    表 1  钛合金不同组织力学性能对比表[24]

    Table 1.  Comparison of mechanical properties of different microstructures of titanium alloys[24].

    组织
    类型
    室温拉伸 热稳定
    强度塑性强度塑性
    等轴最好
    双态较好较好
    网篮高于等轴
    魏氏较差最差最差
    下载: 导出CSV

    表 2  模拟海水成分表

    Table 2.  Composition of simulated sea water.

    Compo-sitionNaClMgCl2Na2SO4CaCl2KClNaHCO3KBrHBO3SrCl2NaF
    Content/(g·L–1)24.5311.114.091.160.6850.2010.1010.0270.0280.003
    下载: 导出CSV

    表 3  添加5 g/L TaC微粒制得微弧氧化层不同区域的EDS结果

    Table 3.  EDS of different regions of MAO coatings prepared by adding 5 g/L TaC microparticless

    Test pointAtom content/%
    OAlSiTiTa
    a30.42.232.731.92.8
    b51.01.623.223.50.8
    c52.41.424.321.10.8
    d43.61.925.428.01.2
    下载: 导出CSV

    表 4  不同含量TaC微粒微弧氧化层的EDS结果

    Table 4.  EDS results of MAO coatings with different contents of TaC microparticles.

    TaC/(g·L–1)Atom content/%
    OAlSiTiTa
    068.21.817.812.1
    269.21.220.98.10.5
    567.31.420.010.50.9
    下载: 导出CSV

    表 5  添加不同含量TaC微粒制备微弧氧化层厚度、显微硬度、粗糙度

    Table 5.  Thickness, microhardness, and roughness of ceramic coatings with different content of TaC microparticles.

    Content of
    TaC/(g·L–1)
    Thickness/μmHV0.5Roughness/μm
    09.03526.952.135
    29.06965.502.314
    59.99941.872.716
    下载: 导出CSV

    表 6  不同原子含量TaC微粒的微弧氧化层磨痕EDS结果

    Table 6.  EDS results of wear scar of ceramic coatings with different contents of TaC microparticles.

    TaC/(g·L–1) Atom content/%
    OAlSiTiTaFe
    046.65.55.042.8
    269.91.416.210.00.22.3
    569.91.315.510.00.33.0
    下载: 导出CSV

    表 7  图6得知的腐蚀电位和腐蚀电流密度

    Table 7.  Corrosion potential and corrosion current density from Figur 6.

    TaC/(g·L–1)Ecorr /VIcorr /(A·cm–2)
    0–0.221.05 × 10–6
    20.103.42 × 10–8
    50.122.67 × 10–8
    下载: 导出CSV
  • [1]

    Hu J L, Li H X, Wang X Y, Yang L, Chen M, Wang R X, Qin G W, Chen D F, Zhang E L 2020 Mater. Sci. Eng., C 115 110921Google Scholar

    [2]

    Li G Q, Wang Y P, Zhang S F, Zhao R F, Zhang R F, Li X Y, Chen C M 2019 Surf. Coat. Technol. 378 124951Google Scholar

    [3]

    He D H, Du J, Liu P, Liu X K, Chen X H, Li W, Zhang K, Ma F C 2019 Surf. Coat. Technol. 365 242Google Scholar

    [4]

    Yang W, Xu D P, Guo Q Q, Chen T, Chen J 2018 Surf. Coat. Technol. 349 522Google Scholar

    [5]

    Lin J Z, Chen W D, Tang Q Q, Cao L Y, Su S H 2021 Surf. Interfaces 22 100805Google Scholar

    [6]

    Chen C A, Jian S Y, Lu C H, Lee C Y, Aktug S L, Ger M D 2020 J. Mater. Res. Technol. 9 13902Google Scholar

    [7]

    Wang X, Yan H G, Hang R Q, Shi H X, Wang L F, Mao J C, Liu X P, Yao X H 2021 J. Mater. Res. Technol. 11 2354Google Scholar

    [8]

    武上焜, 杨巍, 高羽, 苏霖深, 刘晓鹏, 陈建 2019 表面技术 48 142

    Wu S K, Yang W, Gao Y, Su L S, Liu X P, Chen J 2019 Surf. Technol. 48 142

    [9]

    Fazel M, Salimijazi H R, Golozar M A, Garsivaz jazi M R 2015 Appl. Surf. Sci. 324 751Google Scholar

    [10]

    Shen Y Z, Tao H J, Lin Y B, Zeng X F, Wang T, Tao J, Pan L 2017 Rare Met. Mater. Eng. 46 0023Google Scholar

    [11]

    Costa A I, Sousa L, Alves A C, Topta F 2020 Corros. Sci. 166 108467Google Scholar

    [12]

    Chen L, Jin X Y, Qu Y, Wei K J, Zhang Y F, Liao B, Xue W B 2018 Surf. Coat. Technol. 347 29Google Scholar

    [13]

    Wang Y M, Lei T Q, Jia D C, Zhou Y, Ouyang J H 2007 Key Eng. Mater. 336 1734

    [14]

    王亚明, 蒋百灵, 雷廷权, 郭立新 2003 摩擦学学报 23 371Google Scholar

    Wang Y M, Jiang B L, Lei T Q, Guo L X 2003 Tribology 23 371Google Scholar

    [15]

    Mohammadi M, Chorbani M 2011 J. Coat. Technol. Res. 8 527Google Scholar

    [16]

    Zheng Z R, Zhao M C, Tan L L, Zhao Y C, Xie B, Yin D F, Yang K, Andrej A 2020 Surf. Coat. Technol. 386 125456Google Scholar

    [17]

    Chen Q Z, Jiang Z Q, Tang S G, Dong W B, Tong Q, Li W Z 2017 Appl. Surf. Sci. 423 939Google Scholar

    [18]

    Lu X P, Blawert C, Kainer K U, Zhang T, Wang F H, Mikhail L 2018 Surf. Coat. Technol. 352 1Google Scholar

    [19]

    Aliofkhaxraei M, Sabour Rouhaghdam A, Shahrabi T 2010 Surf. Coat. Technol. 205 S41Google Scholar

    [20]

    赵坚, 宋仁国, 李红霞, 陈小明, 李杰, 卢果 2010 材料热处理学报 31 125

    Zhao J, Song R G, Li H X, Chen X M, Li J 2010 Trans Mater. Heat Treat. 31 125

    [21]

    杜楠, 王帅星, 赵晴, 朱文辉 2013 稀有金属材料与工程 42 621Google Scholar

    Du N, Wang S X, Zhao Q, Zhu W H 2013 Rare Met. Mater. Eng. 42 621Google Scholar

    [22]

    Mu M, Liang J, Zhou X J, Xiao Q 2012 Surf. Coat. Technol. 214 124

    [23]

    王佳营, 俞礽安, 李志丹 2020 中国矿业报 2 14

    Wang J Y, Yu N A, Li Z D 2020 Chin. Min. News 2 14

    [24]

    张欣雨, 毛小南, 王可, 陈茜 2021 材料导报 35 01162

    Zhang X Y, Mao X N, Wang K, Chen Q 2021 Mater. Rep. 35 01162

    [25]

    Mohammad F, Morteza S, Hamid R S 2020 Biotribology 23 100131Google Scholar

    [26]

    Wang J L, Yang W, Xu D P, Yao X F 2017 Acta Metal. Sin. 30 110 9

    [27]

    Yuan X H, Tan F, Xu H T, Zhang S J, Qu F Z, Liu J 2016 J. Prosthodont. Res. 61 297

    [28]

    M. Vargas, H. A. Castillo, E. Restrepo-Parra, W. De La Cruz 2013 Appl. Surf. Sci. 279 7Google Scholar

    [29]

    曹飞, 吕凯, 张雅萍, 陈伟东, 刘小鱼 2020 热加工工艺 49 84

    Cao F, Lv K, Zhang Y P, Chen W D, Liu X Y 2020 Hot Working Technol. 49 84

    [30]

    沈雁, 谢荣, 王红 2019 船舶工程 41 101

    Shen Y, Xie R, Wang H F 2019 Ship Eng. 41 101

    [31]

    任冰, 万熠, 王桂森, 王滕, 曹恩源 2018 表面技术 47 160

    Ren B, Wan Y, Wang G S, Wang T, Cao E Y 2018 Surf. Technol. 47 160

    [32]

    李文冠, 张瑞志, 罗方伟, 向勇 2020 涂料工业 50 81Google Scholar

    Li W G, Zhang R Z, Luo F W, Xiang Y 2020 Paint Coat. Ind. 50 81Google Scholar

  • [1] 李小林, 袁坤, 何嘉乐, 刘洪峰, 张建波, 周阳. NH3在TaC(0001)表面吸附和解离的第一性原理研究. 物理学报, 2022, 71(1): 017103. doi: 10.7498/aps.71.20210400
    [2] 丁智松, 高巍, 魏敬鹏, 金耀华, 赵晨, 杨巍. TaC 微粒对 Ti-6Al-4V 合金微弧氧化层结构和性能的影响. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210835
    [3] 梁贤烨, 弭光宝, 李培杰, 黄旭, 曹春晓. 钛合金高温摩擦着火理论研究. 物理学报, 2020, 69(21): 216101. doi: 10.7498/aps.69.20200304
    [4] 周媛媛, 张合庆, 周学军, 田培根. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析. 物理学报, 2013, 62(20): 200302. doi: 10.7498/aps.62.200302
    [5] 王永军, 李红轩, 吉利, 刘晓红, 吴艳霞, 周惠娣, 陈建敏. 非平衡磁控溅射制备类石墨碳膜及性能研究. 物理学报, 2012, 61(5): 056103. doi: 10.7498/aps.61.056103
    [6] 唐杰, 杨梨容, 王晓军, 张林, 魏成富, 陈擘威, 梅杨. 高压对大块(PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x合金微观结构和性能的影响. 物理学报, 2012, 61(24): 240701. doi: 10.7498/aps.61.240701
    [7] 於黄忠, 温源鑫. 不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响. 物理学报, 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [8] 李蛟, 刘俊成, 高从堦. PEDOT:PSS薄膜的山梨醇掺杂对光电池性能的影响. 物理学报, 2011, 60(7): 078803. doi: 10.7498/aps.60.078803
    [9] 於黄忠, 周晓明, 邓俊裕. 热处理对不同溶剂制备的共混体系太阳电池性能影响. 物理学报, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [10] 于松楠, 吴汉华, 陈根余, 袁鑫, 李乐. Al(OH)3溶胶浓度对TC4钛合金微弧氧化膜特性的影响. 物理学报, 2011, 60(2): 028104. doi: 10.7498/aps.60.028104
    [11] 王德义, 高书霞, 李刚, 赵鸣. 溶胶-凝胶法制备Li-N双掺p型ZnO薄膜的结构、光学和电学性能. 物理学报, 2010, 59(5): 3473-3480. doi: 10.7498/aps.59.3473
    [12] 王公堂, 刘秀喜. 镓铝双质掺杂提高晶闸管性能的机理研究. 物理学报, 2010, 59(3): 1964-1969. doi: 10.7498/aps.59.1964
    [13] 陈根余, 吴汉华, 李乐, 常鸿, 唐元广. 电学参数对胶体中工业纯钛微弧氧化膜特性的影响. 物理学报, 2010, 59(3): 1958-1963. doi: 10.7498/aps.59.1958
    [14] 张欣盟, 田修波, 巩春志, 杨士勤. 约束阴极微弧氧化放电特性研究. 物理学报, 2010, 59(8): 5613-5619. doi: 10.7498/aps.59.5613
    [15] 唐元广, 吴汉华, 常鸿, 陈根余, 桑勇, 白亦真. 阴极电压脉冲占空比对钛合金微弧氧化膜特性的影响. 物理学报, 2009, 58(7): 4840-4845. doi: 10.7498/aps.58.4840
    [16] 刘秀喜, 王公堂. 有机硅化合物-金属氧化物绝缘保护材料在制造高压晶闸管中的应用研究. 物理学报, 2008, 57(1): 576-580. doi: 10.7498/aps.57.576
    [17] 吴汉华, 龙北红, 龙北玉, 唐元广, 常 鸿, 白亦真. 钛合金微弧氧化过程中电学参量的特性研究. 物理学报, 2007, 56(11): 6537-6542. doi: 10.7498/aps.56.6537
    [18] 彭鸿雁, 周传胜, 赵立新, 金曾孙, 张 冰, 陈宝玲, 陈玉强, 李敏君. 激光功率密度对类金刚石膜结构性能的影响. 物理学报, 2005, 54(9): 4294-4299. doi: 10.7498/aps.54.4294
    [19] 吴汉华, 龙北红, 吕宪义, 汪剑波, 金曾孙. 铝合金微弧氧化过程中电学参量的特性研究. 物理学报, 2005, 54(4): 1697-1701. doi: 10.7498/aps.54.1697
    [20] 吴汉华, 汪剑波, 龙北玉, 吕宪义, 龙北红, 金曾孙, 白亦真, 毕冬梅. 电流密度对铝合金微弧氧化膜物理化学特性的影响. 物理学报, 2005, 54(12): 5743-5749. doi: 10.7498/aps.54.5743
计量
  • 文章访问数:  5178
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-02
  • 修回日期:  2021-09-13
  • 上网日期:  2022-01-01
  • 刊出日期:  2022-01-20

/

返回文章
返回