-
以单模光纤为基础的传统光通信系统的容量已趋近其理论极限, 多芯少模光纤是突破现有传输容量瓶颈的一种有效方式. 本文设计了一种低串扰5-LP模的弱耦合异质芯7芯光纤, 采用沟槽辅助和气孔隔离相结合的方法, 在标准125 μm外径的情况下实现了芯间和模间的低串扰. 利用有限元法计算了纤芯之间的串扰、有效模面积等. 经过设计优化, 光纤在光通信C+L波段可以稳定传输5个LP模式, 其中LP21与LP02模之间的有效折射率差最小, 且大于1.1 × 10–3; 光纤中LP31模式的芯间串扰最大且低于–50 dB/km, 因此该光纤可以同时实现模间和芯间的低串扰传输. 7个纤芯中5个LP模的有效模面积均大于86 μm2, 在波长1550 nm处相对纤芯复用因子为57.63, 该光纤可用于大容量高速光纤传输系统.The capacity of a traditional optical communication system based on single-mode fiber has approached to its theoretical limit. Multi-core few-mode fibers provide an effective way to break through the bottleneck of existing transmission capacity. In this paper, a 5-LP-mode weakly-coupled low-crosstalk 7-core fiber is designed by using a combination of trench assistance and air hole isolation structure. The fiber with a standard outer diameter achieves low crosstalk between cores and modes. The inter-core crosstalk area and the effective mode area of the core are calculated by the finite element method. After design optimization, there are 5 stable transmission LP modes in the C+L band of optical communication in this fiber. The effective refractive index difference between LP21 mode and LP02 mode is the smallest and is greater than 1.1 × 10–3. The LP31 mode in the optical fiber has the largest inter-core crosstalk and the loss is lower than –50 dB/km. The fiber can achieve low crosstalk transmission between modes and cores at the same time. The mode areas of the 5 LP modes in the 7 cores are larger than 86 μm2, and the relative core multiplexing factor is 57.63 at a wavelength of 1550 nm. Therefore, this fiber can be used in a large-capacity high-speed fiber transmission system.
-
Keywords:
- multi-core few-mode fiber /
- heterogeneous core /
- C+L band /
- low crosstalk
[1] 姜寿林 2019 博士学位论文(上海: 上海交通大学)
Jiang S L 2019 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University)(in Chinese)
[2] Li G F, Bai N, Zhao N B, Xia C 2014 Adv. Opt. Photonics 6 413Google Scholar
[3] Sasaki Y, Takenaga K, Matsuo S, Aikawa K, Saitoh K 2017 Opt. Fiber Technol. 35 19Google Scholar
[4] 李巨浩, 葛大伟, 高宇洋, 贾骏驰, 于津怡, 何永琪, 陈章渊 2018 光通信研究 6 31Google Scholar
LI J H, Ge D W, Gao Y Y, JIA J C, Yu J Y, He Y Q, Chen Z Y 2018 Study on Optical Communications 6 31Google Scholar
[5] 喻煌, 曲华昕, 彭楚宇, 贺志学 2019 中国信息通信大会论文集 中国 四川 成都, 11–30, 2019 p147
Yu H, Qu H X, Peng C Y, He Z X 2019 CICC Chengdu, Sichuan, November-30, 2019, p147
[6] Chralyvy A 2009 35th European Conference on Optical Communication Vienna, Austria, Sept. 20−24, 2009 p1
[7] 刘畅, 裴丽, 解宇恒, 王建帅, 郑晶晶, 宁提纲, 李晶 2020 中国激光 47 1106004Google Scholar
Liu C, Pei L, Xie Y H, Wang J S, Zheng J J, Ning T G, Li J 2020 Chin J. Lasers 47 1106004Google Scholar
[8] Ryf R, Randel S, Gnauck A H, Bolle C, Sierra A, Mumtaz S, Esmaeelpour M, Burrows E C, Essiambre R J, Winzer P J, Peckham D W, McCurdy A H, Lingle R 2012 J. Light. Technol. 30 521Google Scholar
[9] Xia C, Amezcua-Correa R, Bai N, Antonio-Lopez E, Arrioja DM, Schulzgen A, Richardson M, Linares J, Montero C, Mateo E, Zhou X, Li G F 2012 IEEE Photon. Technol. Lett. 24 1914Google Scholar
[10] Xie X, Tu J, Zhou X, Long K, Saitoh K 2017 Opt. Express 25 5119Google Scholar
[11] 涂佳静, 李朝晖 2021 光学学报 41 0106003Google Scholar
Tu J J, Li Z H 2021 Acta Opt. Sin. 41 0106003Google Scholar
[12] Saitoh K, Koshiba M, Takenaga K, Matsuo S 2012 Conference on Next-Generation Optical Communication - Components, Sub-Systems, and Systems, San Francisco, CA, JAN 24−26, 2012 p8284
[13] Amma Y, Sasaki Y, Takenaga K, Matsuo S, Tu J, Saitoh K, Koshiba M, Morioka T, Miyamoto Y 2015 Optical Fiber Communications Conference and Exhibition (OFC) Los Angeles, CA, Mar. 22−26, 2015
[14] 温明妍 2015 硕士学位论文 (北京: 北京交通大学)
Wen M Y 2015 M. S. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)
[15] Koshiba M, Saitoh K, Takenaga K, Matsuo S 2012 IEEE Photon. J. 4 1987Google Scholar
[16] Koshiba M, Saitoh K, Takenaga K, Matsuo S 2011 Opt. Express 19 102Google Scholar
[17] Takenaga K, Sasaki Y, Guan N, Matsuo S, Kasahara M, Saitoh K, Koshiba M 2012 IEEE Photon. Technol. Lett. 24 1941Google Scholar
[18] Kumar D, Ranjan R 2018 Opt. Fiber Technol. 41 95Google Scholar
[19] Fleming J W 1984 Appl. Opt. 23 4486Google Scholar
[20] 刘俊彦 2015 硕士学位论文 (北京: 北京邮电大学)
Liu J Y 2015 M. S. Thesis (Beijing: Beijing Youdian University) (in Chinese)
[21] Matsuo S, Sasaki Y, Akamatsu T, Ishida I, Takenaga K, Okuyama K, Saitoh K, Kosihba M 2012 Opt. Express 20 28398Google Scholar
[22] 苑立波 2019 激光与光电子学进展 56 170612Google Scholar
Yuan L B 2019 Laser. Opt. Pro. 56 170612Google Scholar
[23] Marcuse D 1982 Appl. Opt. 21 4208Google Scholar
[24] Salsi M, Koebele C, Sperti D, Tran P, Mardoyan H, Brindel P, Bigo S, Boutin A, Verluise F, Sillard P, Bigot-Astruc M, Provost L, Charlet G 2012 J. Lightwave Technol. 30 618Google Scholar
[25] Li Z H, Wang L Y, Wang Y, Li S G, Meng X J, Guo Y, Wang G R, Zhang H, Cheng T L, Xu W W, Qin Y, Zhou H 2021 Opt. Express 29 26418Google Scholar
[26] K Mukasa, K Imamura, R Sugizaki 2012 Opto-Electronics and Communications Conference Busan, Korea, July 2−6, 2012 p473
[27] Jiang S L, Ma L, Velazquez M N, He Z Y, Sahu J K 2019 Opt. Fiber Technol. 50 55Google Scholar
[28] Xie Y H, Pei L, Zheng J J, Zhao Q, Ning T G, Li J 2020 Opt. Commun. 474 126155Google Scholar
-
表 1 光纤的初始参数
Table 1. The initial parameters of the optical fiber
a/μm b/μm c/μm Δ1/% Δ2/% Δ3/% r/μm Λ/μm Δt/% 7.5 1 3 1.45 1.35 1.25 3.6 32.5 –0.6 表 2 优化后的光纤参数
Table 2. The optimized parameters of the optical fiber.
a/μm b/μm c/μm Δ1/% Δ2/% Δ3/% r/μm Δt/% 7.5 1.5 2.5 1.45 1.35 1.25 3.7 –0.6 -
[1] 姜寿林 2019 博士学位论文(上海: 上海交通大学)
Jiang S L 2019 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University)(in Chinese)
[2] Li G F, Bai N, Zhao N B, Xia C 2014 Adv. Opt. Photonics 6 413Google Scholar
[3] Sasaki Y, Takenaga K, Matsuo S, Aikawa K, Saitoh K 2017 Opt. Fiber Technol. 35 19Google Scholar
[4] 李巨浩, 葛大伟, 高宇洋, 贾骏驰, 于津怡, 何永琪, 陈章渊 2018 光通信研究 6 31Google Scholar
LI J H, Ge D W, Gao Y Y, JIA J C, Yu J Y, He Y Q, Chen Z Y 2018 Study on Optical Communications 6 31Google Scholar
[5] 喻煌, 曲华昕, 彭楚宇, 贺志学 2019 中国信息通信大会论文集 中国 四川 成都, 11–30, 2019 p147
Yu H, Qu H X, Peng C Y, He Z X 2019 CICC Chengdu, Sichuan, November-30, 2019, p147
[6] Chralyvy A 2009 35th European Conference on Optical Communication Vienna, Austria, Sept. 20−24, 2009 p1
[7] 刘畅, 裴丽, 解宇恒, 王建帅, 郑晶晶, 宁提纲, 李晶 2020 中国激光 47 1106004Google Scholar
Liu C, Pei L, Xie Y H, Wang J S, Zheng J J, Ning T G, Li J 2020 Chin J. Lasers 47 1106004Google Scholar
[8] Ryf R, Randel S, Gnauck A H, Bolle C, Sierra A, Mumtaz S, Esmaeelpour M, Burrows E C, Essiambre R J, Winzer P J, Peckham D W, McCurdy A H, Lingle R 2012 J. Light. Technol. 30 521Google Scholar
[9] Xia C, Amezcua-Correa R, Bai N, Antonio-Lopez E, Arrioja DM, Schulzgen A, Richardson M, Linares J, Montero C, Mateo E, Zhou X, Li G F 2012 IEEE Photon. Technol. Lett. 24 1914Google Scholar
[10] Xie X, Tu J, Zhou X, Long K, Saitoh K 2017 Opt. Express 25 5119Google Scholar
[11] 涂佳静, 李朝晖 2021 光学学报 41 0106003Google Scholar
Tu J J, Li Z H 2021 Acta Opt. Sin. 41 0106003Google Scholar
[12] Saitoh K, Koshiba M, Takenaga K, Matsuo S 2012 Conference on Next-Generation Optical Communication - Components, Sub-Systems, and Systems, San Francisco, CA, JAN 24−26, 2012 p8284
[13] Amma Y, Sasaki Y, Takenaga K, Matsuo S, Tu J, Saitoh K, Koshiba M, Morioka T, Miyamoto Y 2015 Optical Fiber Communications Conference and Exhibition (OFC) Los Angeles, CA, Mar. 22−26, 2015
[14] 温明妍 2015 硕士学位论文 (北京: 北京交通大学)
Wen M Y 2015 M. S. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)
[15] Koshiba M, Saitoh K, Takenaga K, Matsuo S 2012 IEEE Photon. J. 4 1987Google Scholar
[16] Koshiba M, Saitoh K, Takenaga K, Matsuo S 2011 Opt. Express 19 102Google Scholar
[17] Takenaga K, Sasaki Y, Guan N, Matsuo S, Kasahara M, Saitoh K, Koshiba M 2012 IEEE Photon. Technol. Lett. 24 1941Google Scholar
[18] Kumar D, Ranjan R 2018 Opt. Fiber Technol. 41 95Google Scholar
[19] Fleming J W 1984 Appl. Opt. 23 4486Google Scholar
[20] 刘俊彦 2015 硕士学位论文 (北京: 北京邮电大学)
Liu J Y 2015 M. S. Thesis (Beijing: Beijing Youdian University) (in Chinese)
[21] Matsuo S, Sasaki Y, Akamatsu T, Ishida I, Takenaga K, Okuyama K, Saitoh K, Kosihba M 2012 Opt. Express 20 28398Google Scholar
[22] 苑立波 2019 激光与光电子学进展 56 170612Google Scholar
Yuan L B 2019 Laser. Opt. Pro. 56 170612Google Scholar
[23] Marcuse D 1982 Appl. Opt. 21 4208Google Scholar
[24] Salsi M, Koebele C, Sperti D, Tran P, Mardoyan H, Brindel P, Bigo S, Boutin A, Verluise F, Sillard P, Bigot-Astruc M, Provost L, Charlet G 2012 J. Lightwave Technol. 30 618Google Scholar
[25] Li Z H, Wang L Y, Wang Y, Li S G, Meng X J, Guo Y, Wang G R, Zhang H, Cheng T L, Xu W W, Qin Y, Zhou H 2021 Opt. Express 29 26418Google Scholar
[26] K Mukasa, K Imamura, R Sugizaki 2012 Opto-Electronics and Communications Conference Busan, Korea, July 2−6, 2012 p473
[27] Jiang S L, Ma L, Velazquez M N, He Z Y, Sahu J K 2019 Opt. Fiber Technol. 50 55Google Scholar
[28] Xie Y H, Pei L, Zheng J J, Zhao Q, Ning T G, Li J 2020 Opt. Commun. 474 126155Google Scholar
计量
- 文章访问数: 3971
- PDF下载量: 72
- 被引次数: 0