搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

注氢纯铝中间隙型位错环一维迁移现象的原位观察

李然然 张一帆 殷玉鹏 渡边英雄 韩文妥 易晓鸥 刘平平 张高伟 詹倩 万发荣

引用本文:
Citation:

注氢纯铝中间隙型位错环一维迁移现象的原位观察

李然然, 张一帆, 殷玉鹏, 渡边英雄, 韩文妥, 易晓鸥, 刘平平, 张高伟, 詹倩, 万发荣

In-situ study of one-dimensional motion of interstitial-type dislocation loops in hydrogen-ion-implanted aluminum

Li Ran-Ran, Zhang Yi-Fan, Yin Yu-Peng, Watanabe Hideo, Han Wen-Tuo, Yi Xiao-Ou, Liu Ping-Ping, Zhang Gao-Wei, Zhan Qian, Wan Fa-Rong
PDF
HTML
导出引用
  • 核聚变堆材料在高能粒子辐照过程中会产生大量点缺陷, 导致辐照脆性和辐照肿胀等现象. 因而, 研究点缺陷在辐照过程中的演变过程至关重要. 点缺陷团簇的一维迁移现象是这种演变过程的主要研究内容之一. 本文采用普通低压(200 kV)透射电镜, 在室温条件下对注氢纯铝中的间隙型位错环在电子辐照下的一维迁移现象进行了观察和分析. 在200 keV电子辐照下, 注氢纯铝中的位错环可多个、同时发生一维迁移运动, 也可单个、独立进行一维迁移运动. 位错环沿柏氏矢量1/3$\left\langle {111} \right\rangle$的方向可进行微米尺度的一维长程迁移, 沿柏氏矢量1/2$\left\langle {110} \right\rangle $的方向一维迁移也可达数百纳米. 电子束辐照时产生的间隙原子浓度梯度是引起位错环一维迁移并决定其迁移方向的原因. 位错环发生快速一维迁移时, 其后会留下一条运动轨迹; 位错环一维迁移的速率越快, 运动的轨迹则越长, 在完成迁移过后的几十秒内这些运动轨迹会逐渐消失.
    The one-dimensional (1D) glide motion of dislocation loops along the direction of Burgers vector in various metallic materials has attracted considerable attention in recent years. During the operation of nuclear fusion reactor, component materials will be bombarded by high energy neutrons, resulting in production of radiation defects such as self-interstitial-atoms (SIAs), vacancies and their clusters. These defects feature large difference in migration energy, which may lead to concentration imbalance between SIAs and vacancies, and eventually irradiation damages such as swelling and embrittlement. Generally speaking, the mobility of a defect cluster is lower than that of a point defect. However, fast 1D motion may also take place among SIA clusters in the form of prismatic dislocation loops. This increases the transport efficiency of SIAs towards grain boundaries, surface and interface sites in the material, in favour of defect concentration imbalance and damage accumulation. To date, most literature works have found that the 1D motion of dislocation loops exhibited short-range (nanometer-scale) character. In addition, such experimental studies were generally conducted in pure metals using high voltage electron microscopes (HVEM) operated at acceleration voltages ≥1000 kV. However, for pure aluminum (Al), the maximum transferable kinetic energy from 200 keV electrons is 19.5 eV, while the displacement threshold energy is only 16 eV. Therefore, the observation and mechanistic investigation of 1D motion of dislocation loops in Al should also be possible with conventional transmission electron microscopes (C-TEM), as it may also exhibit the effects of beam heating and point defect production in HVEM. In view of the shortage of HVEM, this work reports the 1D motion of dislocation loops in pure Al implanted with hydrogen ions using C-TEM. Simultaneous dislocation loop motion in opposite directions of Burgers vector 1/2$\left\langle {110} \right\rangle $has been captured, as well as the collective 1D motion of an array of dislocation loops in the direction of Burgers vector 1/3$\left\langle {111} \right\rangle $ under 200 keV electron irradiation. In addition, 1D motion of dislocation loops up to micron-scale range along the direction of Burgers vector 1/3$\left\langle {111} \right\rangle $, and up to a few hundred nanometers range along the direction of Burgers vector 1/2$\left\langle {110} \right\rangle $ have been found, which is different from previous literature works. A characteristic migration track would form behind the moving dislocation loop, lasting for about tens of seconds. The more rapid the dislocation loop motion, the longer the migration track length is. The concentration gradient of SIAs by electron irradiation and the redistribution of hydrogen atoms caused by the moving dislocation loops may account for the observed micron-scale 1D motion of dislocation loops and the migration tracks.
      通信作者: 易晓鸥, xiaoouyi@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11875085)和国家留学基金(批准号: 201806460050)资助的课题
      Corresponding author: Yi Xiao-Ou, xiaoouyi@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11875085) and the China Scholarship Council (Grant No. 201806460050)
    [1]

    万发荣 1993 金属材料的辐照损伤 (北京: 科学出版社) 第7页

    Wan F R 1993 Irradiation Damage of Metal Materials (Beijing: Science Press) p7 (in Chinese)

    [2]

    郭立平, 罗凤凤, 于雁霞 2016 核材料辐照位错环 (北京: 国防工业出版社) 第37页

    Guo L P, Luo F F, Yu Y X 2016 Dislocation loops in irradiated nuclear materials (Beijing: National Defense Industry Press) p37 (in Chinese)

    [3]

    Du Y F, Cui L J, Han W T, Wan F R 2019 Acta Metall. Sin. 32 566Google Scholar

    [4]

    Terentyev D, He X, Bonny G, Bakaev A, Zhurkin E, Malerba L 2015 J. Nucl. Mater. 457 173Google Scholar

    [5]

    万发荣 2020 工程科学学报 42 1535Google Scholar

    Wan F R 2020 Chin. J. Eng. 42 1535Google Scholar

    [6]

    Hwang T, Hasegawa A, Tomura K, Ebisawa N, Toyama T, Nagai Y, Fukuda M, Miyazawa T, Tanaka T, Nogami S 2018 J. Nucl. Mater. 507 78Google Scholar

    [7]

    Ipatova I, Wady P T, Shubeita S M, Barcellini C, Impagnatiello A, Jimenez-Melero E 2018 J. Microsc. 270 110Google Scholar

    [8]

    Satoh Y, Abe H, Matsukawa Y, Matsunaga T, Kano S, Arai S, Yamamoto Y, Tanaka N 2015 Philos. Mag. 95 1587Google Scholar

    [9]

    Wang J, Hou Q, Zhang B L 2021 Solid State Commun. 325 114158Google Scholar

    [10]

    Chen D, Murakami K, Abe H, Li Z, Sekimura N 2019 Acta Mater. 163 78Google Scholar

    [11]

    Marian J, Wirth B D, Caro A, Sadigh B, Odette G R, Perlado J M, de la Rubia T D 2002 Phys. Rev. B 65 144102Google Scholar

    [12]

    Arakawa K, Ono K, Isshiki M, Mimura K, Uchikoshi M, Mori H 2007 Science 318 956Google Scholar

    [13]

    Osetsky Y N, Bacon D J, Serra A 1999 Philos. Mag. Lett. 79 273Google Scholar

    [14]

    Abe Y, Satoh Y, Hashimoto N, Ohnuki S 2020 Philos. Mag. 100 110Google Scholar

    [15]

    Nandipati G, Setyawan W, Roche K J, Kurtz R J, Wirth B D 2020 J. Nucl. Mater. 542 152402Google Scholar

    [16]

    Satoh Y, Matsui H, Hamaoka T 2008 Phys. Rev. B 77 094135Google Scholar

    [17]

    Satoh Y, Matsui H 2009 Philos. Mag. 89 1489Google Scholar

    [18]

    Osetsky Y N, Bacon D J, Serra A, Singh B N, Golubov S I 2000 J. Nucl. Mater. 276 65Google Scholar

    [19]

    Matsukawa Y, Zinkle S J 2007 Science 318 959Google Scholar

    [20]

    Derlet P M, Gilbert M R, Dudarev S L 2011 Phys. Rev. B 84 134109Google Scholar

    [21]

    Wirth B D, Odette G R, Maroudas D, Lucas G E 2000 J. Nucl. Mater. 276 33Google Scholar

    [22]

    Wirth B D 2000 Ph D Dissertation (Santa Barbara: University of California)

    [23]

    Arakawa K, Hatanaka M, Mori H, Ono K 2004 J. Nucl. Mater. 329 1194Google Scholar

    [24]

    Hamaoka T, Satoh Y, Matsui H 2013 J. Nucl. Mater. 433 180Google Scholar

    [25]

    Hayashi T, Fukmuto K, Matsui H 2002 J. Nucl. Mater. 307 993

    [26]

    Satoh Y, Abe Y, Abe H, Matsukawa Y, Kano S, Ohnuki S, Hashimoto N 2016 Philos. Mag. 96 2219Google Scholar

    [27]

    Amino T, Arakawa K, Mori H 2016 Sci. Rep. 6 26099Google Scholar

    [28]

    Williams D B, Carter C B 2009 Transmission Electron Microscopy (New York: Springer Science+Business Media) p68

    [29]

    Stoller R E, Toloczko M B, Was G S, Certain A G, Dwaraknath S, Garner F A 2013 Nucl. Instrum. Methods Phys. Res., Sect. B 310 75Google Scholar

    [30]

    Astm-Committee 2003 Standard Practice for Neutron Radiation Damage Simulation by Charged-particle Irradiation (West Conshohocken: Copyright © ASTM International) p8

    [31]

    戎咏华 2006 分析电子显微学导论 (北京: 高等教育出版社) 第28页

    Rong Y H 2006 Introduction to Analytical Electron Microscopy (Beijing: Higher Education Press) p28 (in Chinese)

    [32]

    Ono K, Kino T, Furuno S, Hojou K, Izui K, Mizuno K, Ito K 1991 J. Nucl. Mater. 179-181 978Google Scholar

    [33]

    Kuramoto E 2009 Materia Jpn. 48 111Google Scholar

    [34]

    Schulthess T C, Turchi P E A, Gonis A, Nieh T G 1998 Acta Mater. 46 2215Google Scholar

    [35]

    Sarma V S, Wang J, Jian W W, Kauffmann A, Conrad H, Freudenberger J, Zhu Y T 2010 Mater. Sci. Eng., A 527 7624Google Scholar

    [36]

    Gallagher P 1970 Metall. Trans. 1 2429Google Scholar

    [37]

    Kim J, Lee S, De Cooman B C 2011 Scr. Mater. 65 363Google Scholar

    [38]

    Yan J A, Wang C Y, Wang S Y 2004 Phys. Rev. B 70 174101Google Scholar

    [39]

    Portavoce A, Treglia G 2014 Acta Mater. 65 1Google Scholar

    [40]

    Tapasa K, Barashev A V, Bacon D J, Osetsky Y N 2007 J. Nucl. Mater. 361 52Google Scholar

  • 图 1  由SRIM-2013计算得到的注氢纯铝的辐照损伤值和氢离子浓度随样品厚度的分布

    Fig. 1.  Depth profiles of displacement damage (dpa) and hydrogen concentration (H, at.%) of ion irradiations in pure Al calculated by SRIM-2013 software.

    图 2  不同电子束斑中心位置的电子辐照下位错环的一维迁移运动 (a)原位观察对应的运动学双束衍射条件(g = 111), 一维迁移方向(//柏氏矢量B = 1/3$\left\langle {111} \right\rangle $或者1/2$\left\langle {110} \right\rangle $方向)以及与其最相近的两组晶向; (b), (c)电子辐照期间电子束斑中心与观察区域的相对位置; (d)—(i)位错环在电子辐照下的一维迁移现象. 不同形状符号所对应的数字“1, 2, 3, ···11”分别指第“1, 2, 3, ···11”编号位错环

    Fig. 2.  One-dimensional motion of dislocation loops under electron irradiation at different electron beam center locations: (a) Diffraction pattern illustrating the two-beam kinematical condition during in-situ observation (g = 111), and one-dimensional motion direction (// the direction of Burgers vector, B =1/3$\left\langle {111} \right\rangle $ or 1/2$\left\langle {110} \right\rangle $) and the two groups of crystal orientation closest to it; (b), (c) the positions of electron beam center for different durations of electron irradiation; (d)−(i) one-dimensional motion of dislocation loops under electron irradiation. Shapes numbered “1, 2, 3, ···11” correspond to dislocation loops “1, 2, 3, ···11”, respectively.

    图 3  相同电子辐照条件下两个相邻区域不同位错环的一维迁移运动 (a)运动学双束条件下的电子衍射图($ g = {\bar 2}20 $); (b)一维迁移方向(//柏氏矢量B = 1/3$ \left\langle {111} \right\rangle $或者1/2$ \left\langle {110} \right\rangle $的方向)以及与其最相近的两组晶向; (c)—(j)位错环12—14在电子辐照下的一维迁移现象

    Fig. 3.  One-dimensional motion of dislocation loops in two adjacent regions under the same electron irradiation: (a) Diffraction pattern illustrating the two-beam kinematical imaging condition ($g = {\bar 2}20 $); (b) one-dimensional motion direction (// the direction of Burgers vector, B = 1/3$ \left\langle {111} \right\rangle $ or 1/2$ \left\langle {110} \right\rangle $) and the two groups of crystal orientation closest to it; (c)−(j) one-dimensional motion of dislocation loops 12−14 under electron irradiation.

    图 4  相邻两个位错环的一维迁移距离与电子束辐照时间的关系 (a)运动学双束条件下的电子衍射图(g = 200); (b)一维迁移方向(//柏氏矢量B = 1/3$ \left\langle {111} \right\rangle $或者1/2$ \left\langle {110} \right\rangle $的方向)以及与其最相近的两组晶向; (c)位错环16和17一维迁移距离随辐照时间的变化; (d)—(k)位错环在电子辐照下的一维迁移现象. 黑色箭头表示一维迁移方向

    Fig. 4.  The relationship between one-dimensional motion distance and electron irradiation time of two adjacent dislocation loops: (a) Diffraction pattern illustrating the two-beam kinematical imaging condition (g = 200); (b) one-dimensional motion direction (// the direction of Burgers vector, B = 1/3$ \left\langle {111} \right\rangle $ or 1/2$ \left\langle {110} \right\rangle $) and the two groups of crystal orientation closest to it; (c) the one-dimensional migration distance of dislocation loops (16, 17) under electron irradiation as a function of time; (d)−(k) the one-dimensional motion of dislocation loops 16, 17 under electron irradiation. The black arrows indicate the direction of one-dimensional motion of dislocation loops.

    图 5  电子辐照下不同位错环一维迁移形成的运动轨迹

    Fig. 5.  The migration tracks of different dislocation loops formed by one-dimensional motion under electron irradiation.

    表 1  不同辐照时间内位错环1—7的一维迁移距离、平均迁移速率以及轨迹长度

    Table 1.  The migration distance, average migration speed and migration track length of one-dimensional motion for dislocation loops 1–7 for different durations of electron irradiation.

    辐照时间/s0204265126209
    位错环1迁移距离/nm×6005701520
    平均速率/(nm·s–1)×302.5902.470
    轨迹长度/nm32691789040500
    位错环2迁移距离/nm×14446187307133
    平均速率/(nm·s–1)×7.22.098.135.031.6
    轨迹长度/nm178334260305478222
    位错环3迁移距离/nm×25757610100
    平均速率/(nm·s–1)×12.92.592.6501.2
    轨迹长度/nm16537017417591131
    位错环4迁移距离/nm×19241784150
    平均速率/(nm·s–1)×9.61.863.390.670.6
    轨迹长度/nm48725919014800
    位错环5迁移距离/nm×1090785261
    平均速率/(nm·s–1)×5.4503.390.850.73
    轨迹长度/nm29223113924300
    位错环6迁移距离/nm×244443000
    平均速率/(nm·s–1)×12.221.300
    轨迹长度/nm161288210137114110
    位错环7迁移距离/nm×1394839044
    平均速率/(nm·s–1)×6.952.181.700.53
    轨迹长度/nm107265152157820
    *迁移距离为不同时间段位错环的一维迁移距离; 平均速率为该时间与前一时间点之间的平均迁移速率; 轨迹长度为对应时间点一维迁移所能显示出的迁移轨迹. 所有数据均是基于图2进行统计计算的结果. “×”表示对应条件下无相关数据.
    下载: 导出CSV
  • [1]

    万发荣 1993 金属材料的辐照损伤 (北京: 科学出版社) 第7页

    Wan F R 1993 Irradiation Damage of Metal Materials (Beijing: Science Press) p7 (in Chinese)

    [2]

    郭立平, 罗凤凤, 于雁霞 2016 核材料辐照位错环 (北京: 国防工业出版社) 第37页

    Guo L P, Luo F F, Yu Y X 2016 Dislocation loops in irradiated nuclear materials (Beijing: National Defense Industry Press) p37 (in Chinese)

    [3]

    Du Y F, Cui L J, Han W T, Wan F R 2019 Acta Metall. Sin. 32 566Google Scholar

    [4]

    Terentyev D, He X, Bonny G, Bakaev A, Zhurkin E, Malerba L 2015 J. Nucl. Mater. 457 173Google Scholar

    [5]

    万发荣 2020 工程科学学报 42 1535Google Scholar

    Wan F R 2020 Chin. J. Eng. 42 1535Google Scholar

    [6]

    Hwang T, Hasegawa A, Tomura K, Ebisawa N, Toyama T, Nagai Y, Fukuda M, Miyazawa T, Tanaka T, Nogami S 2018 J. Nucl. Mater. 507 78Google Scholar

    [7]

    Ipatova I, Wady P T, Shubeita S M, Barcellini C, Impagnatiello A, Jimenez-Melero E 2018 J. Microsc. 270 110Google Scholar

    [8]

    Satoh Y, Abe H, Matsukawa Y, Matsunaga T, Kano S, Arai S, Yamamoto Y, Tanaka N 2015 Philos. Mag. 95 1587Google Scholar

    [9]

    Wang J, Hou Q, Zhang B L 2021 Solid State Commun. 325 114158Google Scholar

    [10]

    Chen D, Murakami K, Abe H, Li Z, Sekimura N 2019 Acta Mater. 163 78Google Scholar

    [11]

    Marian J, Wirth B D, Caro A, Sadigh B, Odette G R, Perlado J M, de la Rubia T D 2002 Phys. Rev. B 65 144102Google Scholar

    [12]

    Arakawa K, Ono K, Isshiki M, Mimura K, Uchikoshi M, Mori H 2007 Science 318 956Google Scholar

    [13]

    Osetsky Y N, Bacon D J, Serra A 1999 Philos. Mag. Lett. 79 273Google Scholar

    [14]

    Abe Y, Satoh Y, Hashimoto N, Ohnuki S 2020 Philos. Mag. 100 110Google Scholar

    [15]

    Nandipati G, Setyawan W, Roche K J, Kurtz R J, Wirth B D 2020 J. Nucl. Mater. 542 152402Google Scholar

    [16]

    Satoh Y, Matsui H, Hamaoka T 2008 Phys. Rev. B 77 094135Google Scholar

    [17]

    Satoh Y, Matsui H 2009 Philos. Mag. 89 1489Google Scholar

    [18]

    Osetsky Y N, Bacon D J, Serra A, Singh B N, Golubov S I 2000 J. Nucl. Mater. 276 65Google Scholar

    [19]

    Matsukawa Y, Zinkle S J 2007 Science 318 959Google Scholar

    [20]

    Derlet P M, Gilbert M R, Dudarev S L 2011 Phys. Rev. B 84 134109Google Scholar

    [21]

    Wirth B D, Odette G R, Maroudas D, Lucas G E 2000 J. Nucl. Mater. 276 33Google Scholar

    [22]

    Wirth B D 2000 Ph D Dissertation (Santa Barbara: University of California)

    [23]

    Arakawa K, Hatanaka M, Mori H, Ono K 2004 J. Nucl. Mater. 329 1194Google Scholar

    [24]

    Hamaoka T, Satoh Y, Matsui H 2013 J. Nucl. Mater. 433 180Google Scholar

    [25]

    Hayashi T, Fukmuto K, Matsui H 2002 J. Nucl. Mater. 307 993

    [26]

    Satoh Y, Abe Y, Abe H, Matsukawa Y, Kano S, Ohnuki S, Hashimoto N 2016 Philos. Mag. 96 2219Google Scholar

    [27]

    Amino T, Arakawa K, Mori H 2016 Sci. Rep. 6 26099Google Scholar

    [28]

    Williams D B, Carter C B 2009 Transmission Electron Microscopy (New York: Springer Science+Business Media) p68

    [29]

    Stoller R E, Toloczko M B, Was G S, Certain A G, Dwaraknath S, Garner F A 2013 Nucl. Instrum. Methods Phys. Res., Sect. B 310 75Google Scholar

    [30]

    Astm-Committee 2003 Standard Practice for Neutron Radiation Damage Simulation by Charged-particle Irradiation (West Conshohocken: Copyright © ASTM International) p8

    [31]

    戎咏华 2006 分析电子显微学导论 (北京: 高等教育出版社) 第28页

    Rong Y H 2006 Introduction to Analytical Electron Microscopy (Beijing: Higher Education Press) p28 (in Chinese)

    [32]

    Ono K, Kino T, Furuno S, Hojou K, Izui K, Mizuno K, Ito K 1991 J. Nucl. Mater. 179-181 978Google Scholar

    [33]

    Kuramoto E 2009 Materia Jpn. 48 111Google Scholar

    [34]

    Schulthess T C, Turchi P E A, Gonis A, Nieh T G 1998 Acta Mater. 46 2215Google Scholar

    [35]

    Sarma V S, Wang J, Jian W W, Kauffmann A, Conrad H, Freudenberger J, Zhu Y T 2010 Mater. Sci. Eng., A 527 7624Google Scholar

    [36]

    Gallagher P 1970 Metall. Trans. 1 2429Google Scholar

    [37]

    Kim J, Lee S, De Cooman B C 2011 Scr. Mater. 65 363Google Scholar

    [38]

    Yan J A, Wang C Y, Wang S Y 2004 Phys. Rev. B 70 174101Google Scholar

    [39]

    Portavoce A, Treglia G 2014 Acta Mater. 65 1Google Scholar

    [40]

    Tapasa K, Barashev A V, Bacon D J, Osetsky Y N 2007 J. Nucl. Mater. 361 52Google Scholar

  • [1] 潘佳萍, 张冶文, 李俊, 吕天华, 郑飞虎. 结合电子束辐照与压电压力波法空间电荷分布实时测量的空间电荷包迁移行为的研究. 物理学报, 2024, 73(2): 027701. doi: 10.7498/aps.73.20231353
    [2] 秦梦飞, 王英敏, 张红玉, 孙继忠. 〈100〉间隙型位错环在纯钨及含氦杂质钨(010)表面下运动行为的分子动力学模拟. 物理学报, 2023, 72(24): 245204. doi: 10.7498/aps.72.20230651
    [3] 徐驰, 万发荣. 聚变材料钨辐照后退火形成的位错环特性及inside-outside衬度分析. 物理学报, 2023, 72(5): 056801. doi: 10.7498/aps.72.20222124
    [4] 周书星, 方仁凤, 魏彦锋, 陈传亮, 曹文彧, 张欣, 艾立鹍, 李豫东, 郭旗. 磷化铟高电子迁移率晶体管外延结构材料抗电子辐照加固设计. 物理学报, 2022, 71(3): 037202. doi: 10.7498/aps.71.20211265
    [5] 王瑾, 贺新福, 曹晗, 贾丽霞, 豆艳坤, 杨文. 不同温度下bcc-Fe中螺位错滑移及其与½[${{11}}\bar {{1}}$]位错环相互作用行为. 物理学报, 2021, 70(6): 068701. doi: 10.7498/aps.70.20201659
    [6] 李然然, 张一帆, 殷玉鹏, 渡边英雄, 韩文妥, 易晓鸥, 刘平平, 张高伟, 詹倩, 万发荣. 注氢纯铝中间隙型位错环一维迁移现象的原位观察. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211229
    [7] 梁晋洁, 高宁, 李玉红. 体心立方Fe中${ \langle 100 \rangle}$位错环对微裂纹扩展影响的分子动力学研究. 物理学报, 2020, 69(11): 116102. doi: 10.7498/aps.69.20200317
    [8] 梁晋洁, 高宁, 李玉红. 表面效应对铁${\left\langle 100 \right\rangle} $间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [9] 杜玉峰, 崔丽娟, 李金升, 李然然, 万发荣. 铝中气泡在电子束辐照下的异常放热现象. 物理学报, 2018, 67(21): 216101. doi: 10.7498/aps.67.20181140
    [10] 崔丽娟, 高进, 杜玉峰, 张高伟, 张磊, 龙毅, 杨善武, 詹倩, 万发荣. 氢离子辐照纯钒中形成的位错环. 物理学报, 2016, 65(6): 066102. doi: 10.7498/aps.65.066102
    [11] 李杰, 高进, 万发荣. 电子束辐照下的注氘铝的结构变化. 物理学报, 2016, 65(2): 026102. doi: 10.7498/aps.65.026102
    [12] 玛丽娅, 李豫东, 郭旗, 艾尔肯, 王海娇, 曾骏哲. In0.53Ga0.47As/InP量子阱与体材料的1 MeV电子束辐照光致发光谱研究. 物理学报, 2015, 64(15): 154217. doi: 10.7498/aps.64.154217
    [13] 钟勉, 杨亮, 任玮, 向霞, 刘翔, 练友运, 徐世珍, 郭德成, 郑万国, 袁晓东. 高功率脉冲电子束辐照SiO2的光学和激光损伤性能. 物理学报, 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [14] 姜少宁, 万发荣, 龙毅, 刘传歆, 詹倩, 大貫惣明. 氦、氘对纯铁辐照缺陷的影响. 物理学报, 2013, 62(16): 166801. doi: 10.7498/aps.62.166801
    [15] 赵衡煜, 俞平胜, 郭鑫, 苏良碧, 李欣年, 方晓明, 杨秋红, 徐军. 电子束辐照诱导Bi:α-BaB2O4 单晶近红外宽带发光的研究. 物理学报, 2011, 60(9): 097802. doi: 10.7498/aps.60.097802
    [16] 卢果, 方步青, 张广财, 许爱国. 有限温度下位错环的脱体现象. 物理学报, 2009, 58(11): 7934-7946. doi: 10.7498/aps.58.7934
    [17] 侯日立, 彭建祥, 经福谦. 一种计算金属剪切模量的本构模型:以Al为例. 物理学报, 2009, 58(9): 6413-6418. doi: 10.7498/aps.58.6413
    [18] 周耐根, 周 浪. 采用纳米晶柱阵列衬底抑制失配位错形成的分子动力学模拟研究. 物理学报, 2008, 57(5): 3064-3070. doi: 10.7498/aps.57.3064
    [19] 周耐根, 周 浪, 杜丹旭. 面心立方晶体外延膜沉积生长中失配位错的结构与形成过程. 物理学报, 2006, 55(1): 372-377. doi: 10.7498/aps.55.372
    [20] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究. 物理学报, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
计量
  • 文章访问数:  5453
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 修回日期:  2021-09-13
  • 上网日期:  2021-12-26
  • 刊出日期:  2022-01-05

/

返回文章
返回