搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可压缩液体中气泡的声空化特性

郑雅欣 那仁满都拉

引用本文:
Citation:

可压缩液体中气泡的声空化特性

郑雅欣, 那仁满都拉

Acoustic cavitation characteristics of bubble in compressible liquid

Zheng Ya-Xin, Naranmandula
PDF
HTML
导出引用
  • 利用新提出的Gilmore-NASG模型, 在考虑液体可压缩效应的边界条件下, 研究了可压缩液体中气泡的声空化特性, 并与利用原有KM-VdW模型计算得到的结果进行了比较. 结果表明, 相比于KM-VdW模型, 由于Gilmore-NASG模型采用新的状态方程来描述气体、液体以及由可压缩性引起的液体密度变化及声速变化, 所以用Gilmore-NASG模型得到的空化气泡的压缩比更大、崩溃深度更深、温度和压力峰值更高. 随着驱动声压幅值的增大, 两种模型给出的结果差别愈加明显, 而随着驱动频率的增大, 两种模型给出的结果差别逐渐减小. 这表明, 在充分考虑泡内气体、周围液体在不同温度和压强下共体积的变化所导致的介质可压缩特性下, 气泡内的温度和压强可能达到更高值. 同时, Gilmore-NASG模型还预测出了气泡壁处液体的密度变化、压力变化、温度变化以及液体中的声速变化. 因此, Gilmore-NASG模型在研究高压状态下气泡的空化特性以及周围液体对气泡空化特性的影响方面具有优点.
    The newly proposed Gilmore-NASG model is used to study the acoustic cavitation characteristics of bubble in compressible liquid under the boundary condition of considering the compressible effect of the liquid, and comparison is made between the results calculated by the Gilmore-NASG model and original KM-VdW model without considering the mass exchange, chemical reaction and heat exchange between the gas in the bubble and the surrounding liquid. The results suggest that, compared with the KM-VdW model, the Gilmore-NASG model which employs a new equation of state to describe the gas, liquid and variations of liquid density and sound velocity due to compressibility, can give a larger compression ratio of cavitation bubble, a deeper collapse depth, higher temperature and pressure peaks. This is mainly because that the co-volume of argon molecule in the NASG equation of state is smaller than that in the VdW equation of state and the effect of the co-volume of water molecule is considered in the NASG equation of state, that is, the Gilmore-NASG model gives more comprehensive consideration to the liquid compressibility. When the bubble collapses violently, the Gilmore-NASG model takes into account the changes of sound velocity caused by the compressibility of the liquid at the bubble wall, effectively avoid the possibility of abnormal increase in the Mach number of the liquid at the bubble wall. With the increase in the driving sound pressure amplitude, the difference between the results given by the two models more and more significantly and the temperature and pressure peaks in the bubble given by the Gilmore-NASG model increase more significantly. With the rise of driving frequency, the difference between the results given by the two models gradually decreases and tends to be consistent under the high-frequency excitation. This indicates that the temperature and pressure in the bubble may arrive at higher values considering the compressibility of the medium caused by the co-volume changes of gas and surrounding liquid at different temperatures and pressures. In the meantime, the Gilmore-NASG model can accurately predict the changes in density, pressure and temperature of the liquid at the bubble wall as well as sound velocity, so this model has advantages in the study of bubble cavitation characteristics under high pressure and the effect of surrounding liquid on bubble cavitation characteristics. There will be important applications for the research on specific issues such as high-intensity focused ultrasound, shock wave lithotripsy treatment and sonochemistry.
      通信作者: 那仁满都拉, nrmdlbf@126.com
    • 基金项目: 国家自然科学基金(批准号: 11462019)资助的课题
      Corresponding author: Naranmandula, nrmdlbf@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11462019)
    [1]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar

    [2]

    Gilmore F R 1952 California Institute of Technology Technical Report No. 26-4

    [3]

    Brennen C E 1995 Cavitation and Bubble Dynamics (New York: Oxford University Press) p61

    [4]

    陈伟中 2014 声空化物理 (北京: 科学出版社) 第236 −241页

    Chen W Z 2014 Sound Cavitation Physics (Beijing: Science Press) pp236−241 (in Chinese)

    [5]

    Prosperetti A, Lezzi A 1986 J. Fluid Mech. 168 457Google Scholar

    [6]

    Brenner M P, Hilgenfeldt S, Lohse D 2002 Rev. Mod. Phys. 74 425Google Scholar

    [7]

    Fuster D, Dopazo C, Hauke G 2011 J. Acoust. Soc. Am. 129 122Google Scholar

    [8]

    Merouani S, Hamdaoui O, Rezgui Y, Guemini M 2014 Ultrason. 54 227Google Scholar

    [9]

    Rosa M, Husseini G A, Pitt W G 2013 Ultrason. 53 97Google Scholar

    [10]

    Zilonova E, Solovchuk M, Sheu T 2018 Ultrason. Sonochem. 40 900

    [11]

    Holzfuss J 2010 Proc. R. Soc. A 466 1829Google Scholar

    [12]

    Zhu S, Zhong P 1999 J. Acoust. Soc. Am. 106 3024Google Scholar

    [13]

    An Y 2011 Phys. Rev. E 83 066313Google Scholar

    [14]

    清河美, 那仁满都拉 2019 物理学报 68 234302Google Scholar

    Qinghim, Naranmandula 2019 Acta Phys. Sin. 68 234302Google Scholar

    [15]

    Nazari-Mahroo H, Pasandideh K, Navid H A, Sadighi-Bonabi R 2018 Phys. Lett. A 382 1962Google Scholar

    [16]

    Yuan L, Cheng H Y, Chu M C, Leung P T 1998 Phys. Rev. E 57 4265Google Scholar

    [17]

    Chandran J, Salih A 2019 Fluid Phase Equilib. 483 182

    [18]

    Radulescu M I 2019 Phys. Fluids 31 111702Google Scholar

    [19]

    Radulescu M I 2020 Phys. Fluids 32 056101Google Scholar

    [20]

    Metayer O L, Saurel R 2016 Phys. Fluids 28 046102Google Scholar

    [21]

    Denner F 2021 Ultrason. Sonochem. 70 105307

    [22]

    杨德森, 江薇, 时胜国, 时洁, 张昊阳, 靳仕源 2013 哈尔滨工程大学学报 34 734

    Yang D S, Jiang W, Shi S G, Shi J, Zhang H Y, Jin S Y 2013 Journal of Harbin Engineering University 34 734

    [23]

    Kerboua K, Hamdaoui O 2018 Ultrason. Sonochem. 40 194Google Scholar

    [24]

    王成会, 莫润阳, 胡静, 陈时 2015 物理学报 64 234301Google Scholar

    Wang C H, Mo R Y, Hu J, Chen S 2015 Acta Phys. Sin. 64 234301Google Scholar

    [25]

    Moshaii A, Sadighi-Bonabi R, Taeibi-Rahni M 2004 J. Phys. Condens. Matter 16 1687Google Scholar

    [26]

    Nazari-Mahroo H, Pasandideh K, Navid H A, Sadighi-Bonabi R 2019 Ultrason. 102 106034

    [27]

    Longwell P A, Olin J B, Sage B H 1958 Ind. Eng. Chem. Chem. Eng. Data Series 3 175Google Scholar

    [28]

    Hirschfelder J A, Curtiss C F, Bird R B 1954 Molecular theory of gases and liquids (New York: Wiley) pp293–302

    [29]

    姚允斌, 解涛, 高英敏 1985 物理化学手册 (上海: 科学技术出版社) 第119 页

    Yao Y B, Xie T, Gao Y M 1985 Handbook of Physical Chemistry (Shanghai: Science and Technology Press) p119 (in Chinese)

    [30]

    An Y 2006 Phys. Rev. E 74 026304Google Scholar

    [31]

    姜李安, 陈伟中, 李晟琼, 卢美军, 王文杰 2003 声学技术 22 30Google Scholar

    Jiang L A, Chen W Z, Li S J, Lu M J, Wang W J 2003 Acoustic Technique 22 30Google Scholar

    [32]

    郭策, 祝锡晶, 王建青, 叶林征 2016 物理学报 65 044304Google Scholar

    Guo C, Zhu X J, Wang J Q, Ye L Z 2016 Acta Phys. Sin. 65 044304Google Scholar

  • 图 1  (a) 气泡半径变化; (b) 气泡壁速度变化; (c) 气泡内压力变化; (d) 气泡壁处液体压力变化; (e) 气泡壁处液体密度变化; (f) 气泡壁处液体中声速变化; (g) 气泡内温度变化; (h) 气泡壁处液体温度变化; (i) 气泡壁处液体马赫数变化

    Fig. 1.  (a) Change of bubble radius; (b) change of bubble wall velocity; (c) change of pressure in the bubble; (d) change of liquid pressure at the bubble wall; (e) change of liquid density at the bubble wall; (f) change of sound velocity in the liquid at the bubble wall; (g) change of temperature in the bubble; (h) change of liquid temperature at the bubble wall; (i) change of liquid Mach number at the bubble wall;

    图 2  (a) 气泡最大半径、 (b) 最小半径 、(c) 崩溃速度和回弹速度、 (d) 液体最大马赫数、 (e) 泡内最大压力以及(f) 泡内最高温度, 随驱动声压幅值的变化

    Fig. 2.  (a) Maximum bubble radius, (b) minimum radius, (c) collapse speed and rebound speed, (d) maximum liquid Mach number, (e) maximum pressure in the bubble, and (f) maximum temperature in the bubble change with amplitude of driving sound pressure

    图 3  (a) 气泡最大半径、 (b) 最小半径、 (c) 崩溃速度和回弹速度、 (d) 液体最大马赫数 、(e) 泡内最大压力 以及(f) 泡内最高温度随驱动频率的变化

    Fig. 3.  (a) Maximum bubble radius, (b) minimum radius, (c) collapse speed and rebound speed, (d) maximum liquid Mach number, (e) maximum pressure in the bubble, and (f) maximum temperature in the bubble change with driving frequency

    表 1  Gilmore-NASG模型中水和氩气的相关物理参数

    Table 1.  Physical parameters of water and argon in Gilmore-NASG model

    参数 单位
    环境密度$\rho_{\rm{l0}}$ 998 ${\rm{kg} }{\cdot} {\rm{m} }^{-3}$
    $\rho_{\rm{g0}}$ 1.784 ${\rm{kg} }{\cdot}{\rm{m} }^{-3}$
    环境压力$P_{\rm{l0}}$ 101325 Pa
    $P_{\rm{g0}}$ 101325 Pa
    表面张力σ 0.070 ${\rm{N} }{\cdot} {\rm{m} }^{-1}$
    切变黏滞系数η 0.001 ${\rm{Pa} }{\cdot} {\rm{s} }$
    体积黏滞系数λ 0.0041 ${\rm{Pa} }{\cdot} {\rm{s} }$
    环境声速$C_{\rm{l}}$ 1483 ${\rm{m} } {\cdot} {\rm{s} }^{-1}$
    环境温度$T_{\rm{l0}}$ 300 K
    $T_{\rm{g0}}$ 300 K
    分子共体积$b_{\rm{l}}$ $6.6766\times 10^{-4}$ ${\rm{m} }^3{\cdot} {\rm{kg} }^{-1}$
    $b_{\rm{g}}$ $4.778\times 10^{-4}$ ${\rm{m} }^3{\cdot}{\rm{kg} }^{-1}$
    压力常数$B_{\rm{l}}$ $6.1534\times 10^8$ Pa
    $B_{\rm{g}}$ 0 Pa
    多方指数$\varGamma_{\rm{l} }$ 1.19
    $\varGamma_{\rm{g} }$ 1.67
    注: 水的体积黏滞系数λ的取值参考了文献[25].
    下载: 导出CSV

    表 2  KM-VdW模型中水和氩气的相关物理参数

    Table 2.  Physical parameters of water and argon in KM-VdW model

    参数 单位
    环境密度$ \rho_{{\rm{l}}} $ 998 ${\rm{kg} }{\cdot} {\rm{m} }^{-3}$
    环境压力$ P_{\rm{g0}} $ 101325 Pa
    表面张力σ 0.070 ${\rm{N} }{\cdot}{\rm{m} }^{-1}$
    切变黏滞系数η 0.001 ${\rm{Pa} }{\cdot} {\rm{s} }$
    体积黏滞系数λ 0.0041 ${\rm{Pa} }{\cdot} {\rm{s} }$
    环境声速$ C_{\rm{l}} $ 1483 ${\rm{m} }{\cdot} {\rm{s} }^{-1}$
    环境温度$ T_{\rm{g0}} $ 300 K
    范德瓦耳斯常数a 0.1345 ${\rm{Pa} }{\cdot} {\rm{m} }^{6}{\cdot} {\rm{mol} }^{-2}$
    b $ 3.219\times 10^{-5} $ ${\rm{m} }^{3}{\cdot} {\rm{mol} }^{-1}$
    摩尔数m $ 2.02339\times 10^{-14} $
    多方指数$\varGamma_{\rm{g} }$ 1.67
    下载: 导出CSV
  • [1]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar

    [2]

    Gilmore F R 1952 California Institute of Technology Technical Report No. 26-4

    [3]

    Brennen C E 1995 Cavitation and Bubble Dynamics (New York: Oxford University Press) p61

    [4]

    陈伟中 2014 声空化物理 (北京: 科学出版社) 第236 −241页

    Chen W Z 2014 Sound Cavitation Physics (Beijing: Science Press) pp236−241 (in Chinese)

    [5]

    Prosperetti A, Lezzi A 1986 J. Fluid Mech. 168 457Google Scholar

    [6]

    Brenner M P, Hilgenfeldt S, Lohse D 2002 Rev. Mod. Phys. 74 425Google Scholar

    [7]

    Fuster D, Dopazo C, Hauke G 2011 J. Acoust. Soc. Am. 129 122Google Scholar

    [8]

    Merouani S, Hamdaoui O, Rezgui Y, Guemini M 2014 Ultrason. 54 227Google Scholar

    [9]

    Rosa M, Husseini G A, Pitt W G 2013 Ultrason. 53 97Google Scholar

    [10]

    Zilonova E, Solovchuk M, Sheu T 2018 Ultrason. Sonochem. 40 900

    [11]

    Holzfuss J 2010 Proc. R. Soc. A 466 1829Google Scholar

    [12]

    Zhu S, Zhong P 1999 J. Acoust. Soc. Am. 106 3024Google Scholar

    [13]

    An Y 2011 Phys. Rev. E 83 066313Google Scholar

    [14]

    清河美, 那仁满都拉 2019 物理学报 68 234302Google Scholar

    Qinghim, Naranmandula 2019 Acta Phys. Sin. 68 234302Google Scholar

    [15]

    Nazari-Mahroo H, Pasandideh K, Navid H A, Sadighi-Bonabi R 2018 Phys. Lett. A 382 1962Google Scholar

    [16]

    Yuan L, Cheng H Y, Chu M C, Leung P T 1998 Phys. Rev. E 57 4265Google Scholar

    [17]

    Chandran J, Salih A 2019 Fluid Phase Equilib. 483 182

    [18]

    Radulescu M I 2019 Phys. Fluids 31 111702Google Scholar

    [19]

    Radulescu M I 2020 Phys. Fluids 32 056101Google Scholar

    [20]

    Metayer O L, Saurel R 2016 Phys. Fluids 28 046102Google Scholar

    [21]

    Denner F 2021 Ultrason. Sonochem. 70 105307

    [22]

    杨德森, 江薇, 时胜国, 时洁, 张昊阳, 靳仕源 2013 哈尔滨工程大学学报 34 734

    Yang D S, Jiang W, Shi S G, Shi J, Zhang H Y, Jin S Y 2013 Journal of Harbin Engineering University 34 734

    [23]

    Kerboua K, Hamdaoui O 2018 Ultrason. Sonochem. 40 194Google Scholar

    [24]

    王成会, 莫润阳, 胡静, 陈时 2015 物理学报 64 234301Google Scholar

    Wang C H, Mo R Y, Hu J, Chen S 2015 Acta Phys. Sin. 64 234301Google Scholar

    [25]

    Moshaii A, Sadighi-Bonabi R, Taeibi-Rahni M 2004 J. Phys. Condens. Matter 16 1687Google Scholar

    [26]

    Nazari-Mahroo H, Pasandideh K, Navid H A, Sadighi-Bonabi R 2019 Ultrason. 102 106034

    [27]

    Longwell P A, Olin J B, Sage B H 1958 Ind. Eng. Chem. Chem. Eng. Data Series 3 175Google Scholar

    [28]

    Hirschfelder J A, Curtiss C F, Bird R B 1954 Molecular theory of gases and liquids (New York: Wiley) pp293–302

    [29]

    姚允斌, 解涛, 高英敏 1985 物理化学手册 (上海: 科学技术出版社) 第119 页

    Yao Y B, Xie T, Gao Y M 1985 Handbook of Physical Chemistry (Shanghai: Science and Technology Press) p119 (in Chinese)

    [30]

    An Y 2006 Phys. Rev. E 74 026304Google Scholar

    [31]

    姜李安, 陈伟中, 李晟琼, 卢美军, 王文杰 2003 声学技术 22 30Google Scholar

    Jiang L A, Chen W Z, Li S J, Lu M J, Wang W J 2003 Acoustic Technique 22 30Google Scholar

    [32]

    郭策, 祝锡晶, 王建青, 叶林征 2016 物理学报 65 044304Google Scholar

    Guo C, Zhu X J, Wang J Q, Ye L Z 2016 Acta Phys. Sin. 65 044304Google Scholar

  • [1] 马平, 韩一平, 张宁, 田得阳, 石安华, 宋强. 高超声速类HTV2模型全目标电磁散射特性实验研究. 物理学报, 2022, 71(8): 084101. doi: 10.7498/aps.71.20211901
    [2] 田宝贤, 王钊, 胡凤明, 高智星, 班晓娜, 李静. “天光一号”驱动的聚苯乙烯高压状态方程测量. 物理学报, 2021, 70(19): 196401. doi: 10.7498/aps.70.20210240
    [3] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211266
    [4] 张其黎, 张弓木, 赵艳红, 刘海风. 氘、氦及其混合物状态方程第一原理研究. 物理学报, 2015, 64(9): 094702. doi: 10.7498/aps.64.094702
    [5] 贾果, 黄秀光, 谢志勇, 叶君建, 方智恒, 舒桦, 孟祥富, 周华珍, 傅思祖. 液氘状态方程实验数据测量. 物理学报, 2015, 64(16): 166401. doi: 10.7498/aps.64.166401
    [6] 周洪强, 于明, 孙海权, 何安民, 陈大伟, 张凤国, 王裴, 邵建立. 混合物状态方程的计算. 物理学报, 2015, 64(6): 064702. doi: 10.7498/aps.64.064702
    [7] 王坤, 史宗谦, 石元杰, 吴坚, 贾申利, 邱爱慈. 基于Thomas-Fermi-Kirzhnits模型的物态方程研究. 物理学报, 2015, 64(15): 156401. doi: 10.7498/aps.64.156401
    [8] 韩勇, 龙新平, 郭向利. 一种简化维里型状态方程预测高温甲烷PVT关系. 物理学报, 2014, 63(15): 150505. doi: 10.7498/aps.63.150505
    [9] 蒋国平, 焦楚杰, 肖波齐. 高强混凝土气体炮试验与高压状态方程研究. 物理学报, 2012, 61(2): 026701. doi: 10.7498/aps.61.026701
    [10] 包特木尔巴根, 宋太平, 崔甲武, 唐高娃. 模型参数对奇异星性质的影响. 物理学报, 2011, 60(12): 122101. doi: 10.7498/aps.60.122101
    [11] 袁都奇. Fermi气体在势阱中的最大囚禁范围与状态方程. 物理学报, 2011, 60(6): 060509. doi: 10.7498/aps.60.060509
    [12] 朱希睿, 孟续军. 改进的含温有界原子模型对金的电子物态方程的计算. 物理学报, 2011, 60(9): 093103. doi: 10.7498/aps.60.093103
    [13] 宋萍, 蔡灵仓. Grüneisen系数与铝的高温高压状态方程. 物理学报, 2009, 58(3): 1879-1884. doi: 10.7498/aps.58.1879
    [14] 王江华, 贺端威. 金刚石压砧内单轴应力场对物质状态方程测量的影响. 物理学报, 2008, 57(6): 3397-3401. doi: 10.7498/aps.57.3397
    [15] 张 超, 孙久勋, 田荣刚, 邹世勇. 氮化硅α,β和γ相的解析状态方程和热物理性质. 物理学报, 2007, 56(10): 5969-5973. doi: 10.7498/aps.56.5969
    [16] 过增元, 曹炳阳, 朱宏晔, 张清光. 声子气的状态方程和声子气运动的守恒方程. 物理学报, 2007, 56(6): 3306-3312. doi: 10.7498/aps.56.3306
    [17] 田春玲, 刘福生, 蔡灵仓, 经福谦. 多体相互作用对高压固氦状态方程的影响. 物理学报, 2006, 55(2): 764-769. doi: 10.7498/aps.55.764
    [18] 姜旻昊, 孟续军. 用Hartree-Fock-Slater-Boltzmann-Saha模型研究等离子体细致组态原子结构及其状态方程. 物理学报, 2005, 54(2): 587-593. doi: 10.7498/aps.54.587
    [19] 田春玲, 刘福生, 蔡灵仓, 经福谦. 四体相互作用对固氦压缩特性的贡献. 物理学报, 2003, 52(5): 1218-1221. doi: 10.7498/aps.52.1218
    [20] 黄秀光, 罗平庆, 傅思祖, 顾援, 马民勋, 吴江, 何钜华. 一种激光驱动高压状态方程绝对测量方法的探索. 物理学报, 2002, 51(2): 337-341. doi: 10.7498/aps.51.337
计量
  • 文章访问数:  3078
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-07
  • 修回日期:  2021-09-08
  • 上网日期:  2021-12-22
  • 刊出日期:  2022-01-05

/

返回文章
返回