搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HL-2A上NBI加热H模实验的集成模拟分析

罗一鸣 王占辉 陈佳乐 吴雪科 付彩龙 何小雪 刘亮 杨曾辰 李永高 高金明 杜华荣 昆仑集成模拟设计组

引用本文:
Citation:

HL-2A上NBI加热H模实验的集成模拟分析

罗一鸣, 王占辉, 陈佳乐, 吴雪科, 付彩龙, 何小雪, 刘亮, 杨曾辰, 李永高, 高金明, 杜华荣, 昆仑集成模拟设计组

Transport analysis of NBI heating H-mode experiment on HL-2 A with integrated modeling

Luo Yi-Ming, Wang Zhan-Hui, Chen Jia-Le, Wu Xue-Ke, Fu Cai-Long, He Xiao-Xue, Liu Liang, Yang Zeng-Chen, Li Yong-Gao, Gao Jin-Ming, Du Hua-Rong, Kulun Integrated Simulation and Design Group
PDF
HTML
导出引用
  • 托卡马克等离子体物理过程时空尺度跨度大, 不同空间区域(如芯部、台基区、刮削层、靶板区)的主要物理过程不同, 因此需要采用系统集成方法开展全域多时空尺度物理问题分析. 为了更加深入地研究托卡马克等离子体放电实验的稳态运行及爬升期间的输运与约束过程, 通常采用多种物理程序开展集成模拟研究, 对放电实验结果进行集成模拟对照, 相互验证并进一步开展物理分析. 本文基于OMFIT平台, 结合HL-2A装置第37012炮高比压放电实验结果完成了集成模拟验证与分析, 验证了程序的可靠性与适用性. 在该流程中, 通过选取适当的模型, 对实验参数进行了校核与补充, 经演化后模拟结果与实验结果比较吻合. 在此基础上, 本文进一步采用TGLF模型开展了芯部静电漂移波线性不稳定性分析, 结果显示NBI离轴加热导致H模约束改善的原因是, 该实验在NBI功率沉积位置的ETG不稳定性处于被抑制的状态, 输运由ITG不稳定性占据主导, 同时输运水平降低至新经典水平.
    The physical process of tokamak plasma spans a large space-time scale, and the main physical processes differ widely in different spatial regions (such as core, pedestal, scraping-off layer, divertor region), so it is necessary to adopt the integrated modeling method to analyze the physical problems on a global multi-space-time scale. In order to study in depth the transport and confinement during the steady-state or ramp-up of the tokamak discharging experiment, it is necessary to use a variety of physical programs to carry out integrated simulation research and physical analysis. Based on the OMFIT platform, in this paper the integrated simulation verification and analysis of the shot #37012 are conducted, which is a high-$\beta $ discharge experiment on HL-2A device and verifies the reliability and applicability of those programs. In this process, the experimental parameters are checked and supplemented by selecting appropriate models. The simulation results after evolution are consistent with the experimental results. On this basis, we use the TGLF model to analyze the linear electrostatic drift wave instability in the core region. The reason for the improvement of the H-mode confinement by NBI off-axis heating is that the ETG instability in the NBI power deposition region is suppressed. The transport is dominated by ITG instability in the internal transport barrier (ITB), and the transport is reduced to the level of neoclassical transport.
      通信作者: 王占辉, zhwang@swip.ac.cn
    • 基金项目: 国家磁约束核聚变能发展研究专项(批准号: 2018YFE0303102, 2017YFE0302100)、四川省科技创新人才项目(2022JDRC0014)、国家自然科学基金(批准号: 11805158, 11875234, 12047576, 11805055)、国家自然科学基金重点项目(批准号: U1867222)、四川省青年科技创新研究团队项目(批准号: 2020JDTD0030)和中国科学院等离子体物理研究所科学基金青年拔尖项目(批准号: DSJJ-2020-03)资助的课题
      Corresponding author: Wang Zhan-Hui, zhwang@swip.ac.cn
    • Funds: Project supported by the National Magnetic Confinement Fusion Research Program of China (Grant Nos. 2018YFE0303102, 2017YFE0302100), the Sichuan Science and Technology Project(2022JDRC0014), the National Natural Science Foundation of China (Grant Nos. 11805158, 11875234, 12047576, 11805055), the Key Program of the National Natural Science Foundation of China (Grant No. U1867222), the Sichuan Youth Science and Technology Innovation Team Project, China (Grant No. 2020JDTD0030), and the Outstanding Project Funding for Young Researcher in ASIPP, China (Grant No. DSJJ-2020-03)
    [1]

    Ida K, Fujita T 2018 Plasma Phys. Controlled Fusion 60 033001Google Scholar

    [2]

    Meneghini O, Smith S P, Lao L L, Izacard O, Ren Q, Park J M, Staebler G M 2015 Nucl. Fusion 55 083008Google Scholar

    [3]

    Artaud J F, Basiuk V, Imbeaux F, Schneider M, Garcia J, Giruzzi G, Turco F 2010 Nucl. Fusion 50 043001Google Scholar

    [4]

    Artaud J F, Imbeaux F, Garcia J, Giruzzi G, Aniel T, Basiuk V, Urban J 2018 Nucl. Fusion 58 105001Google Scholar

    [5]

    Imbeaux F, Pinches S D, Lister J B, Buravand Y, Casper T, Duval B, Strand P 2015 Nucl. Fusion 55 123006Google Scholar

    [6]

    Candy J, Holland C, Waltz R E, Fahey M R, Belli E A 2009 Phys. Plasma 16 060704Google Scholar

    [7]

    Pan C, Staebler G M, Lao L L, Garofalo A M, Gong X, Ren Q, Smith S P 2013 Phys. Plasmas 20 082503Google Scholar

    [8]

    Pfeiffer W W, Davidson R H, Miller R L, Waltz R E 1980 GA-A16178 http://fusion.gat.com/THEORY/onetwo

    [9]

    Lao L L, St John H, Stambaugh R D, Kellman A G, Pfeiffer W 1985 Nucl. Fusion 25 1611

    [10]

    Staebler G M, Kinsey J E, Waltz R E 2005 Phys. Plasmas 12 102508Google Scholar

    [11]

    Meneghini O, Smith S P, Lao L L, Izacard O, Ren Q, Park J M, Staebler G M 2015 Nuclear Fusion 55 083008

    [12]

    McClenaghan J, Garofalo A M, Lao L L, Weisberg D B, Meneghini O, Smith S P, Holcomb C T 2020 Nucl. Fusion 60 046025Google Scholar

    [13]

    Wu M Q, Li G Q, Chen J L, Du H F, Gao X, Ren Q L 2018 Nucl. Fusion 58 046001Google Scholar

    [14]

    Gao X, Yang Y, Zhang T, Liu H, Li G, Ming T 2017 Nucl. Fusion 57 056021Google Scholar

    [15]

    Wu M Q, Pan C K, Chan V S, Li G Q, Garofalo A M, Jian X, Liu L, Ren Q L, Chen J L, Gao X, Gong X Z, Ding S Y, Qian J P 2018 Phys. Plasmas 25 042506Google Scholar

    [16]

    Meneghini O, G Snoep, B C Lyons, J McClenaghan, C S Imai, B Grierson, S P Smith, G M Staebler, P B Snyder, J Candy, E Belli, L Lao, J M Park, J Citrin, T L Cordemiglia, A Tema, S Mordijck 2021 Nucl. Fusion 61 026006Google Scholar

    [17]

    Chen J L, Jian X, Chan V S, Li Z, Deng Z, Li G 2017 Plasma Phys. Controlled Fusion 59 075005Google Scholar

    [18]

    Chen J L, Chan V S, Jian X, Zhang X J, Ren Q L, Li G Q, Zhou C X, CFETR Phys Team 2021 Nucl. Fusion 61 046002Google Scholar

    [19]

    Jian X, Chen J L, Chan V S, Zhuang G, Li G Q, Deng Z, Shi N, Xu G L, Staebler G M, Guo W F 2017 Nucl. Fusion 57 046012Google Scholar

    [20]

    Giruzzi G, Artaud J F, Baruzzo M, Bolzonella T 2015 Nucl. Fusion 55 073002Google Scholar

    [21]

    Lao L L, John H S, Stambaugh R D, Kellman A G, Pfeiffer W 1985 Nuclear Fusion 25 1611

    [22]

    John H S, Taylor T S, Lin-Liu Y R, Turnbull A D 1994 Plasma Phys. Controlled Fusion 3 603

    [23]

    Goldston R J, McCune D C, Towner H H, Davis S L, Hawryluk R J, Schmidt G L 1981 J. Comput. Phys. 43 61Google Scholar

    [24]

    Jenkins T G, Held E D 2015 J. Comput. Phys. 297 427Google Scholar

    [25]

    Lin-Liu Y R, Chan V S, Prater R 2003 Phys. Plasmas 10 4064Google Scholar

    [26]

    Waltz R E, Staebler G M, Dorland W, Hammett G W, Kotschenreuther M, Konings J A 1997 Phys. Plasmas 4 2482Google Scholar

    [27]

    Staebler G M, Kinsey J E, Waltz R E 2007 Phys. Plasmas 14 055909Google Scholar

    [28]

    Howard N T, Holland C, White A E, Greenwald M, Candy J 2016 Nucl. Fusion 56 014004Google Scholar

    [29]

    McClenaghan J, Garofalo A M, Meneghini O, Smith S P, Leuer J A, Staebler G M, Lao L L, Park J M, Ding S Y, Gong X, Qian J 2017 Nucl. Fusion 57 116019Google Scholar

    [30]

    Belli E A, Candy J 2008 Plasma Phys. Controlled Fusion 50 095010Google Scholar

    [31]

    Belli E A, Candy J 2009 Plasma Phys. Controlled Fusion 51 075018Google Scholar

    [32]

    Belli E A, Candy J 2012 Plasma Phys. Controlled Fusion 54 015015Google Scholar

  • 图 1  OMFIT芯部等离子体剖面集成模拟流程图

    Fig. 1.  The integrated simulation workflow of core plasma with OMFIT.

    图 2  第37012炮放电参数 (a) 等离子体电流${I_{\text{p}}}$; (b) 等离子体储能$ {W}_{\mathrm{E}} $; (c) 归一化比压${\beta _{\text{N}}}$和极向比压${\beta _{\text{p}}}$; (d) 线平均电子密度$\overline {{n_{\text{e}}}} $; (e) NBI加热功率; (f) ${D_\alpha }$

    Fig. 2.  The dischargement parameters of the shot #37012: (a) Plasma current ${I_{\text{p}}}$; (b) stored energy $ {W}_{\mathrm{E}} $; (c) normalized beta ${\beta _{\text{N}}}$ and poloidal beta ${\beta _{\text{p}}}$; (d)line-averaged electron density $ {\stackrel{-}{n}}_{\mathrm{e}} $; (e) NBI heating power ${P_{{\text{NBI}}}}$; (f) ${D_\alpha }$.

    图 3  第37012炮在1020 ms时的(a)离子温度和(b)旋转速度剖面

    Fig. 3.  The ion temperature profile (a) and rotation profile (b) of the shot #37012 at the 1020 ms.

    图 4  第37012炮在1020 ms时的电子密度剖面处理

    Fig. 4.  The treatment of electron density profile of the shot #37012 at the 1020 ms.

    图 5  第37012炮在1020 ms时得到的电子温度剖面

    Fig. 5.  The profile of electron temperature of the shot #37012 at the 1020 ms.

    图 6  集成模拟计算中各物理量的多次迭代收敛性 (a1), (b1), (c1) 迭代前后对比; (a2), (b2), (c2) TGYRO计算点的收敛过程

    Fig. 6.  The astringency of each physical quantity in the integrated simulation: (a1), (b1), (c1) The comparison between before and after the iteration; (a2), (b2), (c2) the convergence process of the TGYRO calculating points.

    图 7  第37012炮在1020 ms时刻的各成分电流剖面

    Fig. 7.  The current profiles of each composition of the shot #37012 at the 1020 ms.

    图 8  第37012炮在1020 ms时刻剖面的模拟结果与实验结果对照 (a) 压强剖面; (b) 电子密度剖面; (c) 离子温度剖面; (d) 安全因子$q$剖面

    Fig. 8.  The experiment and simulation profiles comparation of the shot #37012 at the 1020 ms: (a) Pressure; (b) electron density; (c) ion temperature; (d) safety factor $q$.

    图 9  NBI能量密度沉积分布

    Fig. 9.  The distribution of NBI deposed energy density.

    图 10  第37012炮放电在1020 ms时刻模拟后得到 (a) 离子能量通量; (b) 电子能量通量

    Fig. 10.  The ion energy flux (a) and electron energy flux (b) of the shot #37012 at the 1020 ms.

    图 11  0.2—0.8区域内两支最不稳定的本征模式的频谱

    Fig. 11.  The spectrum of two most unstable eigenmode in the 0.2–0.8 region.

    图 12  $ \rho =0.3, 0.5, 0.8 $处线性不稳定性的增长率与波数的关系(蓝色为电子抗磁漂移方向, 红色为离子抗磁漂移方向)

    Fig. 12.  The relationship between the growth-rate and wavenumber of the linear instabilities in the $ \rho =0.3, 0.5, 0.8 $ (the blue points represent the electron diamagnetic drift direction and the red points represent the ion diamagnetic drift direction).

    表 1  第37012炮在1020 ms时的参数

    Table 1.  The parameters of the shot #37012 at the 1020 ms

    物理量
    $ {I}_{\mathrm{p}}/\mathrm{k}\mathrm{A} $175
    $ {B}_{\mathrm{t}}/\text{T} $1.26
    $ {q}_{95} $4
    $ {P}_{\mathrm{N}\mathrm{B}\mathrm{I}}/\mathrm{k}\mathrm{W} $750+680
    $ {\beta }_{\mathrm{N}} $1.98
    ${\bar{n} }_{\mathrm{e} }/{10}^{19}~{\mathrm{m} }^{-3}$2.4
    $ {W}_{\mathrm{E}} $/kJ33.3
    芯部离子温度/keV2.07
    下载: 导出CSV
  • [1]

    Ida K, Fujita T 2018 Plasma Phys. Controlled Fusion 60 033001Google Scholar

    [2]

    Meneghini O, Smith S P, Lao L L, Izacard O, Ren Q, Park J M, Staebler G M 2015 Nucl. Fusion 55 083008Google Scholar

    [3]

    Artaud J F, Basiuk V, Imbeaux F, Schneider M, Garcia J, Giruzzi G, Turco F 2010 Nucl. Fusion 50 043001Google Scholar

    [4]

    Artaud J F, Imbeaux F, Garcia J, Giruzzi G, Aniel T, Basiuk V, Urban J 2018 Nucl. Fusion 58 105001Google Scholar

    [5]

    Imbeaux F, Pinches S D, Lister J B, Buravand Y, Casper T, Duval B, Strand P 2015 Nucl. Fusion 55 123006Google Scholar

    [6]

    Candy J, Holland C, Waltz R E, Fahey M R, Belli E A 2009 Phys. Plasma 16 060704Google Scholar

    [7]

    Pan C, Staebler G M, Lao L L, Garofalo A M, Gong X, Ren Q, Smith S P 2013 Phys. Plasmas 20 082503Google Scholar

    [8]

    Pfeiffer W W, Davidson R H, Miller R L, Waltz R E 1980 GA-A16178 http://fusion.gat.com/THEORY/onetwo

    [9]

    Lao L L, St John H, Stambaugh R D, Kellman A G, Pfeiffer W 1985 Nucl. Fusion 25 1611

    [10]

    Staebler G M, Kinsey J E, Waltz R E 2005 Phys. Plasmas 12 102508Google Scholar

    [11]

    Meneghini O, Smith S P, Lao L L, Izacard O, Ren Q, Park J M, Staebler G M 2015 Nuclear Fusion 55 083008

    [12]

    McClenaghan J, Garofalo A M, Lao L L, Weisberg D B, Meneghini O, Smith S P, Holcomb C T 2020 Nucl. Fusion 60 046025Google Scholar

    [13]

    Wu M Q, Li G Q, Chen J L, Du H F, Gao X, Ren Q L 2018 Nucl. Fusion 58 046001Google Scholar

    [14]

    Gao X, Yang Y, Zhang T, Liu H, Li G, Ming T 2017 Nucl. Fusion 57 056021Google Scholar

    [15]

    Wu M Q, Pan C K, Chan V S, Li G Q, Garofalo A M, Jian X, Liu L, Ren Q L, Chen J L, Gao X, Gong X Z, Ding S Y, Qian J P 2018 Phys. Plasmas 25 042506Google Scholar

    [16]

    Meneghini O, G Snoep, B C Lyons, J McClenaghan, C S Imai, B Grierson, S P Smith, G M Staebler, P B Snyder, J Candy, E Belli, L Lao, J M Park, J Citrin, T L Cordemiglia, A Tema, S Mordijck 2021 Nucl. Fusion 61 026006Google Scholar

    [17]

    Chen J L, Jian X, Chan V S, Li Z, Deng Z, Li G 2017 Plasma Phys. Controlled Fusion 59 075005Google Scholar

    [18]

    Chen J L, Chan V S, Jian X, Zhang X J, Ren Q L, Li G Q, Zhou C X, CFETR Phys Team 2021 Nucl. Fusion 61 046002Google Scholar

    [19]

    Jian X, Chen J L, Chan V S, Zhuang G, Li G Q, Deng Z, Shi N, Xu G L, Staebler G M, Guo W F 2017 Nucl. Fusion 57 046012Google Scholar

    [20]

    Giruzzi G, Artaud J F, Baruzzo M, Bolzonella T 2015 Nucl. Fusion 55 073002Google Scholar

    [21]

    Lao L L, John H S, Stambaugh R D, Kellman A G, Pfeiffer W 1985 Nuclear Fusion 25 1611

    [22]

    John H S, Taylor T S, Lin-Liu Y R, Turnbull A D 1994 Plasma Phys. Controlled Fusion 3 603

    [23]

    Goldston R J, McCune D C, Towner H H, Davis S L, Hawryluk R J, Schmidt G L 1981 J. Comput. Phys. 43 61Google Scholar

    [24]

    Jenkins T G, Held E D 2015 J. Comput. Phys. 297 427Google Scholar

    [25]

    Lin-Liu Y R, Chan V S, Prater R 2003 Phys. Plasmas 10 4064Google Scholar

    [26]

    Waltz R E, Staebler G M, Dorland W, Hammett G W, Kotschenreuther M, Konings J A 1997 Phys. Plasmas 4 2482Google Scholar

    [27]

    Staebler G M, Kinsey J E, Waltz R E 2007 Phys. Plasmas 14 055909Google Scholar

    [28]

    Howard N T, Holland C, White A E, Greenwald M, Candy J 2016 Nucl. Fusion 56 014004Google Scholar

    [29]

    McClenaghan J, Garofalo A M, Meneghini O, Smith S P, Leuer J A, Staebler G M, Lao L L, Park J M, Ding S Y, Gong X, Qian J 2017 Nucl. Fusion 57 116019Google Scholar

    [30]

    Belli E A, Candy J 2008 Plasma Phys. Controlled Fusion 50 095010Google Scholar

    [31]

    Belli E A, Candy J 2009 Plasma Phys. Controlled Fusion 51 075018Google Scholar

    [32]

    Belli E A, Candy J 2012 Plasma Phys. Controlled Fusion 54 015015Google Scholar

  • [1] 孙有文, 仇志勇, 万宝年. 磁约束燃烧等离子体物理的现状与展望. 物理学报, 2024, 73(17): 175202. doi: 10.7498/aps.73.20240831
    [2] 李正吉, 陈伟, 孙爱萍, 于利明, 王卓, 陈佳乐, 许健强, 李继全, 石中兵, 蒋敏, 李永高, 何小雪, 杨曾辰, 李鉴. HL-2A装置高βN双输运垒实验的集成分析. 物理学报, 2024, 73(6): 065202. doi: 10.7498/aps.73.20231543
    [3] 包健, 张文禄, 李定. 高能量电子激发比压阿尔芬本征模的全域模拟研究. 物理学报, 2023, 72(21): 215216. doi: 10.7498/aps.72.20230794
    [4] 施培万, 朱霄龙, 陈伟, 余鑫, 杨曾辰, 何小雪, 王正汹. HL-2A装置上电子回旋共振加热沉积位置影响鱼骨模主动控制效果的实验研究. 物理学报, 2023, 72(21): 215208. doi: 10.7498/aps.72.20230696
    [5] 侯玉梅, 陈伟, 邹云鹏, 于利明, 石中兵, 段旭如. HL-2A装置高能量离子驱动的比压阿尔芬本征模的扫频行为. 物理学报, 2023, 72(21): 215211. doi: 10.7498/aps.72.20230726
    [6] 郝保龙, 李颖颖, 陈伟, 郝广周, 顾翔, 孙恬恬, 王嵎民, 董家齐, 袁保山, 彭元凯, 石跃江, 谢华生, 刘敏胜, ENN TEAM. EXL-50U球形环中快离子磁场波纹损失的优化模拟研究. 物理学报, 2023, 72(21): 215215. doi: 10.7498/aps.72.20230749
    [7] 孙梓源, 王元震, 刘悦. 预测HL-2A托卡马克台基结构的MHD稳定性数值研究. 物理学报, 2022, 71(22): 225201. doi: 10.7498/aps.71.20221098
    [8] 张洪铭, 吴静, 李佳鲜, 姚列明, 徐江城, 吴岩占, 刘旗艳, 郭鹏程. HL-2A高约束先进运行模式等离子体电流剖面集成模拟. 物理学报, 2021, 70(23): 235203. doi: 10.7498/aps.70.20210945
    [9] 陈撷宇, 牟茂淋, 苏春燕, 陈少永, 唐昌建. HL-2A中环向旋转影响等离子体对共振磁扰动的响应过程. 物理学报, 2020, 69(19): 195201. doi: 10.7498/aps.69.20200519
    [10] 唐熊忻, 邱基斯, 樊仲维, 王昊成, 刘悦亮, 刘昊, 苏良碧. 用于惯性约束核聚变激光驱动器的激光二极管抽运Nd,Y:CaF2激光放大器的实验研究. 物理学报, 2016, 65(20): 204206. doi: 10.7498/aps.65.204206
    [11] 冯北滨, 姚良骅, 陈程远, 季小全, 钟武律, 石中兵, 余德良, 崔正英, 宋显明, 段旭如. HL-2A装置上超声分子束注入触发L-H转换的实验研究. 物理学报, 2013, 62(1): 015203. doi: 10.7498/aps.62.015203
    [12] 郑灵, 赵青, 周艳. HL-2A第一镜挡板防护效果模拟. 物理学报, 2011, 60(8): 085204. doi: 10.7498/aps.60.085204
    [13] 钟武律, 段旭如, 余德良, 韩晓玉, 杨立梅. HL-2A托卡马克中性束辐射光谱的数值模拟. 物理学报, 2010, 59(5): 3336-3343. doi: 10.7498/aps.59.3336
    [14] 姚良骅, 冯北滨, 陈程远, 冯 震, 李 伟, 焦一鸣. 中国环流器二号A(HL-2A)超声分子束注入最新结果. 物理学报, 2008, 57(7): 4159-4165. doi: 10.7498/aps.57.4159
    [15] 洪文玉, 严龙文, 赵开君, 兰 涛, 董家齐, 俞昌旋, 程 均, 钱 俊, 刘阿棣, 罗萃文, 徐征宇, 黄 渊, 杨青巍. HL-2A装置中的带状流三维特性研究和探针设计. 物理学报, 2008, 57(2): 962-968. doi: 10.7498/aps.57.962
    [16] 游天雪, 袁保山, 李芳著. 用可移动电流丝方法重建HL-2A等离子体边界的研究. 物理学报, 2007, 56(9): 5323-5329. doi: 10.7498/aps.56.5323
    [17] 石中兵, 姚良骅, 丁玄同, 段旭如, 冯北滨, 刘泽田, 肖维文, 孙红娟, 李 旭, 李 伟, 陈程远, 焦一鸣. HL-2A托卡马克超声分子束注入深度和加料效果研究. 物理学报, 2007, 56(8): 4771-4777. doi: 10.7498/aps.56.4771
    [18] 郑银甲, 黄 渊, 冯 震, 施 乐, 崔成和, 王明旭, 徐红兵. HL-2A托卡马克送气成像研究. 物理学报, 2007, 56(3): 1452-1460. doi: 10.7498/aps.56.1452
    [19] 袁保山, 游天雪, 刘 莉, 李芳著, 杨青巍, 冯北滨. HL-2A等离子体形状实时显示系统. 物理学报, 2006, 55(5): 2403-2408. doi: 10.7498/aps.55.2403
    [20] 袁保山, 游天雪, 秦运文, 冯北滨, 季小全. HL-2A等离子体约束参数的实时确定. 物理学报, 2006, 55(3): 1315-1319. doi: 10.7498/aps.55.1315
计量
  • 文章访问数:  4101
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-19
  • 修回日期:  2021-11-29
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回