搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

限制电流对Ta/BaTiO3/Al2O3/ITO忆阻器的开关比和稳定性调控

何朝滔 卢羽 李秀林 陈鹏

引用本文:
Citation:

限制电流对Ta/BaTiO3/Al2O3/ITO忆阻器的开关比和稳定性调控

何朝滔, 卢羽, 李秀林, 陈鹏

Facilitation of compliance current for resistive switching and stability of Ta/BaTiO3/Al2O3/ITO

He Chao-Tao, Lu Yu, Li Xiu-Lin, Chen Peng
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 利用磁控溅射技术沉积了Ta/BaTiO3/Al2O3/ITO多层薄膜, 观察到该结构中的电阻开关现象受到限制电流的调控. 在限制电流大小为10–2 A时, 器件中的电阻开关现象达到最优. Ta/BaTiO3/Al2O3/ITO多层薄膜的电阻开关具有良好的可重复性和稳定性. 本文使用空间限制电流的传导模型对Ta/BaTiO3/Al2O3/ITO器件中受限制电流调控的电阻开关传导机理进行了解释.
    In this work, Ta/BaTiO3/Al2O3 multi-layer thin film is deposited on indium tin oxide substrates by using the magnetron sputtering technology. Obvious resistive switching performance can be observed by increasing the compliance current. Ohmic and space charge limited current conduction mechanisms are demonstrated in Ta/BaTiO3/Al2O3. The reproducible and stable resistive switching behaviors in Ta/BaTiO3/Al2O3/ITO device at Icc = 10–2 A are reported. The results show that no obvious degradation is found after 365 successive cycles tests.
      通信作者: 陈鹏, pchen@swu.edu.cn
      Corresponding author: Chen Peng, pchen@swu.edu.cn
    [1]

    Hu Z Q, Li Q, Li M Y, Wang Q W, Zhu Y D, Zhao X Z, Liu Y, Dong S X 2013 Appl. Phys. Lett. 102 102901Google Scholar

    [2]

    Zhou G D, Sun B, Hu X, Sun L, Zou Z, Xiao B, Qiu W, Wu B, Li J, Han J, Liao L, Xu C, Xiao G, Xiao L, Cheng J, Zheng S, Wang L, Song Q, Duan S 2021 Adv. Sci. 8 2003765Google Scholar

    [3]

    Sun B, Zhao W X, Liu Y H, Chen P 2015 Funct. Mater. Lett. 8 1550010Google Scholar

    [4]

    Wang J S, Liang D D, Wu L C, Li X P, Chen P 2018 Solid State Commun. 275 8Google Scholar

    [5]

    Lee J S, Lee S, Noh T W 2015 Appl. Phys. Rev. 2 031303Google Scholar

    [6]

    Lacaita A L, Wouters D J 2008 Phys. Stat. Sol. A 205 2281

    [7]

    Jeong D S, Thomas R, Katiyar R S, Scott J F, Kohlstedt H, A Petraru A, Hwang C S 2012 Rep. Prog. Phys. 75 076502Google Scholar

    [8]

    Kumar P, Maikap S, Ginnaram S, Qiu J T, Jana D, Chakrabarti S, Samanta S, S Singh S, Roy A, Jana S 2017 J. Electrochem. Soc. 164 B127Google Scholar

    [9]

    Petzold S, Zintler A, Eilhardt R, Piros E, Kaiser N, Sharath S U, Vogel T, Major Má, McKenna K P, Molina-Luna L, Alff L 2019 Adv. Electron. Mater. 5 1900484

    [10]

    Hsieh W K, Lam KT, Chang S J 2015 Mater. Sci. Semicon. Proc. 35 30Google Scholar

    [11]

    Scott J C, Bozano L D 2007 Adv. Mater. 19 1452Google Scholar

    [12]

    Lai R L, Wei M L, Wang J B, Zhou K, Qiu X Y 2021 J. Phys. D: Appl. Phys. 54 015101Google Scholar

    [13]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632Google Scholar

    [14]

    Guo T, Sun B, Ranjan S, Jiao Y, Wei L, Zhou Y N, Wu Y A 2020 ACS Appl. Mater. Inter. 12 54243Google Scholar

    [15]

    Sun B, Zhou G D, Guo T, Zhou Y N, Wu Y A 2020 Nano Energy 75 104938Google Scholar

    [16]

    Tsai T M, Lin C C, Chen W C, Wu C H, Yang C C, Tan Y F, Wu P Y, Huang H C, Zhang Y C, Sun L C, Chou S Y 2020 J. Alloy. Compd. 826 154126Google Scholar

    [17]

    Saylan S, Aldosari H M, Humood K, Jaoude M A, Ravaux F, Mohammad B 2020 Sci. Rep-UK 10 19541Google Scholar

    [18]

    Chen R, Hu W, Zou L, Xie W, Li B, Bao D 2014 Appl. Phys. Lett. 104 242111Google Scholar

    [19]

    Choi H H, Paik S H, Kim Y, Kim M, Kang Y S, Lee S S, Jho J Y, Park J H 2021 J. Ind. Eng. Chem. 94 233Google Scholar

    [20]

    Strachan J P, Strukov D B, Borghetti J, Yang J J, Medeiros-Ribeiro G, Williams R S 2011 Nanotechnology 22 254015Google Scholar

    [21]

    Tang Y, Zhang X, Lu Y, Chen P 2021 Functional Mater. Lett. 14 2150025Google Scholar

    [22]

    Liu C F, Tang X G, Wang L Q, Tang H, Jiang Y P, Liu Q X, Li W H, Tang Z H 2019 Nanomaterials 9 1124Google Scholar

    [23]

    Hu C, Wang Q, Bai S, Xu M, He D, Lyu D, Qi J 2017 Appl. Phys. Lett. 110 073501Google Scholar

    [24]

    Kim H D, Kim S, Yun M J 2018 J. Alloy. Compd. 742 822Google Scholar

    [25]

    Zhou G D, Duan S, Li P, et al. 2018 Adv. Electron. Mater. 1700567

    [26]

    Liu H C, Tang X G, Liu Q X, Jiang Y P, Li W H, Guo X B, Tang Z H 2020 Ceram. Int. 46 21196Google Scholar

    [27]

    Pan X, Shuai Y, Wu C, Luo W, Sun X, Zeng H, Guo H, Yuan Y, Zhou S, Böttger R, Cheng H, Zhang J, Zhang W, Schmidt H 2019 Solid State Ionics 334 1Google Scholar

    [28]

    Lü W, Li C, Zheng L, Xiao J, Lin W, Li Q, Wang X R, Huang Z, Zeng S, Han K, Zhou W, Zeng K, Chen J, Ariando, Cao W, Venkatesan T 2017 Adv. Mater. 29 1606165Google Scholar

    [29]

    Wei L J, Yuan Y, Wang J, Tu H Q, Gao H Q, You B, Du J 2017 Phys. Chem. Chem. Phys. 19 11864Google Scholar

    [30]

    Wang Y H, Zhao K H, Shi X L, Xie G L, Huang S Y, Zhang L W 2013 Appl. Phys. Lett. 103 031601Google Scholar

    [31]

    Razi P M, Gangineni R B 2019 Thin Solid Films 685 59Google Scholar

    [32]

    Wang G, Hu L, Xia Y, Li Q, Xu Q 2020 J. Magn. Magn. Mater. 493 165728Google Scholar

    [33]

    Chen Y T, Chang T C, Yang P C, Huang J J, Tseng H C, Huang H C, Yang J B, Chu A K, Gan D S, Tsai M J, Sze S M 2013 IEEE Electr. Device Lett. 34 226Google Scholar

    [34]

    Liu Y D, Hu C Z, Wang J J, Zhong N, Xiang P H, Duan C G 2020 J. Mater. Chem. C. 8 5815Google Scholar

    [35]

    Sharath S U, Vogel S, Molina-Luna L, Hildebrandt E, Wenger C, Kurian J, Duerrschnabel M, Niermann T, Niu G, Calka P, Lehmann M, Kleebe H J, Schroeder T, Alff L 2017 Adv. Funct. Mater. 27 1700432Google Scholar

  • 图 1  (a) Ta/BaTiO3/Al2O3/ITO器件XRD图, 插图为器件结构示意图; (b)器件截面示意图; (c) Ta电极表面SEM扫描图片, 插图为EDS原子百分比分析结果

    Fig. 1.  (a) XRD pattern of Ta/BaTiO3/Al2O3/ITO device, the inset shows the schematic diagram of the device; (b) SEM cross-sectional image of the device; (c) SEM image of Ta surface, the insert is the result of EDS analysis.

    图 2  (a) Ta/BaTiO3/Al2O3/ITO器件在Icc = 10–3, 5 × 10–3, 10–2 A下的电阻开关; (b) 50个器件中部分器件的I-V曲线图

    Fig. 2.  (a) The RS behaviors of the Ta/BaTiO3/Al2O3/ITO device with Icc = 10–3, 5 × 10–3, 10–2 A; (b) I-V characteristic curves for some cells of the fifty devices.

    图 3  Ta/BaTiO3/Ta器件的I-V特性, 插图为器件结构示意图

    Fig. 3.  The I-V curves measured for the Ta/BaTiO3/Ta device, the inset is schematic figure for stacked structures of the device.

    图 4  Icc = 10–2 A, Ta/BaTiO3/Al2O3/ITO器件相关特征的拟合结果 (a) I-V; (b) I-V2 (高偏压区域);

    Fig. 4.  Icc = 10–2 A, the fitting result for characteristics of the Ta/BaTiO3/Al2O3/ITO device: (a) I-V; (b) I-V2 (high-voltage region)

    图 5  Ta/BaTiO3/Al2O3/ITO器件中电阻开关的原理示意图

    Fig. 5.  The schematic diagrams of the RS in the Ta/BaTiO3/Al2O3/ITO device.

    图 6  (a) Icc = 10–2 A, Ta/BaTiO3/Al2O3/ITO器件连续循环100圈后LRS和HRS变化情况; (b) 器件循环365圈中RS现象的随机选取

    Fig. 6.  (a) The resistance evolution of HRS and LRS for the Ta/BaTiO3/Al2O3/ITO device with Icc = 10–2 A; (b) the continuous endurance measurements for the device.

  • [1]

    Hu Z Q, Li Q, Li M Y, Wang Q W, Zhu Y D, Zhao X Z, Liu Y, Dong S X 2013 Appl. Phys. Lett. 102 102901Google Scholar

    [2]

    Zhou G D, Sun B, Hu X, Sun L, Zou Z, Xiao B, Qiu W, Wu B, Li J, Han J, Liao L, Xu C, Xiao G, Xiao L, Cheng J, Zheng S, Wang L, Song Q, Duan S 2021 Adv. Sci. 8 2003765Google Scholar

    [3]

    Sun B, Zhao W X, Liu Y H, Chen P 2015 Funct. Mater. Lett. 8 1550010Google Scholar

    [4]

    Wang J S, Liang D D, Wu L C, Li X P, Chen P 2018 Solid State Commun. 275 8Google Scholar

    [5]

    Lee J S, Lee S, Noh T W 2015 Appl. Phys. Rev. 2 031303Google Scholar

    [6]

    Lacaita A L, Wouters D J 2008 Phys. Stat. Sol. A 205 2281

    [7]

    Jeong D S, Thomas R, Katiyar R S, Scott J F, Kohlstedt H, A Petraru A, Hwang C S 2012 Rep. Prog. Phys. 75 076502Google Scholar

    [8]

    Kumar P, Maikap S, Ginnaram S, Qiu J T, Jana D, Chakrabarti S, Samanta S, S Singh S, Roy A, Jana S 2017 J. Electrochem. Soc. 164 B127Google Scholar

    [9]

    Petzold S, Zintler A, Eilhardt R, Piros E, Kaiser N, Sharath S U, Vogel T, Major Má, McKenna K P, Molina-Luna L, Alff L 2019 Adv. Electron. Mater. 5 1900484

    [10]

    Hsieh W K, Lam KT, Chang S J 2015 Mater. Sci. Semicon. Proc. 35 30Google Scholar

    [11]

    Scott J C, Bozano L D 2007 Adv. Mater. 19 1452Google Scholar

    [12]

    Lai R L, Wei M L, Wang J B, Zhou K, Qiu X Y 2021 J. Phys. D: Appl. Phys. 54 015101Google Scholar

    [13]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632Google Scholar

    [14]

    Guo T, Sun B, Ranjan S, Jiao Y, Wei L, Zhou Y N, Wu Y A 2020 ACS Appl. Mater. Inter. 12 54243Google Scholar

    [15]

    Sun B, Zhou G D, Guo T, Zhou Y N, Wu Y A 2020 Nano Energy 75 104938Google Scholar

    [16]

    Tsai T M, Lin C C, Chen W C, Wu C H, Yang C C, Tan Y F, Wu P Y, Huang H C, Zhang Y C, Sun L C, Chou S Y 2020 J. Alloy. Compd. 826 154126Google Scholar

    [17]

    Saylan S, Aldosari H M, Humood K, Jaoude M A, Ravaux F, Mohammad B 2020 Sci. Rep-UK 10 19541Google Scholar

    [18]

    Chen R, Hu W, Zou L, Xie W, Li B, Bao D 2014 Appl. Phys. Lett. 104 242111Google Scholar

    [19]

    Choi H H, Paik S H, Kim Y, Kim M, Kang Y S, Lee S S, Jho J Y, Park J H 2021 J. Ind. Eng. Chem. 94 233Google Scholar

    [20]

    Strachan J P, Strukov D B, Borghetti J, Yang J J, Medeiros-Ribeiro G, Williams R S 2011 Nanotechnology 22 254015Google Scholar

    [21]

    Tang Y, Zhang X, Lu Y, Chen P 2021 Functional Mater. Lett. 14 2150025Google Scholar

    [22]

    Liu C F, Tang X G, Wang L Q, Tang H, Jiang Y P, Liu Q X, Li W H, Tang Z H 2019 Nanomaterials 9 1124Google Scholar

    [23]

    Hu C, Wang Q, Bai S, Xu M, He D, Lyu D, Qi J 2017 Appl. Phys. Lett. 110 073501Google Scholar

    [24]

    Kim H D, Kim S, Yun M J 2018 J. Alloy. Compd. 742 822Google Scholar

    [25]

    Zhou G D, Duan S, Li P, et al. 2018 Adv. Electron. Mater. 1700567

    [26]

    Liu H C, Tang X G, Liu Q X, Jiang Y P, Li W H, Guo X B, Tang Z H 2020 Ceram. Int. 46 21196Google Scholar

    [27]

    Pan X, Shuai Y, Wu C, Luo W, Sun X, Zeng H, Guo H, Yuan Y, Zhou S, Böttger R, Cheng H, Zhang J, Zhang W, Schmidt H 2019 Solid State Ionics 334 1Google Scholar

    [28]

    Lü W, Li C, Zheng L, Xiao J, Lin W, Li Q, Wang X R, Huang Z, Zeng S, Han K, Zhou W, Zeng K, Chen J, Ariando, Cao W, Venkatesan T 2017 Adv. Mater. 29 1606165Google Scholar

    [29]

    Wei L J, Yuan Y, Wang J, Tu H Q, Gao H Q, You B, Du J 2017 Phys. Chem. Chem. Phys. 19 11864Google Scholar

    [30]

    Wang Y H, Zhao K H, Shi X L, Xie G L, Huang S Y, Zhang L W 2013 Appl. Phys. Lett. 103 031601Google Scholar

    [31]

    Razi P M, Gangineni R B 2019 Thin Solid Films 685 59Google Scholar

    [32]

    Wang G, Hu L, Xia Y, Li Q, Xu Q 2020 J. Magn. Magn. Mater. 493 165728Google Scholar

    [33]

    Chen Y T, Chang T C, Yang P C, Huang J J, Tseng H C, Huang H C, Yang J B, Chu A K, Gan D S, Tsai M J, Sze S M 2013 IEEE Electr. Device Lett. 34 226Google Scholar

    [34]

    Liu Y D, Hu C Z, Wang J J, Zhong N, Xiang P H, Duan C G 2020 J. Mater. Chem. C. 8 5815Google Scholar

    [35]

    Sharath S U, Vogel S, Molina-Luna L, Hildebrandt E, Wenger C, Kurian J, Duerrschnabel M, Niermann T, Niu G, Calka P, Lehmann M, Kleebe H J, Schroeder T, Alff L 2017 Adv. Funct. Mater. 27 1700432Google Scholar

  • [1] 何小龙, 陈鹏. Cu/MgO/MoS2/Cu结构的电阻开关特性. 物理学报, 2025, 74(2): 028501. doi: 10.7498/aps.74.20241298
    [2] 丰家峰, 魏红祥, 于国强, 黄辉, 郭经红, 韩秀峰. 电流焦耳热调控反转型垂直(Co/Pt)n/Co/IrMn纳米多层膜结构的交换偏置效应研究. 物理学报, 2023, 72(1): 018501. doi: 10.7498/aps.72.20221584
    [3] 张兴文, 何朝滔, 李秀林, 邱晓燕, 张耘, 陈鹏. Ni/ZnO/BiFeO3/ZnO多层膜中磁场调控的电阻开关效应. 物理学报, 2022, 71(18): 187303. doi: 10.7498/aps.71.20220609
    [4] 佘彦超, 张蔚曦, 王应, 罗开武, 江小蔚. 氧空位缺陷对PbTiO3铁电薄膜漏电流的调控. 物理学报, 2018, 67(18): 187701. doi: 10.7498/aps.67.20181130
    [5] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟. 物理学报, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [6] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [7] 韦晓莹, 胡明, 张楷亮, 王芳, 刘凯. 氧化钒薄膜的微结构及阻变特性研究. 物理学报, 2013, 62(4): 047201. doi: 10.7498/aps.62.047201
    [8] 李红霞, 陈雪平, 陈琪, 毛启楠, 席俊华, 季振国. 下电极对ZnO薄膜电阻开关特性的影响. 物理学报, 2013, 62(7): 077202. doi: 10.7498/aps.62.077202
    [9] 骆杨, 段羽, 陈平, 臧春亮, 谢月, 赵毅, 刘式墉. 利用空间电荷限制电流方法确定三(8-羟基喹啉)铝的电子迁移率特性初步研究. 物理学报, 2012, 61(14): 147801. doi: 10.7498/aps.61.147801
    [10] 於黄忠. 空间电荷限制电流法测量共混体系中空穴的迁移率. 物理学报, 2012, 61(8): 087204. doi: 10.7498/aps.61.087204
    [11] 李飞, 肖刘, 刘濮鲲, 易红霞, 万晓声. 同心球之间空间电荷限制电流的简单理论. 物理学报, 2011, 60(9): 097901. doi: 10.7498/aps.60.097901
    [12] 赵红东, 张卫华, 李文超, 刘会丽, 孙梅. 电流孔的尺寸对双氧化限制垂直腔面发射激光器阈值的影响. 物理学报, 2010, 59(6): 3948-3952. doi: 10.7498/aps.59.3948
    [13] 朱樟明, 钟波, 杨银堂. 基于RLCπ型等效模型的互连网络精确焦耳热功耗计算. 物理学报, 2010, 59(7): 4895-4900. doi: 10.7498/aps.59.4895
    [14] 赵文山, 何怡刚. 一种改进的开关电流滤波器实现小波变换的方法. 物理学报, 2009, 58(2): 843-851. doi: 10.7498/aps.58.843
    [15] 施卫, 田立强, 王馨梅, 徐鸣, 马德明, 周良骥, 刘宏伟, 谢卫平. 高压超大电流光电导开关及其击穿特性研究. 物理学报, 2009, 58(2): 1219-1223. doi: 10.7498/aps.58.1219
    [16] 刚建雷, 黎松林, 孟洋, 廖昭亮, 梁学锦, 陈东敏. 点接触金属/Pr0.7Ca0.3MnO3/Pt结构稳定的低电流电阻开关特性. 物理学报, 2009, 58(8): 5730-5735. doi: 10.7498/aps.58.5730
    [17] 胡沁春, 何怡刚, 郭迪新, 李宏民. 基于开关电流技术的小波变换的滤波器电路实现. 物理学报, 2006, 55(2): 641-647. doi: 10.7498/aps.55.641
    [18] 屈光辉, 施 卫. 光导开关中的感生电流与传导电流. 物理学报, 2006, 55(11): 6068-6072. doi: 10.7498/aps.55.6068
    [19] 包科达, 熊家炯. 无序电阻网络中的最大电流研究. 物理学报, 1990, 39(8): 121-127. doi: 10.7498/aps.39.121
    [20] 华中一, 黄心源, 章壮健. 可用焦耳热除气的超高真空电离真空计. 物理学报, 1963, 19(2): 83-89. doi: 10.7498/aps.19.83
计量
  • 文章访问数:  5490
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-28
  • 修回日期:  2021-12-27
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回