搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于磁旋转光谱的环形永磁阵列的匀场分布仿真优化

贾丰鸣 梅教旭 王瑞峰 程刚 刘锟 高晓明

引用本文:
Citation:

用于磁旋转光谱的环形永磁阵列的匀场分布仿真优化

贾丰鸣, 梅教旭, 王瑞峰, 程刚, 刘锟, 高晓明

Optimization of distribution of permanent magnetrings for Faraday rotation spectroscopy

Jia Feng-Ming, Mei Jiao-Xu, Wang Rui-Feng, Cheng Gang, Liu Kun, Gao Xiao-Ming
PDF
HTML
导出引用
  • 法拉第磁旋转光谱(Faraday rotation spectroscopy, FRS)技术因其高灵敏度, 零背景噪声, 以及能有效避免抗磁性物质干扰的特性广泛应用于各类顺磁性痕量气体的探测. 目前大部分FRS技术采用线圈构造电磁场, 存在能耗高、发热多等问题. 为此, 开展了基于组合环形永磁体的空间磁场分布建模仿真研究, 意在建立轴向分布的磁场, 为测量FRS提供基于永磁体的沿光轴方向的匀强磁场. 仿真采用有限元网格剖分的方法, 基于麦克斯韦方程组, 开展组合磁环的磁场分布仿真研究, 并通过实验测量实际钕铁硼永磁体磁环阵列的磁场分布, 证明了建立物理模型的可靠性. 在此基础上提出了对永磁体磁环阵列的3种优化方案—单理想值优化、多段式单理想值优化和梯度优化方案, 来构造中心轴线磁感应强度分布均匀的匀强磁场. 最后通过引入磁场均匀度, 计算评估并分析比较了不同优化方案的优化效果, 为研发基于永磁体的FRS光谱设备提供参考.
    Faraday rotation spectroscopy (FRS) is generally used to detect the concentrations of various paramagnetic trace gases because of its high detection sensitivity, zero background noise and the ability to get rid of the interference of diamagnetic materials effectively. In most of FRS technologies, the used electromagnetic fields are produced by coils, thereby triggering off some problems such as high energy consumption and excessive heat generation. Thus the modeling and the simulation study of spatial magnetic field distribution based on the combined ring permanent magnets are carried out to establish an axially distributed homogeneous magnetic field and provide a permanent magnet-based homogeneous magnetic field along the optical axis for FRS measurement. In this simulation, the method of finite element mesh division is adopted based on basic electromagnetic relationship in Maxwell equations. By the simulation study of the magnetic field distribution of the actual Nd-Fe-B permanent magnet magnetic ring array, the physical model proves to be reliable. Basically, three methods of optimizing the permanent magnetic ring arrays. i.e. single ideal value optimization method, the multi-part single objective optimization method, and the gradient optimization method, are proposed. The single ideal value optimization method and the multiple ideal value optimization method are used to realize the optimization of magnets. However, by analyzing the two methods, it is clear that compared with the single ideal value optimization method, the multiple ideal value optimization method in which the whole region is divided into several small parts can achieve good uniformity of permanent magnet array. In this way, the third method, i.e. the gradient optimization method is used to realize the construction of a homogeneous magnetic field with a uniform central axis magnetic flux density distribution used for FRS. Finally, the standard magnetic field uniformity for measuring the quality of magnet field is suggested, and through the calculation and evaluation of the magnetic field uniformity, the optimization effects of different optimization methods are analyzed and compared with each other. And the final results about realizing a homogeneous magnetic field provide a reference for developing the FRS equipment based on permanent magnets.
      通信作者: 梅教旭, jxmei@aiofm.ac.cn
    • 基金项目: 中国科学院科研仪器设备研制项目(批准号: YJKYYQ20190054)和国家自然科学基金(批准号: 41730103, 41575030, 41475023)资助的课题
      Corresponding author: Mei Jiao-Xu, jxmei@aiofm.ac.cn
    • Funds: Project supported by the Research Instruments and Equipment Development Project of the Chinese Academy of Sciences, China (Grant No. YJKYYQ20190054) and the National Natural Science Foundation of China (Grant Nos. 41730103, 41575030, 41475023).
    [1]

    Liu K, Lewicki R, Tittel F K 2016 Sensor. Actuat. B. Chem. 237 887Google Scholar

    [2]

    Boone C D, Dalby F W, Ozier I 2000 J. Chem. Phys. 113 8594Google Scholar

    [3]

    Hinz A, Pfeiffer J, Bohle W, Urban W 1982 Mol. Phys. 45 1131Google Scholar

    [4]

    Litfin G, Pollock C R, Curl R F, Tittel F K 1980 J. Chem. Phys. 72 6602Google Scholar

    [5]

    Gianella M, Pinto T, Wu X, Ritchie G 2017 J. Chem. Phys. 147 05420Google Scholar

    [6]

    Westberg J, Lathdavong L, Dion C M, Shao J, Kluczynski P, Lundqvist S, Axner O 2010 J. Quant. Spectrosc. Ra. 111 2415Google Scholar

    [7]

    Blake T A, Chackerian C, Podolske J R 1996 Appl. Opt. 35 973Google Scholar

    [8]

    Adams H, Reinert D, Kalkert P, Urban W 1984 Appl. Phys. B 34 179Google Scholar

    [9]

    Zhang E, Huang S, Ji Q X, Silvernagel M, Wang Y, Ward B, Sigman D, Wysocki G 2015 Sensors 15 25992Google Scholar

    [10]

    Fritsch T, Horstjann M, Halmer D, Sabana, Hering P, Mürtz M 2008 Appl. Phys. B 93 713Google Scholar

    [11]

    Kluczynski P, Lundqvist S, Westberg J, Axner O. 2011 Appl. Phys. B 103 451Google Scholar

    [12]

    Wang Y, Nikodem M, Zhang E, Cikach F, Barnes J, Comhair S, Dweik R A, Kao C, Wysocki G 2015 Sci. Rep. 5 9096Google Scholar

    [13]

    Lewicki R, Doty III J H, Curl R F, Tittel F K, Wysocki G 2009 P. Natl. Acad. Sci. USA 106 12587Google Scholar

    [14]

    Ganser H, Urban W, Brown J M 2003 Mol. Phys. 101 545Google Scholar

    [15]

    Sabana H, Fritsch T, Onana M B, Bouba O, Hering P, Mürtz M 2009 Appl. Phys. B 96 535Google Scholar

    [16]

    Smith J M, Bloch J C, Field R W, Steinfeld J I 1995 J. Opt. Soc. Am. B 12 964Google Scholar

    [17]

    Zaugg C A, Lewicki R, Day T, Curl R F, Tittle F K 2011 Conference on Quantum Sensing and Nanophotonic Devices VIII San Francisco CA, January 23–27, 2011

    [18]

    Brumfield B, Wysocki G 2012 Opt. Express 20 29727Google Scholar

    [19]

    So S G, Jeng E, Wysocki G 2011 Appl. Phys. B 102 279Google Scholar

    [20]

    Zhao W, Fang B, Lin X, Gai Y, Zhang W, Chen W, Chen Z, Zhang H, Chen W 2018 Anal. Chem. 90 3958Google Scholar

    [21]

    底楠, 赵建林, 王志兵 2009 中国激光 39 2290Google Scholar

    Di N, Zhao J L, Wang Z B 2009 Chin. J. Lasers 39 2290Google Scholar

    [22]

    Peng Q L, Mcmurry S M, Coey J M D 2004 J. Magn. Magn. Mater. 268 165Google Scholar

    [23]

    严密, 彭晓领 2006 磁学基础与磁性材料(上卷) (杭州: 浙江大学出版社) 第10—12页

    Yan M, Peng X L 2006 Fundamentals of Magnetism and Magnetic Materials (Vol. 1) (Hangzhou: Zhejiang University Press) pp10–12 (in Chinese)

    [24]

    Sabetghadam F, Sharafatmandjoor S, Norouzi F 2009 J. Comput. Phys. 228 55Google Scholar

  • 图 1  FRS原理示意图

    Fig. 1.  Schematic diagram of FRS.

    图 2  实验测量结果

    Fig. 2.  Measurement result of experiment.

    图 3  永磁体磁环阵列仿真效果图 (a) 磁感应强度分布特征箭头图; (b) 磁感线分布特征流线图

    Fig. 3.  Modeling magnetic induction of array-ring permanent magnets: (a) Arrow distribution of magnetic induction intensity; (b) streamline diagram of magnetic induction.

    图 4  五个磁环的实验与仿真结果 (a) 实验与仿真结果对比图; (b) 磁环体内部(z1 = 78.20 mm)和间隔(z2 = 61.64 mm)处的径向磁感应强度分布图

    Fig. 4.  Measurement and simulation results of five magnetic rings: (a) Comparison of experimental and simulation results; (b) radial magnetic induction intensity distribution inside the ring (z1 = 78.20 mm) of the group and gap (z2 = 61.64 mm).

    图 5  建模过程

    Fig. 5.  Modeling process.

    图 6  有限元仿真区域网格剖分 (a) 变形区域的划分; (b) 间距优化网格剖分图

    Fig. 6.  Deformation and meshing division of finite element simulation: (a) Division of deformation zone; (b) gradient optimization mesh division diagram.

    图 7  单目标值优化中心轴向磁感应强度分布

    Fig. 7.  Single value optimization of central axial magnetic induction.

    图 8  磁环组分布情况

    Fig. 8.  Distribution of magnetic ring arrangements.

    图 9  多段式单理想值优化中心轴向磁感应强度分布

    Fig. 9.  Multi-part single objective optimization of central axial magnetic induction.

    图 10  梯度优化中心轴向磁通密度分布

    Fig. 10.  Gradient optimization center axial magnetic flux density distribution.

    表 1  单理想值优化结果

    Table 1.  Results of single-objective optimization.

    ${d_{{Z_1}}}/{\text{mm}}$${d_{{Z_2}}}/{\text{mm}}$${d_{{Z_3}}}/{\text{mm}}$${d_{{Z_4}}}/{\text{mm}}$${d_{{Z_5}}}/{\text{mm}}$${d_{{Z_6}}}/{\text{mm}}$
    –1.80–5.10–4.87–6.950.857.35
    下载: 导出CSV

    表 2  单理想值优化磁环排列间隔

    Table 2.  Magnetic rings gaps of single-objective optimization.

    Gap1/2
    /mm
    Gap2
    /mm
    Gap3
    /mm
    Gap4
    /mm
    Gap5
    /mm
    Gap6
    /mm
    8.2016.7020.2217.9227.8026.50
    下载: 导出CSV

    表 3  多段式单理想值优化结果

    Table 3.  Results of multi-part single objective optimization.

    ${d_{{Z_1}}}/{\text{mm}}$${d_{{Z_2}}}/{\text{mm}}$${d_{{Z_3}}}/{\text{mm}}$${d_{{Z_4}}}/{\text{mm}}$${d_{{Z_5}}}/{\text{mm}}$${d_{{Z_6}}}/{\text{mm}}$
    –1.55–5.17–5.31–7.070.157.35
    下载: 导出CSV

    表 4  多段式单理想值优化磁环排列间隔

    Table 4.  Magnetic rings gaps of multi-part single objective optimization.

    Gap1/2/mmGap2/mmGap3/mmGap4/mmGap5/mmGap6/mm
    8.4516.3819.8618.2427.2227.20
    下载: 导出CSV

    表 5  梯度优化结果

    Table 5.  Results of gradient optimization.

    ${d_{{Z_1}}}/{\text{mm}}$${d_{{Z_2}}}/{\text{mm}}$${d_{{Z_3}}}/{\text{mm}}$${d_{{Z_4}}}/{\text{mm}}$${d_{{Z_5}}}/{\text{mm}}$${d_{{Z_6}}}/{\text{mm}}$
    –1.31–3.55–4.59–3.402.1814.04
    下载: 导出CSV

    表 6  梯度优化磁环排列间隔

    Table 6.  Magnetic rings gaps of gradient optimization.

    Gap1/2/
    /mm
    Gap2/
    mm
    Gap3/
    mm
    Gap4/
    mm
    Gap5/
    mm
    Gap6/
    mm
    8.4517.7618.9621.1925.5831.86
    下载: 导出CSV

    表 7  三种优化方案的磁场均匀度结果比较

    Table 7.  Comparison of magnetic field uniformity of three optimization method.

    优化方案单理想值优化多理想值优化梯度优化
    $ \zeta $(磁场均匀度)23.23612.7930.027
    下载: 导出CSV
  • [1]

    Liu K, Lewicki R, Tittel F K 2016 Sensor. Actuat. B. Chem. 237 887Google Scholar

    [2]

    Boone C D, Dalby F W, Ozier I 2000 J. Chem. Phys. 113 8594Google Scholar

    [3]

    Hinz A, Pfeiffer J, Bohle W, Urban W 1982 Mol. Phys. 45 1131Google Scholar

    [4]

    Litfin G, Pollock C R, Curl R F, Tittel F K 1980 J. Chem. Phys. 72 6602Google Scholar

    [5]

    Gianella M, Pinto T, Wu X, Ritchie G 2017 J. Chem. Phys. 147 05420Google Scholar

    [6]

    Westberg J, Lathdavong L, Dion C M, Shao J, Kluczynski P, Lundqvist S, Axner O 2010 J. Quant. Spectrosc. Ra. 111 2415Google Scholar

    [7]

    Blake T A, Chackerian C, Podolske J R 1996 Appl. Opt. 35 973Google Scholar

    [8]

    Adams H, Reinert D, Kalkert P, Urban W 1984 Appl. Phys. B 34 179Google Scholar

    [9]

    Zhang E, Huang S, Ji Q X, Silvernagel M, Wang Y, Ward B, Sigman D, Wysocki G 2015 Sensors 15 25992Google Scholar

    [10]

    Fritsch T, Horstjann M, Halmer D, Sabana, Hering P, Mürtz M 2008 Appl. Phys. B 93 713Google Scholar

    [11]

    Kluczynski P, Lundqvist S, Westberg J, Axner O. 2011 Appl. Phys. B 103 451Google Scholar

    [12]

    Wang Y, Nikodem M, Zhang E, Cikach F, Barnes J, Comhair S, Dweik R A, Kao C, Wysocki G 2015 Sci. Rep. 5 9096Google Scholar

    [13]

    Lewicki R, Doty III J H, Curl R F, Tittel F K, Wysocki G 2009 P. Natl. Acad. Sci. USA 106 12587Google Scholar

    [14]

    Ganser H, Urban W, Brown J M 2003 Mol. Phys. 101 545Google Scholar

    [15]

    Sabana H, Fritsch T, Onana M B, Bouba O, Hering P, Mürtz M 2009 Appl. Phys. B 96 535Google Scholar

    [16]

    Smith J M, Bloch J C, Field R W, Steinfeld J I 1995 J. Opt. Soc. Am. B 12 964Google Scholar

    [17]

    Zaugg C A, Lewicki R, Day T, Curl R F, Tittle F K 2011 Conference on Quantum Sensing and Nanophotonic Devices VIII San Francisco CA, January 23–27, 2011

    [18]

    Brumfield B, Wysocki G 2012 Opt. Express 20 29727Google Scholar

    [19]

    So S G, Jeng E, Wysocki G 2011 Appl. Phys. B 102 279Google Scholar

    [20]

    Zhao W, Fang B, Lin X, Gai Y, Zhang W, Chen W, Chen Z, Zhang H, Chen W 2018 Anal. Chem. 90 3958Google Scholar

    [21]

    底楠, 赵建林, 王志兵 2009 中国激光 39 2290Google Scholar

    Di N, Zhao J L, Wang Z B 2009 Chin. J. Lasers 39 2290Google Scholar

    [22]

    Peng Q L, Mcmurry S M, Coey J M D 2004 J. Magn. Magn. Mater. 268 165Google Scholar

    [23]

    严密, 彭晓领 2006 磁学基础与磁性材料(上卷) (杭州: 浙江大学出版社) 第10—12页

    Yan M, Peng X L 2006 Fundamentals of Magnetism and Magnetic Materials (Vol. 1) (Hangzhou: Zhejiang University Press) pp10–12 (in Chinese)

    [24]

    Sabetghadam F, Sharafatmandjoor S, Norouzi F 2009 J. Comput. Phys. 228 55Google Scholar

  • [1] 罗杨, 陈茂林, 苏冬冬, 许诺, 王忠晶, 韩志聪, 赵豪. 外磁场作用下的磁等离子体动力学过程仿真. 物理学报, 2022, 71(5): 055204. doi: 10.7498/aps.71.20211383
    [2] 董大兴, 刘友文, 伏洋洋, 费越. 金属光栅异常透射增强黑磷烯法拉第旋转的理论研究. 物理学报, 2020, 69(23): 237802. doi: 10.7498/aps.69.20201056
    [3] 陈建玲, 王辉, 贾焕玉, 马紫微, 李永宏, 谭俊. 超强磁场下中子星壳层的电导率和磁星环向磁场欧姆衰变. 物理学报, 2019, 68(18): 180401. doi: 10.7498/aps.68.20190760
    [4] 施伟, 周强, 刘斌. 基于旋转永磁体的超低频机械天线电磁特性分析. 物理学报, 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
    [5] 刘忠深, 特古斯, 欧志强, 范文迪, 宋志强, 哈斯朝鲁, 伟伟, 韩睿. 在永磁体强磁场中Mn1.2Fe0.8P1-xSix系列化合物热磁发电研究. 物理学报, 2015, 64(4): 047103. doi: 10.7498/aps.64.047103
    [6] 于红云. 超导磁体剩余磁场对软磁材料测试的影响. 物理学报, 2014, 63(4): 047502. doi: 10.7498/aps.63.047502
    [7] 何永周. 永磁体外部磁场的不均匀性研究. 物理学报, 2013, 62(8): 084105. doi: 10.7498/aps.62.084105
    [8] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭. 辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响. 物理学报, 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [9] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响. 物理学报, 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [10] 董丽娟, 杜桂强, 杨成全, 石云龙. 厚金属Ag膜的磁光法拉第旋转效应的增强. 物理学报, 2012, 61(16): 164210. doi: 10.7498/aps.61.164210
    [11] 胡海涛, 肖立志, 吴锡令. 核磁共振测井仪探头设计中的数值方法. 物理学报, 2012, 61(14): 149302. doi: 10.7498/aps.61.149302
    [12] 马俊, 杨万民, 李国政, 程晓芳, 郭晓丹. 永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究. 物理学报, 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [13] 严卫, 陆文, 施健康, 任建奇, 王蕊. 法拉第旋转对空间被动微波遥感的影响及消除. 物理学报, 2011, 60(9): 099401. doi: 10.7498/aps.60.099401
    [14] 滕利华, 王霞. 载流子复合对时间分辨法拉第旋转光谱的影响. 物理学报, 2011, 60(5): 057202. doi: 10.7498/aps.60.057202
    [15] 陈晓东, 肖邵军, 顾永建, 林秀敏. 基于法拉第旋转构造光子Bell态分析器和GHZ态分析器. 物理学报, 2010, 59(8): 5251-5255. doi: 10.7498/aps.59.5251
    [16] 冯文天, 马新文, 刘惠萍, 陈兰芳, 李 斌, 曹士娉. 电子成像均匀约束磁场的产生及测试分析. 物理学报, 2007, 56(7): 3637-3641. doi: 10.7498/aps.56.3637
    [17] 贾晓玲, 掌蕴东, 王骐, 马祖光. 强磁场下钾原子法拉第反常色散光学滤波器的滤波行为. 物理学报, 2002, 51(11): 2489-2494. doi: 10.7498/aps.51.2489
    [18] 刘公强, 朱莲根, 卫邦达, 张宁杲. 动态法拉第效应及其损耗机制. 物理学报, 1997, 46(3): 604-611. doi: 10.7498/aps.46.604
    [19] 彭金生, 黄湘友, 刘武. 强磁场中原子共振荧光的光谱分布. 物理学报, 1989, 38(9): 1545-1550. doi: 10.7498/aps.38.1545
    [20] 王焕元, 贾惟义, 沈建祥. Bi4Ge3O12晶体的磁光法拉第旋转. 物理学报, 1985, 34(1): 126-128. doi: 10.7498/aps.34.126
计量
  • 文章访问数:  5257
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2021-11-23
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回