搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于光腔衰荡光谱测量的多支路掺铒光纤飞秒光梳系统

饶冰洁 张攀 李铭坤 杨西光 闫露露 陈鑫 张首刚 张颜艳 姜海峰

引用本文:
Citation:

用于光腔衰荡光谱测量的多支路掺铒光纤飞秒光梳系统

饶冰洁, 张攀, 李铭坤, 杨西光, 闫露露, 陈鑫, 张首刚, 张颜艳, 姜海峰

Multi-branch erbium fiber-based femtosecond optical frequency comb for measurement of cavity ring-down spectroscopy

Rao Bing-Jie, Zhang Pan, Li Ming-Kun, Yang Xi-Guang, Yan Lu-Lu, Chen Xin, Zhang Shou-Gang, Zhang Yan-Yan, Jiang Hai-Feng
PDF
HTML
导出引用
  • 报道了用于光腔衰荡光谱测量的多支路掺铒光纤飞秒光梳系统. 该系统以“9”字型全保偏掺铒飞秒光纤激光器为激光源. 利用自制的锁相环电路, 获得的重复频率和载波包络相移频率秒级稳定度分别为5.85 × 10–13和4.95 × 10–18. 为了满足CO, CH4等分子吸收光谱测量, 利用啁啾放大和非线性光谱展宽技术, 采用多支路结构, 将飞秒光梳直接输出光谱由1500—1600 nm分别扩展至8个目标波长(1064, 1083, 1240, 1380, 1500, 1600, 1750和2100 nm)处, 各目标波长处的单模功率均大于300 nW, 满足光腔衰荡光谱测量实验的需求.
    In this paper, we demonstrate an optical frequency comb (OFC) based on an erbium-doped-fiber femtosecond laser, for the measurement of cavity ring-down spectroscopy (CRDS) with wavelengths of 1064, 1083, 1240, 1380, 1500, 1600, 1750 and 2100 nm. We adopt a multi-branch structure to produce high power at the specific wavelengths to meet the requirement for application in the spectral measurement. The OFC is developed by using a mode-locked fiber ring laser based on the nonlinear amplifying loop mirror mechanism. The laser is self-starting by introducing a nonreciprocal phase bias in the cavity and insensitive to the environmental perturbation. Using the chirped pulse amplification and highly nonlinear fibers, the broad spectra at the specific wavelengths are obtained. By optimizing the parameters of the pulses, the power of per mode at each target wavelength is greater than 300 nW.The frep is obtained by detecting the output of the femtosecond laser directly, while the fceo is detected by f-2f interference. The signal-to-noise ratio of the fceo is about 35 dB with a 300-kHz resolution bandwidth. By controlling the intra-cavity electro-optic modulator and piezoactuator , the frep is stabilized with high bandwidth and large range (about megahertz bandwidth and 3 kHz range). The fceo is stabilized by using feedback to the pump current of the femtosecond laser dynamically. The in-loop frequency instability degree of the fceo, evaluated by the Allan deviation, is approximately 4.95 × 10–18/τ1/2 at 1 s and integrates down to 10–20 level after 2000 s, while that of the frep is well below 5.85 × 10–13/τ. The all polarization-maintaining erbium fiber-based femtosecond optical frequency comb with multi-application branches we demonstrate in this paper is efficient and reliable for many other applications including optical frequency metrology and optical atomic clocks.
      通信作者: 张颜艳, zhangyanyan@ntsc.ac.cn ; 姜海峰, hjiang1@ustc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFA0309801)、中科院战略先导B类(批准号: XDB35030101)和陕西省自然科学基础研究计划(批准号: 202-JQ-434)资助的课题
      Corresponding author: Zhang Yan-Yan, zhangyanyan@ntsc.ac.cn ; Jiang Hai-Feng, hjiang1@ustc.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFA0309801), the Strategic Leader Category B of Chinese Academy of Sciences (Grant No. XDB35030101), and the Natural Science Basic Research Program of Shannxi Province, China (Grant No. 202-JQ-434).
    [1]

    Hartl I, Schibli T R, Marcinkevicius A, Yost D C, Hudson D D, Fermann M E, Ye J 2007 Opt. Lett. 32 2870Google Scholar

    [2]

    Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F, Jorgensen C G 2004 Opt. Lett. 29 250Google Scholar

    [3]

    Phillips C R, Langrock C, Pelc J S, Fejer M M, Jiang J, Fermann M E, Hartl I 2011 Opt. Lett. 36 3912Google Scholar

    [4]

    Eckstein J N, Ferguson A I, Hansch T W 1978 Phys. Rev. Lett. 40 847Google Scholar

    [5]

    Telle H R, Steinmeyer G, Dunlop A E, Stenger J, Sutter D H, Keller U 1999 Appl. Phys. B 69 327Google Scholar

    [6]

    Morgner U, Kärtner F X, Cho S H, Chen Y, Haus H A, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T 1999 Opt. Lett. 24 411Google Scholar

    [7]

    Ell R, Morgner U, Kãârtner F X, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T, Lederer M J, Boiko A 2001 Opt. Lett. 26 373Google Scholar

    [8]

    Tauser F, Leitenstorfer A, Zinth W 2003 Opt. Express 11 594Google Scholar

    [9]

    Holzwarth R, Zimmermann M, Udem T, Hänsch T W, Russbldt P, Gbel K, Poprawe R, Knight J C, Wadsworth W J, Russell P 2001 Opt. Lett. 26 1376Google Scholar

    [10]

    Yan M, Li W X, Yang K W, Zhou H, Shen X L, Zhou Q, Ru Q T, Bai D B, Zeng H P 2012 Opt. Lett. 37 1511Google Scholar

    [11]

    Stumpf M C, Pekarek S, Oehler A E H, Südmeyer T, Dudley J M, Keller U 2010 Appl. Phys. B 99 401Google Scholar

    [12]

    Washburn B, Fox R, Newbury N, Nicholson J, Feder K, Westbrook P, Jørgensen C 2004 Opt. Express 12 4999Google Scholar

    [13]

    Udem T, Reichert J, Holzwarth R, Hänsch T W 1999 Opt. Lett. 24 881Google Scholar

    [14]

    Ranka J K, Windeler R S and Stentz A J 2000 Opt. Lett. 25 25Google Scholar

    [15]

    D J Jones, S A Diddams, J K Ranka, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar

    [16]

    Steinmetz T, Wilken T, Araujo-Hauck C, Holzwarth R, Hänsch T W, Pasquini L, Manescau A, D'Odorico S, Murphy M T, Kentischer T, Schmidt W, Udem T 2008 Science 321 1335Google Scholar

    [17]

    Kim S 2009 Nat. Photonics. 3 313Google Scholar

    [18]

    Niering M, Holzwarth R, Reichert J, Pokasov P, Udem T, Weitz M, Hansch T W, Lemonde P, Santarelli G, Abgrall M, Laurent P, Salomon C, Clairon A 2000 Phys. Rev. Lett. 84 5496Google Scholar

    [19]

    O’Keefe A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544Google Scholar

    [20]

    Paul J B, Lapson L, Anderson J G 2001 Appl. Opt 40 4904Google Scholar

    [21]

    Kassi S, Campargue A 2012 J. Chem. Phys. 137 234201Google Scholar

    [22]

    Tan Y, Wang J, Cheng C F, Zhao X Q, Liu A W, Hu S M 2014 Mol. Spectrosc. 300 60Google Scholar

    [23]

    饶冰洁, 张颜艳, 闫露露, 武跃龙, 张攀, 樊松涛, 郭文阁, 张晓斐, 张首刚, 姜海峰 2019 光子学报 48 0114003Google Scholar

    Rao B J, Zhang Y Y, Yan L L, Wu Y L, Zhang P, Fan S T, Guo W G, Zhang X F, Zhang S G, Jiang H F 2019 Acta Photon. Sin. 48 0114003Google Scholar

    [24]

    Pan H, Cheng C F, Sun Y R, Gao B, Liu A W, Hu S M 2011 Rev. Sci. Instrum. 82 103110Google Scholar

    [25]

    Gatti D, Sala T, Gotti R, Cocola L, Poletto L, Prevedelli M, Laporta P, Marangoni M 2015 J.Chem. Phys. 142 074201Google Scholar

    [26]

    Martinez R Z, Metsala M, Vaittinen O, Lantta T, Halonen L 2006 Opt. Soc. Am. B 23 727Google Scholar

    [27]

    Hodges J T, Layer H P, Miller W W, Scace G E 2004 Rev. Sci. Instrum. 75 849Google Scholar

    [28]

    Cygan A, Lisak D, Maslowski P, Bielska K, Wojtewicz S, Domyslawska J, Trawinski R S, Ciurylo R, Abe H, Hodges J T 2011 Rev. Sci. Instrum. 82 063107Google Scholar

    [29]

    Wang J, Sun Y R, Tao L G, Liu A W, Hua T P, Meng F, Hu S M 2017 Rev. Sci. Instrum 88 043108Google Scholar

    [30]

    康鹏, 孙羽, 王进, 刘安雯, 胡水明 2018 物理学报 67 104206Google Scholar

    Kang P, Sun Y, Wang J, Liu A W, Hu S M 2018 Acta Phys. Sin. 67 104206Google Scholar

    [31]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar

    [32]

    谈艳, 王进, 陶雷刚, 孙羽, 刘安雯, 胡水明 2018 中国激光 45 0911002

    Tan Y, Wang J, Tao L G, Sun Y, Liu A W, Hu S M 2018 Chin. J. Lasers 45 0911002 (in Chinese)

    [33]

    Fan S T, Zhang Y Y, Yan L L, Guo W G, Zhang S G, Jiang H F 2019 Chin. Phys. B 28 064204Google Scholar

    [34]

    Ning K, Hou L, Fan S T, Yan L L, Zhang Y Y, Rao B J, Zhang X F, Zhang S G, Jiang H F 2020 Chin. Phys. Lett. 37 064202Google Scholar

    [35]

    张颜艳, 闫露露, 姜海峰, 张首刚 2017 时间频率学报 40 130Google Scholar

    Zhang Y Y, Yan L L, Jiang H F, Zhang S G 2017 J. Time Freq. 40 130Google Scholar

  • 图 1  多支路掺铒光纤飞秒光梳结构示意图, CO为准直器; λ/2, λ/8为1/2和1/8波片; FR为法拉第旋光器; PBS为偏振分光棱镜; EOM为电光晶体调制器; PZT为压电陶瓷; TWDM为反射式波分复用器; M为反射镜; HNLF为高非线性光纤; Coupler为光纤耦合器; PD为光电探测器; WDM为带隔离器的波分复用器; SYN为频率综合器; LF为环路滤波器; HVA为高压放大器

    Fig. 1.  Multi-branch Er:fiber based femtosecond optical comb system. CO, collimator; λ/2, 1/2 waveplate; λ/8, 1/8 waveplate; FR, faraday rotator; PBS, polarization beam splitter; EOM, electronic optical modulator; PZT, piezoelectric ceramic transducer; M, mirror; HNLF, highly nonlinear fiber; PD, photodetector; WDM, wavelength division multiplexer; SYN, synthesizer; LF, loop filter; HVA, high voltage amplifier.

    图 2  飞秒激光源输出特性 (a) 输出光谱; (b) 强度自相关曲线

    Fig. 2.  Output parameter of femtosecond laser: (a) Measured spectrum; (b) autocorrelation curve of output pulse.

    图 3  载波包络相移频率和重复频率的探测和控制 (a) 倍频程光谱; (b) fceo频谱; (c)相位锁定后fceo环内频谱; (d) 环内频率控制稳定度

    Fig. 3.  Detection and control of fceo and frep: (a) Measured octave-spanning spectrum; (b) RF spectrum of fceo; (c) in-loop RF spectrum of phase locked fceo; (d) in-loop frequency instability.

    图 4  各目标波长附近的光谱展宽分布 (a) 1064 nm; (b) 1083 nm; (c) 1240 nm; (d) 1380 nm; (e) 1500 nm; (f) 1600 nm; (g) 1750 nm; (h) 2100 nm

    Fig. 4.  Observed supercontinuum spectrum near each target wavelength: (a) 1064 nm; (b) 1083 nm; (c) 1240 nm; (d) 1380 nm; (e) 1500 nm; (f) 1600 nm; (g) 1750 nm; (h) 2100 nm.

  • [1]

    Hartl I, Schibli T R, Marcinkevicius A, Yost D C, Hudson D D, Fermann M E, Ye J 2007 Opt. Lett. 32 2870Google Scholar

    [2]

    Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F, Jorgensen C G 2004 Opt. Lett. 29 250Google Scholar

    [3]

    Phillips C R, Langrock C, Pelc J S, Fejer M M, Jiang J, Fermann M E, Hartl I 2011 Opt. Lett. 36 3912Google Scholar

    [4]

    Eckstein J N, Ferguson A I, Hansch T W 1978 Phys. Rev. Lett. 40 847Google Scholar

    [5]

    Telle H R, Steinmeyer G, Dunlop A E, Stenger J, Sutter D H, Keller U 1999 Appl. Phys. B 69 327Google Scholar

    [6]

    Morgner U, Kärtner F X, Cho S H, Chen Y, Haus H A, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T 1999 Opt. Lett. 24 411Google Scholar

    [7]

    Ell R, Morgner U, Kãârtner F X, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T, Lederer M J, Boiko A 2001 Opt. Lett. 26 373Google Scholar

    [8]

    Tauser F, Leitenstorfer A, Zinth W 2003 Opt. Express 11 594Google Scholar

    [9]

    Holzwarth R, Zimmermann M, Udem T, Hänsch T W, Russbldt P, Gbel K, Poprawe R, Knight J C, Wadsworth W J, Russell P 2001 Opt. Lett. 26 1376Google Scholar

    [10]

    Yan M, Li W X, Yang K W, Zhou H, Shen X L, Zhou Q, Ru Q T, Bai D B, Zeng H P 2012 Opt. Lett. 37 1511Google Scholar

    [11]

    Stumpf M C, Pekarek S, Oehler A E H, Südmeyer T, Dudley J M, Keller U 2010 Appl. Phys. B 99 401Google Scholar

    [12]

    Washburn B, Fox R, Newbury N, Nicholson J, Feder K, Westbrook P, Jørgensen C 2004 Opt. Express 12 4999Google Scholar

    [13]

    Udem T, Reichert J, Holzwarth R, Hänsch T W 1999 Opt. Lett. 24 881Google Scholar

    [14]

    Ranka J K, Windeler R S and Stentz A J 2000 Opt. Lett. 25 25Google Scholar

    [15]

    D J Jones, S A Diddams, J K Ranka, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar

    [16]

    Steinmetz T, Wilken T, Araujo-Hauck C, Holzwarth R, Hänsch T W, Pasquini L, Manescau A, D'Odorico S, Murphy M T, Kentischer T, Schmidt W, Udem T 2008 Science 321 1335Google Scholar

    [17]

    Kim S 2009 Nat. Photonics. 3 313Google Scholar

    [18]

    Niering M, Holzwarth R, Reichert J, Pokasov P, Udem T, Weitz M, Hansch T W, Lemonde P, Santarelli G, Abgrall M, Laurent P, Salomon C, Clairon A 2000 Phys. Rev. Lett. 84 5496Google Scholar

    [19]

    O’Keefe A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544Google Scholar

    [20]

    Paul J B, Lapson L, Anderson J G 2001 Appl. Opt 40 4904Google Scholar

    [21]

    Kassi S, Campargue A 2012 J. Chem. Phys. 137 234201Google Scholar

    [22]

    Tan Y, Wang J, Cheng C F, Zhao X Q, Liu A W, Hu S M 2014 Mol. Spectrosc. 300 60Google Scholar

    [23]

    饶冰洁, 张颜艳, 闫露露, 武跃龙, 张攀, 樊松涛, 郭文阁, 张晓斐, 张首刚, 姜海峰 2019 光子学报 48 0114003Google Scholar

    Rao B J, Zhang Y Y, Yan L L, Wu Y L, Zhang P, Fan S T, Guo W G, Zhang X F, Zhang S G, Jiang H F 2019 Acta Photon. Sin. 48 0114003Google Scholar

    [24]

    Pan H, Cheng C F, Sun Y R, Gao B, Liu A W, Hu S M 2011 Rev. Sci. Instrum. 82 103110Google Scholar

    [25]

    Gatti D, Sala T, Gotti R, Cocola L, Poletto L, Prevedelli M, Laporta P, Marangoni M 2015 J.Chem. Phys. 142 074201Google Scholar

    [26]

    Martinez R Z, Metsala M, Vaittinen O, Lantta T, Halonen L 2006 Opt. Soc. Am. B 23 727Google Scholar

    [27]

    Hodges J T, Layer H P, Miller W W, Scace G E 2004 Rev. Sci. Instrum. 75 849Google Scholar

    [28]

    Cygan A, Lisak D, Maslowski P, Bielska K, Wojtewicz S, Domyslawska J, Trawinski R S, Ciurylo R, Abe H, Hodges J T 2011 Rev. Sci. Instrum. 82 063107Google Scholar

    [29]

    Wang J, Sun Y R, Tao L G, Liu A W, Hua T P, Meng F, Hu S M 2017 Rev. Sci. Instrum 88 043108Google Scholar

    [30]

    康鹏, 孙羽, 王进, 刘安雯, 胡水明 2018 物理学报 67 104206Google Scholar

    Kang P, Sun Y, Wang J, Liu A W, Hu S M 2018 Acta Phys. Sin. 67 104206Google Scholar

    [31]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar

    [32]

    谈艳, 王进, 陶雷刚, 孙羽, 刘安雯, 胡水明 2018 中国激光 45 0911002

    Tan Y, Wang J, Tao L G, Sun Y, Liu A W, Hu S M 2018 Chin. J. Lasers 45 0911002 (in Chinese)

    [33]

    Fan S T, Zhang Y Y, Yan L L, Guo W G, Zhang S G, Jiang H F 2019 Chin. Phys. B 28 064204Google Scholar

    [34]

    Ning K, Hou L, Fan S T, Yan L L, Zhang Y Y, Rao B J, Zhang X F, Zhang S G, Jiang H F 2020 Chin. Phys. Lett. 37 064202Google Scholar

    [35]

    张颜艳, 闫露露, 姜海峰, 张首刚 2017 时间频率学报 40 130Google Scholar

    Zhang Y Y, Yan L L, Jiang H F, Zhang S G 2017 J. Time Freq. 40 130Google Scholar

  • [1] 薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图. 基于激光外差探测的大气N2O吸收光谱测量与廓线反演. 物理学报, 2021, 70(21): 217801. doi: 10.7498/aps.70.20210710
    [2] 叶浩, 黄印博, 王琛, 刘国荣, 卢兴吉, 曹振松, 黄尧, 齐刚, 梅海平. 激光烧蚀-吸收光谱测量铀同位素比实验研究. 物理学报, 2021, 70(16): 163201. doi: 10.7498/aps.70.20210193
    [3] 俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴. MnPS3可饱和吸收体被动锁模掺铒光纤激光器双波长激光. 物理学报, 2020, 69(18): 184208. doi: 10.7498/aps.69.20200342
    [4] 石俊凯, 王国名, 黎尧, 高书苑, 刘立拓, 周维虎. 滤波对8字腔掺铒光纤激光器锁模运转的影响. 物理学报, 2019, 68(6): 064206. doi: 10.7498/aps.68.20182144
    [5] 康鹏, 孙羽, 王进, 刘安雯, 胡水明. 基于高精细度光腔锁频激光的分子吸收光谱测量. 物理学报, 2018, 67(10): 104206. doi: 10.7498/aps.67.20172532
    [6] 张伟鹏, 杨宏雷, 陈馨怡, 尉昊赟, 李岩. 光频链接的双光梳气体吸收光谱测量. 物理学报, 2018, 67(9): 090701. doi: 10.7498/aps.67.20180150
    [7] 石俊凯, 纪荣祎, 黎尧, 刘娅, 周维虎. 基于增益光纤长度优化的双波长运转掺铒光纤锁模激光器. 物理学报, 2017, 66(13): 134203. doi: 10.7498/aps.66.134203
    [8] 张攀政, 汪小超, 李菁辉, 冯滔, 张志祥, 范薇, 周申蕾, 马伟新, 朱俭, 林尊琪. 利用啁啾脉冲光谱滤波和非线性偏振旋转技术实现高稳定性和开机自启动的全光纤掺Yb3+光纤锁模激光器. 物理学报, 2016, 65(21): 214207. doi: 10.7498/aps.65.214207
    [9] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉. 高重复频率全光纤被动锁模掺铒光纤激光器. 物理学报, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [10] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率. 物理学报, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [11] 董信征, 于振华, 田金荣, 李彦林, 窦志远, 胡梦婷, 宋晏蓉. 147 fs碳纳米管倏逝场锁模全光纤掺铒光纤激光器. 物理学报, 2014, 63(3): 034202. doi: 10.7498/aps.63.034202
    [12] 胡仁志, 王丹, 谢品华, 凌六一, 秦敏, 李传新, 刘建国. 二极管激光腔衰荡光谱测量大气NO3自由基. 物理学报, 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [13] 刘华刚, 黄见洪, 翁文, 李锦辉, 郑晖, 戴殊韬, 赵显, 王继扬, 林文雄. 高功率全正色散锁模掺Yb3+双包层光纤飞秒激光器. 物理学报, 2012, 61(15): 154210. doi: 10.7498/aps.61.154210
    [14] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [15] 臧华平, 曹磊峰, 王传珂, 蒋刚, 魏来, 范伟, 周维民, 谷渝秋. "之"字形光栅衍射特性的数值模拟研究. 物理学报, 2011, 60(3): 034215. doi: 10.7498/aps.60.034215
    [16] 宋有建, 胡明列, 刘博文, 柴 路, 王清月. 高能量掺Yb偏振型大模场面积光子晶体光纤孤子锁模飞秒激光器. 物理学报, 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [17] 宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器. 物理学报, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [18] 谢旭东, 王清月, 王 专, 张伟力, 柴 路. 超宽光谱掺钛蓝宝石飞秒激光器时域频域特性的实验研究. 物理学报, 2005, 54(7): 3159-3163. doi: 10.7498/aps.54.3159
    [19] 王 林, 于晋龙, 马晓红, 杨恩泽, 张以谟, 陈才和, 黄 超, 李世忱. 主动锁模掺铒光纤环形激光器有理数谐波调制技术. 物理学报, 1999, 48(5): 876-881. doi: 10.7498/aps.48.876
    [20] 黄志坚, 孙军强, 黄德修. 快速与慢速饱和吸收体被动锁模掺铒光纤激光器的理论分析. 物理学报, 1998, 47(1): 9-18. doi: 10.7498/aps.47.9
计量
  • 文章访问数:  4487
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 修回日期:  2021-12-17
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回