-
报道了用于光腔衰荡光谱测量的多支路掺铒光纤飞秒光梳系统. 该系统以“9”字型全保偏掺铒飞秒光纤激光器为激光源. 利用自制的锁相环电路, 获得的重复频率和载波包络相移频率秒级稳定度分别为5.85 × 10–13和4.95 × 10–18. 为了满足CO, CH4等分子吸收光谱测量, 利用啁啾放大和非线性光谱展宽技术, 采用多支路结构, 将飞秒光梳直接输出光谱由1500—1600 nm分别扩展至8个目标波长(1064, 1083, 1240, 1380, 1500, 1600, 1750和2100 nm)处, 各目标波长处的单模功率均大于300 nW, 满足光腔衰荡光谱测量实验的需求.
In this paper, we demonstrate an optical frequency comb (OFC) based on an erbium-doped-fiber femtosecond laser, for the measurement of cavity ring-down spectroscopy (CRDS) with wavelengths of 1064, 1083, 1240, 1380, 1500, 1600, 1750 and 2100 nm. We adopt a multi-branch structure to produce high power at the specific wavelengths to meet the requirement for application in the spectral measurement. The OFC is developed by using a mode-locked fiber ring laser based on the nonlinear amplifying loop mirror mechanism. The laser is self-starting by introducing a nonreciprocal phase bias in the cavity and insensitive to the environmental perturbation. Using the chirped pulse amplification and highly nonlinear fibers, the broad spectra at the specific wavelengths are obtained. By optimizing the parameters of the pulses, the power of per mode at each target wavelength is greater than 300 nW. The frep is obtained by detecting the output of the femtosecond laser directly, while the fceo is detected by f-2f interference. The signal-to-noise ratio of the fceo is about 35 dB with a 300-kHz resolution bandwidth. By controlling the intra-cavity electro-optic modulator and piezoactuator , the frep is stabilized with high bandwidth and large range (about megahertz bandwidth and 3 kHz range). The fceo is stabilized by using feedback to the pump current of the femtosecond laser dynamically. The in-loop frequency instability degree of the fceo, evaluated by the Allan deviation, is approximately 4.95 × 10–18/τ1/2 at 1 s and integrates down to 10–20 level after 2000 s, while that of the frep is well below 5.85 × 10–13/τ. The all polarization-maintaining erbium fiber-based femtosecond optical frequency comb with multi-application branches we demonstrate in this paper is efficient and reliable for many other applications including optical frequency metrology and optical atomic clocks. -
Keywords:
- erbium fiber-based femtosecond optical frequency comb /
- mode-locked laser /
- spectral broaden /
- spectroscopy measurement
[1] Hartl I, Schibli T R, Marcinkevicius A, Yost D C, Hudson D D, Fermann M E, Ye J 2007 Opt. Lett. 32 2870Google Scholar
[2] Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F, Jorgensen C G 2004 Opt. Lett. 29 250Google Scholar
[3] Phillips C R, Langrock C, Pelc J S, Fejer M M, Jiang J, Fermann M E, Hartl I 2011 Opt. Lett. 36 3912Google Scholar
[4] Eckstein J N, Ferguson A I, Hansch T W 1978 Phys. Rev. Lett. 40 847Google Scholar
[5] Telle H R, Steinmeyer G, Dunlop A E, Stenger J, Sutter D H, Keller U 1999 Appl. Phys. B 69 327Google Scholar
[6] Morgner U, Kärtner F X, Cho S H, Chen Y, Haus H A, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T 1999 Opt. Lett. 24 411Google Scholar
[7] Ell R, Morgner U, Kãârtner F X, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T, Lederer M J, Boiko A 2001 Opt. Lett. 26 373Google Scholar
[8] Tauser F, Leitenstorfer A, Zinth W 2003 Opt. Express 11 594Google Scholar
[9] Holzwarth R, Zimmermann M, Udem T, Hänsch T W, Russbldt P, Gbel K, Poprawe R, Knight J C, Wadsworth W J, Russell P 2001 Opt. Lett. 26 1376Google Scholar
[10] Yan M, Li W X, Yang K W, Zhou H, Shen X L, Zhou Q, Ru Q T, Bai D B, Zeng H P 2012 Opt. Lett. 37 1511Google Scholar
[11] Stumpf M C, Pekarek S, Oehler A E H, Südmeyer T, Dudley J M, Keller U 2010 Appl. Phys. B 99 401Google Scholar
[12] Washburn B, Fox R, Newbury N, Nicholson J, Feder K, Westbrook P, Jørgensen C 2004 Opt. Express 12 4999Google Scholar
[13] Udem T, Reichert J, Holzwarth R, Hänsch T W 1999 Opt. Lett. 24 881Google Scholar
[14] Ranka J K, Windeler R S and Stentz A J 2000 Opt. Lett. 25 25Google Scholar
[15] D J Jones, S A Diddams, J K Ranka, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar
[16] Steinmetz T, Wilken T, Araujo-Hauck C, Holzwarth R, Hänsch T W, Pasquini L, Manescau A, D'Odorico S, Murphy M T, Kentischer T, Schmidt W, Udem T 2008 Science 321 1335Google Scholar
[17] Kim S 2009 Nat. Photonics. 3 313Google Scholar
[18] Niering M, Holzwarth R, Reichert J, Pokasov P, Udem T, Weitz M, Hansch T W, Lemonde P, Santarelli G, Abgrall M, Laurent P, Salomon C, Clairon A 2000 Phys. Rev. Lett. 84 5496Google Scholar
[19] O’Keefe A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544Google Scholar
[20] Paul J B, Lapson L, Anderson J G 2001 Appl. Opt 40 4904Google Scholar
[21] Kassi S, Campargue A 2012 J. Chem. Phys. 137 234201Google Scholar
[22] Tan Y, Wang J, Cheng C F, Zhao X Q, Liu A W, Hu S M 2014 Mol. Spectrosc. 300 60Google Scholar
[23] 饶冰洁, 张颜艳, 闫露露, 武跃龙, 张攀, 樊松涛, 郭文阁, 张晓斐, 张首刚, 姜海峰 2019 光子学报 48 0114003Google Scholar
Rao B J, Zhang Y Y, Yan L L, Wu Y L, Zhang P, Fan S T, Guo W G, Zhang X F, Zhang S G, Jiang H F 2019 Acta Photon. Sin. 48 0114003Google Scholar
[24] Pan H, Cheng C F, Sun Y R, Gao B, Liu A W, Hu S M 2011 Rev. Sci. Instrum. 82 103110Google Scholar
[25] Gatti D, Sala T, Gotti R, Cocola L, Poletto L, Prevedelli M, Laporta P, Marangoni M 2015 J.Chem. Phys. 142 074201Google Scholar
[26] Martinez R Z, Metsala M, Vaittinen O, Lantta T, Halonen L 2006 Opt. Soc. Am. B 23 727Google Scholar
[27] Hodges J T, Layer H P, Miller W W, Scace G E 2004 Rev. Sci. Instrum. 75 849Google Scholar
[28] Cygan A, Lisak D, Maslowski P, Bielska K, Wojtewicz S, Domyslawska J, Trawinski R S, Ciurylo R, Abe H, Hodges J T 2011 Rev. Sci. Instrum. 82 063107Google Scholar
[29] Wang J, Sun Y R, Tao L G, Liu A W, Hua T P, Meng F, Hu S M 2017 Rev. Sci. Instrum 88 043108Google Scholar
[30] 康鹏, 孙羽, 王进, 刘安雯, 胡水明 2018 物理学报 67 104206Google Scholar
Kang P, Sun Y, Wang J, Liu A W, Hu S M 2018 Acta Phys. Sin. 67 104206Google Scholar
[31] Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar
[32] 谈艳, 王进, 陶雷刚, 孙羽, 刘安雯, 胡水明 2018 中国激光 45 0911002
Tan Y, Wang J, Tao L G, Sun Y, Liu A W, Hu S M 2018 Chin. J. Lasers 45 0911002 (in Chinese)
[33] Fan S T, Zhang Y Y, Yan L L, Guo W G, Zhang S G, Jiang H F 2019 Chin. Phys. B 28 064204Google Scholar
[34] Ning K, Hou L, Fan S T, Yan L L, Zhang Y Y, Rao B J, Zhang X F, Zhang S G, Jiang H F 2020 Chin. Phys. Lett. 37 064202Google Scholar
[35] 张颜艳, 闫露露, 姜海峰, 张首刚 2017 时间频率学报 40 130Google Scholar
Zhang Y Y, Yan L L, Jiang H F, Zhang S G 2017 J. Time Freq. 40 130Google Scholar
-
图 1 多支路掺铒光纤飞秒光梳结构示意图, CO为准直器; λ/2, λ/8为1/2和1/8波片; FR为法拉第旋光器; PBS为偏振分光棱镜; EOM为电光晶体调制器; PZT为压电陶瓷; TWDM为反射式波分复用器; M为反射镜; HNLF为高非线性光纤; Coupler为光纤耦合器; PD为光电探测器; WDM为带隔离器的波分复用器; SYN为频率综合器; LF为环路滤波器; HVA为高压放大器
Fig. 1. Multi-branch Er:fiber based femtosecond optical comb system. CO, collimator; λ/2, 1/2 waveplate; λ/8, 1/8 waveplate; FR, faraday rotator; PBS, polarization beam splitter; EOM, electronic optical modulator; PZT, piezoelectric ceramic transducer; M, mirror; HNLF, highly nonlinear fiber; PD, photodetector; WDM, wavelength division multiplexer; SYN, synthesizer; LF, loop filter; HVA, high voltage amplifier.
-
[1] Hartl I, Schibli T R, Marcinkevicius A, Yost D C, Hudson D D, Fermann M E, Ye J 2007 Opt. Lett. 32 2870Google Scholar
[2] Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F, Jorgensen C G 2004 Opt. Lett. 29 250Google Scholar
[3] Phillips C R, Langrock C, Pelc J S, Fejer M M, Jiang J, Fermann M E, Hartl I 2011 Opt. Lett. 36 3912Google Scholar
[4] Eckstein J N, Ferguson A I, Hansch T W 1978 Phys. Rev. Lett. 40 847Google Scholar
[5] Telle H R, Steinmeyer G, Dunlop A E, Stenger J, Sutter D H, Keller U 1999 Appl. Phys. B 69 327Google Scholar
[6] Morgner U, Kärtner F X, Cho S H, Chen Y, Haus H A, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T 1999 Opt. Lett. 24 411Google Scholar
[7] Ell R, Morgner U, Kãârtner F X, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T, Lederer M J, Boiko A 2001 Opt. Lett. 26 373Google Scholar
[8] Tauser F, Leitenstorfer A, Zinth W 2003 Opt. Express 11 594Google Scholar
[9] Holzwarth R, Zimmermann M, Udem T, Hänsch T W, Russbldt P, Gbel K, Poprawe R, Knight J C, Wadsworth W J, Russell P 2001 Opt. Lett. 26 1376Google Scholar
[10] Yan M, Li W X, Yang K W, Zhou H, Shen X L, Zhou Q, Ru Q T, Bai D B, Zeng H P 2012 Opt. Lett. 37 1511Google Scholar
[11] Stumpf M C, Pekarek S, Oehler A E H, Südmeyer T, Dudley J M, Keller U 2010 Appl. Phys. B 99 401Google Scholar
[12] Washburn B, Fox R, Newbury N, Nicholson J, Feder K, Westbrook P, Jørgensen C 2004 Opt. Express 12 4999Google Scholar
[13] Udem T, Reichert J, Holzwarth R, Hänsch T W 1999 Opt. Lett. 24 881Google Scholar
[14] Ranka J K, Windeler R S and Stentz A J 2000 Opt. Lett. 25 25Google Scholar
[15] D J Jones, S A Diddams, J K Ranka, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar
[16] Steinmetz T, Wilken T, Araujo-Hauck C, Holzwarth R, Hänsch T W, Pasquini L, Manescau A, D'Odorico S, Murphy M T, Kentischer T, Schmidt W, Udem T 2008 Science 321 1335Google Scholar
[17] Kim S 2009 Nat. Photonics. 3 313Google Scholar
[18] Niering M, Holzwarth R, Reichert J, Pokasov P, Udem T, Weitz M, Hansch T W, Lemonde P, Santarelli G, Abgrall M, Laurent P, Salomon C, Clairon A 2000 Phys. Rev. Lett. 84 5496Google Scholar
[19] O’Keefe A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544Google Scholar
[20] Paul J B, Lapson L, Anderson J G 2001 Appl. Opt 40 4904Google Scholar
[21] Kassi S, Campargue A 2012 J. Chem. Phys. 137 234201Google Scholar
[22] Tan Y, Wang J, Cheng C F, Zhao X Q, Liu A W, Hu S M 2014 Mol. Spectrosc. 300 60Google Scholar
[23] 饶冰洁, 张颜艳, 闫露露, 武跃龙, 张攀, 樊松涛, 郭文阁, 张晓斐, 张首刚, 姜海峰 2019 光子学报 48 0114003Google Scholar
Rao B J, Zhang Y Y, Yan L L, Wu Y L, Zhang P, Fan S T, Guo W G, Zhang X F, Zhang S G, Jiang H F 2019 Acta Photon. Sin. 48 0114003Google Scholar
[24] Pan H, Cheng C F, Sun Y R, Gao B, Liu A W, Hu S M 2011 Rev. Sci. Instrum. 82 103110Google Scholar
[25] Gatti D, Sala T, Gotti R, Cocola L, Poletto L, Prevedelli M, Laporta P, Marangoni M 2015 J.Chem. Phys. 142 074201Google Scholar
[26] Martinez R Z, Metsala M, Vaittinen O, Lantta T, Halonen L 2006 Opt. Soc. Am. B 23 727Google Scholar
[27] Hodges J T, Layer H P, Miller W W, Scace G E 2004 Rev. Sci. Instrum. 75 849Google Scholar
[28] Cygan A, Lisak D, Maslowski P, Bielska K, Wojtewicz S, Domyslawska J, Trawinski R S, Ciurylo R, Abe H, Hodges J T 2011 Rev. Sci. Instrum. 82 063107Google Scholar
[29] Wang J, Sun Y R, Tao L G, Liu A W, Hua T P, Meng F, Hu S M 2017 Rev. Sci. Instrum 88 043108Google Scholar
[30] 康鹏, 孙羽, 王进, 刘安雯, 胡水明 2018 物理学报 67 104206Google Scholar
Kang P, Sun Y, Wang J, Liu A W, Hu S M 2018 Acta Phys. Sin. 67 104206Google Scholar
[31] Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar
[32] 谈艳, 王进, 陶雷刚, 孙羽, 刘安雯, 胡水明 2018 中国激光 45 0911002
Tan Y, Wang J, Tao L G, Sun Y, Liu A W, Hu S M 2018 Chin. J. Lasers 45 0911002 (in Chinese)
[33] Fan S T, Zhang Y Y, Yan L L, Guo W G, Zhang S G, Jiang H F 2019 Chin. Phys. B 28 064204Google Scholar
[34] Ning K, Hou L, Fan S T, Yan L L, Zhang Y Y, Rao B J, Zhang X F, Zhang S G, Jiang H F 2020 Chin. Phys. Lett. 37 064202Google Scholar
[35] 张颜艳, 闫露露, 姜海峰, 张首刚 2017 时间频率学报 40 130Google Scholar
Zhang Y Y, Yan L L, Jiang H F, Zhang S G 2017 J. Time Freq. 40 130Google Scholar
计量
- 文章访问数: 4487
- PDF下载量: 89
- 被引次数: 0