搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滤波对8字腔掺铒光纤激光器锁模运转的影响

石俊凯 王国名 黎尧 高书苑 刘立拓 周维虎

引用本文:
Citation:

滤波对8字腔掺铒光纤激光器锁模运转的影响

石俊凯, 王国名, 黎尧, 高书苑, 刘立拓, 周维虎

Influence of spectral filtering on mode-locking operation of figure-eight Er-doped fiber laser

Shi Jun-Kai, Wang Guo-Ming, Li Yao, Gao Shu-Yuan, Liu Li-Tuo, Zhou Wei-Hu
PDF
HTML
导出引用
  • 构建了基于损耗非对称非线性光学环镜的8字腔掺铒光纤锁模激光器, 并讨论了腔内滤波带宽对腔内脉冲演化和激光器输出特性的影响. 在非线性光学环镜中引入双向输出耦合器, 耦合器和传输光纤位置的不对称产生非互易性, 实现锁模运转. 利用自制的可调谐滤波器实验研究了滤波带宽对激光器的影响. 当滤波带宽为2.1 nm时, 腔内脉冲的演化过程受滤波和孤子效应的共同作用, 激光器顺时针和逆时针输出脉冲半高全宽分别为583.7 fs和2.94 ps. 随着滤波带宽增大, 滤波的作用逐渐减弱, 激光器两路输出脉冲参数逐渐接近, 并接近傅里叶变换极限脉冲. 当滤波带宽较大时, 腔内脉冲的演化过程受增益谱和孤子效应的共同作用, 激光器顺时针和逆时针输出脉冲均为变换极限脉冲, 半高全宽约为440 fs. 通过调节滤波器中心波长实现了对激光器输出脉冲光谱的连续调谐, 调节范围大于30 nm.
    Over the last decades, passive mode-locked fiber laser has received considerable attention because of ultrashort pulse, compactness, and low cost. As a saturable absorber, nonlinear optical loop mirror (NOLM) has shown the advantages of high damage threshold, possibility of all-PM fiber implementation, short response time and therefore potentially low intrinsic noise. Spectral filtering plays an important role in NOLM mode locked fiber laser, but the influence of filtering parameters on mode locking operation is rarely reported. In this paper, the influence of filtering bandwidth on mode locking operation and on output pulse characteristics are experimentally investigated. A 2 × 2 optical coupler with a splitting ratio of 10 : 90 is introduced at one end of fiber loop to form a loss-imbalanced NOLM, and extracts 90% of intracavity pulse energy as outputs. With this architecture, an all polarization-maintaining figure-8 Er-doped fiber ultrafast laser is achieved. A home-made bandwidth and wavelength tunable bandpass filter is utilized in the cavity, and the filtering bandwidth is defined by 10 dB bandwidth. The clockwise and counter-clockwise mode locked output power are 8.4 mW and 8.6 mW, respectively, with a repetition rate of 2.734 MHz. With a spectral bandwidth of 2.1 nm, the intracavity pulse is shaped by spectral filtering and soliton effect. The 3 dB bandwidth of the clockwise and counter-clockwise mode locked output pulse are 10.1 nm and 1.8 nm, and the values of corresponding full width at half maximum (FWHM) of the direct outputs are 583.7 fs and 2.94 ps, respectively. As the filtering bandwidth increases, the role of filter in spectral shaping weakens, and the parameters of two output pulses become close. When spectral bandwidth is larger than 7.3 nm, the intracavity pulse is shaped by gain spectrum and soliton effect. Both of the clockwise and counter-clockwise output pulses become the transform-limited pulses with almost the same FWHMs of 440 fs. Besides, the wavelength of the figure-8 fiber laser can be adjusted in a range larger than 30 nm by modulating the wavelength of the filter. The tunable mode-locked fiber laser has great potential applications in various application fields.
      通信作者: 周维虎, zhouweihu@aoe.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61475162, 61575105)、中国科学院前沿科学重点研究计划(批准号: QYZDY-SSW-JSC008)和中国科学院国际合作局对外合作重点项目(批准号: 181811KYSB20160029)资助的课题.
      Corresponding author: Zhou Wei-Hu, zhouweihu@aoe.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475162, 61575105), the Key Research Project of Bureau of Frontier Sciences and Education, Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC008), and the International Partnership Program of Chinese Academy of Sciences (Grant No. 181811KYSB20160029).
    [1]

    石俊凯, 纪荣祎, 黎尧, 刘娅, 周维虎 2017 物理学报 66 134203Google Scholar

    Shi J K, Ji R Y, Li Y, Liu Y, Zhou W H 2017 Acta Phys. Sin. 66 134203Google Scholar

    [2]

    Zhu Z W, Liu Y, Zhang W C, Luo D P, Wang C, Zhou L, Deng Z J, Li W X 2018 IEEE Photo. Tech. Lett. 30 1139Google Scholar

    [3]

    王莎莎, 潘玉寨, 高仁喜, 祝秀芬, 苏晓慧, 曲士良 2013 物理学报 62 024209Google Scholar

    Wang S S, Pan Y Z, Gao R X, Zhu X F, Su X H, Qu S L 2013 Acta Phys. Sin. 62 024209Google Scholar

    [4]

    Khegai A, Melkumov M, Firstov S, Riumkin K, Gladush Y, Alyshev S, Lobanov A, Khopin V, Afanasiev F, Nasibulin A, Dianov E 2018 Opt. Express 26 23911Google Scholar

    [5]

    Zhu G W, Zhu X S, Wang F Q, Xu S, Li Y, Guo X L, Balakrishnan K, Norwood R A, Peyghambarian N 2016 IEEE Photo. Tech. Lett. 28 7Google Scholar

    [6]

    Boguslawski J, Sotor J, Sobon G, Kozinski R, Librant K, Aksienionek M, Lipinska L, Abramski K M 2015 Photon. Res. 3 119Google Scholar

    [7]

    Li J, Zhao Y F, Chen Q Y, Niu K D, Sun R Y, Zhang H N 2017 IEEE Photon. J. 9 1506707Google Scholar

    [8]

    Wang J T, Jiang Z K, Chen H, Li J R, Yin J D, Wang J Z, He T C, Yan P G, Ruan S C 2018 Photon. Res. 6 535Google Scholar

    [9]

    张大鹏, 胡明列, 谢辰, 柴路, 王清月 2011 物理学报 61 044206Google Scholar

    Zhang D P, Hu M L, Xie C, Chai L, Wang Q Y 2011 Acta Phys. Sin. 61 044206Google Scholar

    [10]

    刘欢, 巩马理, 曹士英, 林百科, 方占军 2015 物理学报 64 114210Google Scholar

    Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210Google Scholar

    [11]

    Liu Z W, Ziegler Z M, Wright L G, Wise F W 2017 Optica 4 649Google Scholar

    [12]

    Sidorenko P, Fu W, Wright L G, Olivier M, Wise F W 2018 Opt. Lett. 43 2672Google Scholar

    [13]

    Doran N J, Wood D 1988 Opt. Lett. 13 56Google Scholar

    [14]

    Zhao L M, Bartnik A C, Tai Q Q, Wise F W 2013 Opt. Lett. 38 1942Google Scholar

    [15]

    Szczepanek J, Kardas T M, Michalska M, Radzewicz C, Stepanenko Y 2015 Opt. Lett. 40 3500Google Scholar

    [16]

    Fermann M E, Haberl F, Hofer M, Hochreiter H 1990 Opt. Lett. 15 752Google Scholar

    [17]

    Krzempek K, Sotor J, Abramski K 2016 Opt. Lett. 41 4995Google Scholar

    [18]

    Yu Y, Teng H, Wang H B, Wang L N, Zhu J F, Fang S B, Chang G Q, Wang J L, Wei Z Y 2018 Opt. Express 26 10428Google Scholar

    [19]

    Seong N H, Kim D Y 2002 IEEE Photo. Tech. Lett. 14 459Google Scholar

    [20]

    Hao Q, Chen F H, Yang K W, Zhu X Y, Zhang Q S, Zeng H P 2016 IEEE Photo. Tech. Lett. 28 87Google Scholar

    [21]

    Shi J K, Li Y, Gao S Y, Pan Y L, Wang G M, Ji R Y, Zhou W H 2018 Chin. Opt. Lett. 16 121404Google Scholar

    [22]

    Jiang T X, Cui Y F, Lu P, Li C, Wang A M, Zhang Z G 2016 IEEE Photo. Tech. Lett. 28 1786Google Scholar

    [23]

    Hänsel W, Hoogland H, Giunta M, Schmid S, Steinmetz T, Doubek R, Mayer P, Dobner S, Cleff C, Fischer M, Holzwarth R 2017 Appl. Phys. B 123 40Google Scholar

    [24]

    Liu W, Shi H S, Cui J H, Xie C, Song Y J, Wang C Y, Hu M L 2018 Opt. Lett. 43 2848Google Scholar

    [25]

    Dianov E M, Karasik A Y, Mamyshev P V, Prokhorov A M, Serkin V N, Stelmakh M F, Fomichev A A 1985 JETP Lett. 41 294

  • 图 1  实验装置图(LD, 激光二极管; WDM, 波分复用器; EDF, 掺铒光纤; OC, 光学耦合器; OI, 光学隔离器; TBPF, 可调谐带通滤波器; PF, 被动光纤; OPCW/OPCCW, 顺时针/逆时针输出输出)

    Fig. 1.  Experimental setup. LD, laser diode; WDM, wavelength division multiplexer; EDF, Er-doped fiber; OC, optical coupler; OI, optical isolator; TBPF, tunable bandpass filter; PF, passive fiber; OPCW/OPCCW, clockwise/counter-clockwise output.

    图 2  滤波性能测试结果 (a)自发辐射光谱; (b)滤波带宽设定为1.4 nm条件下输出可调谐滤波光谱; (c)滤波中心波长设定为1556 nm条件下输出带宽调谐滤波光谱; (d)带宽调谐滤波光谱3 dB带宽和10 dB带宽的对比

    Fig. 2.  Test results of the spectral filtering performance: (a) Spontaneous emission spectrum; (b) the central wavelength tunable spectra with fixed bandwidth of 1.4 nm; (c) bandwidth tunable spectra with fixed central wavelength of 1556 nm; (d) comparison of 3 dB bandwidth and 10 dB bandwidth of bandwidth tunable spectra.

    图 3  激光器顺时针和逆时针输出特性 (a)线性坐标和对数坐标(插图)下的光谱; (b)自相关曲线; (c)脉冲序列; (d)一次谐波射频谱和0—50 MHz范围的射频谱(插图)

    Fig. 3.  Laser CW and CCW output characteristics: (a) Spectra on linear scale and log scale (inset); (b) autocorrelation traces; (c) pulse train; (d) radio frequency spectra around repetition rate and in wider range (inset).

    图 4  滤波带宽对激光器输出的(a)脉宽、谱宽和(b)时间带宽积的影响; 不同滤波带宽条件下(c) CW和(d) CCW输出的光谱与自相关曲线(插图)

    Fig. 4.  Impact of filtering bandwidth on (a) pulse durations, spectral bandwidths and (b) time-bandwidth products; spectra and autocorrelation traces (inset) of (c) CW and (d) CCW output pulses with different filtering bandwidth.

    图 5  CW和CCW输出的可调谐光谱 (a) CW; (b) CCW

    Fig. 5.  Output tunable spectra of CW and CCW: (a) CW; (b) CCW.

  • [1]

    石俊凯, 纪荣祎, 黎尧, 刘娅, 周维虎 2017 物理学报 66 134203Google Scholar

    Shi J K, Ji R Y, Li Y, Liu Y, Zhou W H 2017 Acta Phys. Sin. 66 134203Google Scholar

    [2]

    Zhu Z W, Liu Y, Zhang W C, Luo D P, Wang C, Zhou L, Deng Z J, Li W X 2018 IEEE Photo. Tech. Lett. 30 1139Google Scholar

    [3]

    王莎莎, 潘玉寨, 高仁喜, 祝秀芬, 苏晓慧, 曲士良 2013 物理学报 62 024209Google Scholar

    Wang S S, Pan Y Z, Gao R X, Zhu X F, Su X H, Qu S L 2013 Acta Phys. Sin. 62 024209Google Scholar

    [4]

    Khegai A, Melkumov M, Firstov S, Riumkin K, Gladush Y, Alyshev S, Lobanov A, Khopin V, Afanasiev F, Nasibulin A, Dianov E 2018 Opt. Express 26 23911Google Scholar

    [5]

    Zhu G W, Zhu X S, Wang F Q, Xu S, Li Y, Guo X L, Balakrishnan K, Norwood R A, Peyghambarian N 2016 IEEE Photo. Tech. Lett. 28 7Google Scholar

    [6]

    Boguslawski J, Sotor J, Sobon G, Kozinski R, Librant K, Aksienionek M, Lipinska L, Abramski K M 2015 Photon. Res. 3 119Google Scholar

    [7]

    Li J, Zhao Y F, Chen Q Y, Niu K D, Sun R Y, Zhang H N 2017 IEEE Photon. J. 9 1506707Google Scholar

    [8]

    Wang J T, Jiang Z K, Chen H, Li J R, Yin J D, Wang J Z, He T C, Yan P G, Ruan S C 2018 Photon. Res. 6 535Google Scholar

    [9]

    张大鹏, 胡明列, 谢辰, 柴路, 王清月 2011 物理学报 61 044206Google Scholar

    Zhang D P, Hu M L, Xie C, Chai L, Wang Q Y 2011 Acta Phys. Sin. 61 044206Google Scholar

    [10]

    刘欢, 巩马理, 曹士英, 林百科, 方占军 2015 物理学报 64 114210Google Scholar

    Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210Google Scholar

    [11]

    Liu Z W, Ziegler Z M, Wright L G, Wise F W 2017 Optica 4 649Google Scholar

    [12]

    Sidorenko P, Fu W, Wright L G, Olivier M, Wise F W 2018 Opt. Lett. 43 2672Google Scholar

    [13]

    Doran N J, Wood D 1988 Opt. Lett. 13 56Google Scholar

    [14]

    Zhao L M, Bartnik A C, Tai Q Q, Wise F W 2013 Opt. Lett. 38 1942Google Scholar

    [15]

    Szczepanek J, Kardas T M, Michalska M, Radzewicz C, Stepanenko Y 2015 Opt. Lett. 40 3500Google Scholar

    [16]

    Fermann M E, Haberl F, Hofer M, Hochreiter H 1990 Opt. Lett. 15 752Google Scholar

    [17]

    Krzempek K, Sotor J, Abramski K 2016 Opt. Lett. 41 4995Google Scholar

    [18]

    Yu Y, Teng H, Wang H B, Wang L N, Zhu J F, Fang S B, Chang G Q, Wang J L, Wei Z Y 2018 Opt. Express 26 10428Google Scholar

    [19]

    Seong N H, Kim D Y 2002 IEEE Photo. Tech. Lett. 14 459Google Scholar

    [20]

    Hao Q, Chen F H, Yang K W, Zhu X Y, Zhang Q S, Zeng H P 2016 IEEE Photo. Tech. Lett. 28 87Google Scholar

    [21]

    Shi J K, Li Y, Gao S Y, Pan Y L, Wang G M, Ji R Y, Zhou W H 2018 Chin. Opt. Lett. 16 121404Google Scholar

    [22]

    Jiang T X, Cui Y F, Lu P, Li C, Wang A M, Zhang Z G 2016 IEEE Photo. Tech. Lett. 28 1786Google Scholar

    [23]

    Hänsel W, Hoogland H, Giunta M, Schmid S, Steinmetz T, Doubek R, Mayer P, Dobner S, Cleff C, Fischer M, Holzwarth R 2017 Appl. Phys. B 123 40Google Scholar

    [24]

    Liu W, Shi H S, Cui J H, Xie C, Song Y J, Wang C Y, Hu M L 2018 Opt. Lett. 43 2848Google Scholar

    [25]

    Dianov E M, Karasik A Y, Mamyshev P V, Prokhorov A M, Serkin V N, Stelmakh M F, Fomichev A A 1985 JETP Lett. 41 294

  • [1] 惠战强, 刘瑞华, 高黎明, 韩冬冬, 李田甜, 巩稼民. 基于对称双环嵌套管的低损耗弱耦合六模空芯负曲率光纤. 物理学报, 2024, 73(7): 070703. doi: 10.7498/aps.73.20231785
    [2] 钱其升, 刘慧研, 查永鹏, 倪海彬. 非对称共轴腔结构色产生与调控. 物理学报, 2022, 71(8): 084103. doi: 10.7498/aps.71.20211337
    [3] 李锟影, 李璞, 郭晓敏, 郭龑强, 张建国, 刘义铭, 徐兵杰, 王云才. 利用光反馈多模激光器结合滤波器产生平坦混沌. 物理学报, 2019, 68(11): 110501. doi: 10.7498/aps.68.20190171
    [4] 樊金宇, 高峰, 孔文, 黎海文, 史国华. 多面转镜激光器扫频光学相干层析成像系统的全光谱重采样方法. 物理学报, 2017, 66(11): 114204. doi: 10.7498/aps.66.114204
    [5] 刘昊华, 王少华, 李波波, 李桦林. 缺陷致非线性电路孤子非对称传输. 物理学报, 2017, 66(10): 100502. doi: 10.7498/aps.66.100502
    [6] 张攀政, 汪小超, 李菁辉, 冯滔, 张志祥, 范薇, 周申蕾, 马伟新, 朱俭, 林尊琪. 利用啁啾脉冲光谱滤波和非线性偏振旋转技术实现高稳定性和开机自启动的全光纤掺Yb3+光纤锁模激光器. 物理学报, 2016, 65(21): 214207. doi: 10.7498/aps.65.214207
    [7] 王玉宝, 齐晓辉, 沈阳, 姚繄蕾, 徐志敬, 潘玉寨. 超长腔碳纳米管锁模多波长掺镱光纤激光器. 物理学报, 2015, 64(20): 204205. doi: 10.7498/aps.64.204205
    [8] 彭汉, 刘彬, 付松年, 张敏明, 刘德明. 高速线性光采样用被动锁模光纤激光器重复频率优化. 物理学报, 2015, 64(13): 134206. doi: 10.7498/aps.64.134206
    [9] 白扬博, 向望华, 祖鹏, 张贵忠. 基于体光栅的被动锁模可调谐线型腔掺镱光纤激光器. 物理学报, 2012, 61(21): 214208. doi: 10.7498/aps.61.214208
    [10] 张大鹏, 胡明列, 谢辰, 柴路, 王清月. 基于非线性偏振旋转锁模的高功率光子晶体光纤飞秒激光振荡器. 物理学报, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [11] 张攀政, 范薇, 汪小超, 林尊琪. 利用光谱滤波器实现自启动的全光纤超短脉冲掺Yb3+光纤激光器. 物理学报, 2011, 60(2): 024206. doi: 10.7498/aps.60.024206
    [12] 欧阳春梅, 柴路, 赵慧, 胡明列, 宋有建, 王清月. 滤波位置相关的全正色散掺Yb3+锁模光纤激光器的实验研究. 物理学报, 2010, 59(6): 3936-3941. doi: 10.7498/aps.59.3936
    [13] 蔡静, 曾薇, 李权, 骆开均, 赵可清. 取代基对8-羟基喹啉金属配合物电子光谱和二阶非线性光学性质的影响. 物理学报, 2009, 58(8): 5259-5265. doi: 10.7498/aps.58.5259
    [14] 邓一鑫, 涂成厚, 吕福云. 非线性偏振旋转锁模自相似脉冲光纤激光器的研究. 物理学报, 2009, 58(5): 3173-3178. doi: 10.7498/aps.58.3173
    [15] 董小伟, 裴 丽, 简水生. 非对称熔锥法制作光纤光栅辅助耦合器型上下话路滤波器. 物理学报, 2006, 55(9): 4739-4743. doi: 10.7498/aps.55.4739
    [16] 吴建伟, 夏光琼, 吴正茂. 基于半导体光放大器和非线性光纤环镜的光脉冲压缩器的设计模型和理论分析. 物理学报, 2004, 53(4): 1105-1109. doi: 10.7498/aps.53.1105
    [17] 章若冰, 王清月, 边自鹏, 梁宏业, 庞冬青, 孙敬华. 低抽运三镜腔自锁模掺钛蓝宝石激光器的理论与实验研究. 物理学报, 2000, 49(4): 756-761. doi: 10.7498/aps.49.756
    [18] 王清月, 沈家强, 许键, 向望华, 张钊, 章若冰. 非腔长匹配相干叠加脉冲锁模激光器的实验研究. 物理学报, 1994, 43(8): 1289-1294. doi: 10.7498/aps.43.1289
    [19] 臧维平, 田建国, 张光寅. 非线性镜锁模理论. 物理学报, 1994, 43(5): 742-747. doi: 10.7498/aps.43.742
    [20] 王奇, 薛秉章, 蔡英时. 非对称型Kerr类介质膜漏波导中的非线性导波. 物理学报, 1988, 37(5): 760-768. doi: 10.7498/aps.37.760
计量
  • 文章访问数:  8276
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-05
  • 修回日期:  2019-01-21
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回