-
采用TL-code电路编码方法, 建立了15 MA Z箍缩装置多层圆盘锥磁绝缘传输线的全电路模型, 分析了外磁绝缘传输线、汇流柱和内磁绝缘传输线三个区域电流损失特性. 外磁绝缘传输线磁绝缘形成过程的空间电荷损失持续时间约30 ns, 对负载电流影响小. 进入磁绝缘稳态时, 外磁绝缘传输线末端鞘层电子流损失约300 kA. 汇流柱区域电流损失与电极等离子体运动速率密切相关, 当等离子体运动速率为21 cm/μs时, 负载峰值电流时刻损失电流约4 MA. 内磁绝缘传输线电流损失取决于阳极离子流种类, 电流损失在负载峰值电流时刻之后, 损失电流约2.1 MA. 当15 MA装置驱动长度2 cm、半径2 cm、质量3 mg丝阵负载时, 绝缘堆峰值电流约18 MA, 负载峰值电流约13.5 MA、峰值时间(0—100%)约为100 ns.In this paper, a transmission line circuit model of a magnetically insulated transmission line(MITL) system is developed for a 15-MA Z-pinch driver. The current loss characteristics of multi-level MITL and the ion emission due to the expansion of anode and cathode plasma in the post hole vacuum convolute(PHC) and inner-MITL region are analyzed. The spatiotemporal distribution of current loss of the outer-MITL and ion current of the PHC and inner-MITL of the 15 MA driver are obtained. The results show that the first electron emission happens at the end of constant-impedance MITL and the beginning of constant-gap MITL, and the end of constant-gap MITL firstly achieves fully magnetic insulation. Electron emission occurs at the start of load current and its duration is about 30 ns, which is short for a single pulse and has little effect on the rising edge nor peak value of the load current. The waveform of the electron flow varying with time resembles a saddle shape, whose amplitude first goes up, then comes down, and increases again. The electron flow current decreases from upstream to downstream in constant-gap MITL in space. The starting time of the loss current of the PHC is synchronized with the gap closing time. The loss current amplitude increases rapidly, reaching 4 MA at the peak load current time and 6.5 MA in the end. In the inner-MITL region, the main positive ion species are protons and oxygen 2+. At the beginning, the ion loss current of protons is larger than that of oxygen 2+, and then the protons are quickly magnetically insulated due to the small charge-to-mass ratio. The ion loss current of the inner-MITL region mainly increases after the peak load current time, and its peak value is 2.1 MA. Given the input conditions, the stack is going to deliver current of about 18 MA, the hold voltage is about 2.3 MV, and the peak load current is about 13.5 MA.
-
Keywords:
- magnetically insulated transmission line /
- TL-code /
- electron sheath current /
- ion current
[1] Stygar W A, Corcoran P A, Ives H C, Spieman R B, Douglas J W, Whitney B A, Mostrom M A, Wagoner T C, Speas C S, Gilliland T L, Allshouse G A, Clark R E, Donovan G L, Hughes T P, Humphreys D R, Jaramillo D M, Johnson M F, Kellogg J W, Leeper R J, Long F W, Martin T H, Mulville T D, Pelock M D, Peyton B P, Poukey J W, Smith J W, Van De Valde D M, Wavrik R W 2009 Phys. Rev. ST Accel. Beams 12 120401Google Scholar
[2] Hutsel B T, Corcoran P A, Cuneo M E, Gomez M R, Hess M H, Hinshelwood D D, Jennings C A, Laity G R, Lamppa D C, McBride R D, Moore J K, Myers A, Rose D V, Slutz S A, Stygar W A, Waisman E M, Welch D R, Whitney B A 2018 Phys. Rev. Accel. Beams 21 030401Google Scholar
[3] Spielman R B, Froula D H, Brent G, Campbell E M, Reisman D B, Savage M E, Shoup Ⅲ M J, Stygar W A, Wisher M L 2017 Matter Radiat. Extremes 5 204Google Scholar
[4] Spielman R B, Reisman D B 2019 Matter Radiat. Extremes 4 027402Google Scholar
[5] 宋盛义, 王文斗, 曹文彬, 林其文, 冯晓晖, 孙承纬 2004 强激光与粒子束 16 800
Song S Y, Wang W D, Cao W B, Lin Q W, Feng X H, Sun C W 2004 High Power Laser and Partical Beams 16 800
[6] Hu Y X, Qiu A C, Wang L P, Huang T, Cong P T, Zhang X J, Li Y, Zeng Z Z, Sun T P, Lei T S, Wu H Y, Guo N, Han J J 2011 Plasma Sci. Technol 13 631Google Scholar
[7] Zou W K, Guo F, Chen L, Song S Y, Wang M, Xie W P, Deng J J 2014 Phys. Rev. ST Accel. Beams 17 110401Google Scholar
[8] 邹文康, 郭 帆, 王贵林, 陈 林, 卫 兵, 宋盛义 2015 高电压技术 41 1844
Zou W K, Guo F, Wang G L, Chen L, Wei B, Song S Y 2015 High Volat. Engineer. 41 1844
[9] 薛 创, 丁宁, 孙顺凯, 肖德龙, 张杨, 黄俊, 宁成, 束小建 2014 物理学报 63 125207Google Scholar
Xue C, Ding N, Sun S K, Xiao D L, Zhang Y, Huang J, Ning C, Su X J 2014 Acta Phys. Sin. 63 125207Google Scholar
[10] 薛创, 丁宁, 张杨, 肖德龙, 孙顺凯, 宁成, 束小建 2016 强激光与粒子束 28 015014Google Scholar
Xue C, Ding N, Zhang Y, Xiao D L, Sun S K, Ning C, Su X J 2016 High power laser and Partical Beams 28 015014Google Scholar
[11] 毛重阳, 薛创, 肖德龙, 丁宁 2020 强激光与粒子束 32 025004
Mao C Y, Xue C, Xiao D L, Ding N 2020 High power laser and Partical Beams 32 025004 (in Chinese)
[12] VanDevender J P, Stinnett R W, Anderson R J 1981 Appl. Phys. Lett. 38 229Google Scholar
[13] Stinnett R W, Stanley T 1982 J. Appl. Phys. 53 3819Google Scholar
[14] Stinnett R W, Palmer M, Spielman R B 1983 IEEE Trans. Plasma Sci. 11 216Google Scholar
[15] Presura R, Bauer B S, Esaulov A, Fuelling S, Ivanov V, Le Galloudec N, Makhin V, Siemon R E, Sotnikov V I, Wirtz R, Astanovitskiy A, Batie S, Faretto H, Le Galloudec B, Oxner A, Angelova M, Laca P, Guzzetta S, Keely S, Rogowski S 2003 IEEE Pulsed power conference, Dallas, Texas, June 15–18, 2003 p859
[16] Ivanov V V, Laca P J, Bauer B S, Presura R, Sotnikov V I, Astanovitskiy A L, Galloudec B L, Glassman J, Wirtz R A 2004 IEEE Trans. Plasma Sci. 32 1843Google Scholar
[17] Bakshaev Y L, Bartov A V, Blinov P I, Chernenko A S, Dan’ko S A, Kalinin Y G, Kingsep A S, Korolev V D, Mizhiritskii V I, Smirnov V P, Shashkov A Y, Sasorov A Y, Tkachenko S I 2007 Plasma Phys. Rep. 33 259Google Scholar
[18] Rose D V, Welch D R, Hughes T P, Clark R E 2008 Phys. Rev. ST Accel. Beams 11 060401Google Scholar
[19] Madrid E A, Rose D V, Welch D R, Clark R E, Mostrom C B, Stygar W A, Cuneo M E, Gomez M R, Hughes T P, Pointon T D, Seidel D B 2013 Phys. Rev. ST Accel. Beams 16 120401Google Scholar
[20] Rose D V, Madrid E A, Welch D R, Clark R E, Mostrom C B, Stygar W A, Cuneo M E 2015 Phys. Rev. ST Accel. Beams 18 030402Google Scholar
[21] Gomez M R, Gilgenbach R M, Cuneo M E, Jennings C A, McBride R D, Waisman E M, Hutsel B T, Stygar W A, Rose D V, Maron Y 2017 Phys. Rev. Accel. Beams 20 010401Google Scholar
[22] Waisman E M, Desjarlais M P, Cuneo M E 2019 Phys. Rev. Accel. Beams 22 030402Google Scholar
[23] Jennings C A, Chittenden J P, Cuneo M E, Stygar W A, Ampleford D J, Waisman E M, Jones M, Savage M E, LeChien K R, Wagoner T C 2010 IEEE Trans. Plasma Sci. 38 529Google Scholar
[24] Bennett N, Welch D R, Jenning C A, Yu E, Hess M H, Hutsel B T, Laity G, Moore J K, Rose D V, Peterson K, Cuneo M E 2019 Phys. Rev. Accel. Beams 22 120401Google Scholar
[25] Rose D V, Waisman E M, Desjarlais M P, Cuneo M E, Hutsel B T, Welch D R, Bennett N, Laity G R 2020 Phys. Rev. Accel. Beams 23 080401Google Scholar
[26] Bennett N, Welch D R, Laity G, Rose D V, Cuneo M E 2021 Phys. Rev. Accel. Beams 24 060401Google Scholar
[27] Samokhin A A 2010 Plasma Phys. Rep. 36 149Google Scholar
[28] Ottinger P F, Schumer J W, Allen R J, Commisso R J 2003 IEEE Pulsed power conference, Dallas, Texas, June 15–18, 2003 p849
[29] Stygar W A, Wagoner T C, Ives H C, Corcoran P A, Cuneo M E, Douglas J W, Gilliland T L, Mazarakis M G, Ramiriez J J, Seamen J F, Seidel D B, Spielman R B 2006 Phys. Rev. ST Accel. Beams 9 090401Google Scholar
[30] Pointon T D, Savage M E 2005 IEEE Pulsed Power Conference, Monterey, California, June 13–17, 2005 p151
[31] Stygar W A, Rosenthal S E, Ives H C, Wagoner T C, Allshouse G O, Androlewicz K E, Donovan G L, Fehl D L, Frese M H, Gilliland T L, Johnson M F, Mills J A, Reisman D B, Reynolds P G, Speas C S, Spielman R B, Struve K W, Toor A, Waisman E M 2008 Phys. Rev. ST Accel. Beams 11 120401Google Scholar
[32] Stygar W A, Awe T J, Bailey J E, Bennett N L, Breden E W, Campbell E M, Clark R E, Cooper R A, Cuneo M E, Ennis J B, Fehl D L, Genoni T C, Gomez M R, Greiser G W, Gruner F R, Herrmann M C, Hutsel B T, Jennings C A, Jobe D O, Jones B M, Jones M C, Jones P A, Knapp P F, Lash J S, LeChien K R, Leckbee J J, Leeper R J, Lewis S A, Long F W, Lucero D J, Madrid E A, Martin M R, Matzen M K, Mazarakis M G, McBride R D, McKee G R, Miller C L, Moore J K. Mostrom C B, Mulville T D, Peterson K J, Porter J L, Reisman D B, Rochau G A, Rochau G E, Rose D V, Rovang D C, Savage M E, Sceiford M E, Schmit P F, Schneider R F, Schwarz J, Sefkow A B, Sinars D B, Slutz S A, Spielman R B, Stoltzfus B S, Thoma C, Vesey R A, Wakeland P E, Welch D R, Wisher M L, Woodworth J R 2015 Phys. Rev. ST Accel. Beams 18 110401Google Scholar
[33] Cuneo M E 1999 IEEE Trans. Dielectrics Electrical Insul. 6 469Google Scholar
[34] Bloomberg H W, Lampe M, Colombant D G 1980 J. Appl. Phys. 51 5277
[35] 邹文康, 陈林, 周良骥, 王勐, 杨礼兵, 谢卫平, 邓建军 2011 物理学报 60 115204Google Scholar
Zou W K, Chen L, Zhou L J, Wang M, Yang L B, Xie W P, Deng J J 2011 Acta Phys. Sin. 60 115204Google Scholar
-
图 6 鞘层电子流对比(负载聚爆时刻约355 ns) (a) D层MITL恒间隙各段; (b) 4层MITL恒间隙末端及4层之和
Fig. 6. The comparison of the electron flow current in each element (the Z-pinch stagnation approximately equal to 355 ns): (a) Each element of the constant-gap MITL segment of the D-level; (b) the end of the four level constant-gap MITL and the sum of the flow current.
表 1 电路模型输入参数
Table 1. The input parameters of the circuit model.
物理量 符号 单位 数值 阴极表面电子发射阈值[1] Et kV/cm 240 调制空间电荷流前沿的电场强度[27] E2 kV/cm 300 外MITL等离子体运动速率[1] vocp cm/μs 2.5 PHC等离子体运动速率[23] vp cm/μs 21 内MITL等离子体运动速率[2] vi cm/μs 3.7 鞘层电子流再俘获系数[2] krt — 0.074 PHC放电通道面积[23] Ap cm2 15 内MITL电极面积 Ai cm2 100 PHC放电通道电阻率[23] η Ω·m 0.035 PHC初始间隙距离[1] dpi cm 1.14 内MITL初始间隙距离 dii cm 0.6 有无空间电荷增强效应的
离子运动速度之比[2]kvi — 1.3 进入内MITL并在间隙积累的
鞘层电子流比例[2]fen, im — 0.02 -
[1] Stygar W A, Corcoran P A, Ives H C, Spieman R B, Douglas J W, Whitney B A, Mostrom M A, Wagoner T C, Speas C S, Gilliland T L, Allshouse G A, Clark R E, Donovan G L, Hughes T P, Humphreys D R, Jaramillo D M, Johnson M F, Kellogg J W, Leeper R J, Long F W, Martin T H, Mulville T D, Pelock M D, Peyton B P, Poukey J W, Smith J W, Van De Valde D M, Wavrik R W 2009 Phys. Rev. ST Accel. Beams 12 120401Google Scholar
[2] Hutsel B T, Corcoran P A, Cuneo M E, Gomez M R, Hess M H, Hinshelwood D D, Jennings C A, Laity G R, Lamppa D C, McBride R D, Moore J K, Myers A, Rose D V, Slutz S A, Stygar W A, Waisman E M, Welch D R, Whitney B A 2018 Phys. Rev. Accel. Beams 21 030401Google Scholar
[3] Spielman R B, Froula D H, Brent G, Campbell E M, Reisman D B, Savage M E, Shoup Ⅲ M J, Stygar W A, Wisher M L 2017 Matter Radiat. Extremes 5 204Google Scholar
[4] Spielman R B, Reisman D B 2019 Matter Radiat. Extremes 4 027402Google Scholar
[5] 宋盛义, 王文斗, 曹文彬, 林其文, 冯晓晖, 孙承纬 2004 强激光与粒子束 16 800
Song S Y, Wang W D, Cao W B, Lin Q W, Feng X H, Sun C W 2004 High Power Laser and Partical Beams 16 800
[6] Hu Y X, Qiu A C, Wang L P, Huang T, Cong P T, Zhang X J, Li Y, Zeng Z Z, Sun T P, Lei T S, Wu H Y, Guo N, Han J J 2011 Plasma Sci. Technol 13 631Google Scholar
[7] Zou W K, Guo F, Chen L, Song S Y, Wang M, Xie W P, Deng J J 2014 Phys. Rev. ST Accel. Beams 17 110401Google Scholar
[8] 邹文康, 郭 帆, 王贵林, 陈 林, 卫 兵, 宋盛义 2015 高电压技术 41 1844
Zou W K, Guo F, Wang G L, Chen L, Wei B, Song S Y 2015 High Volat. Engineer. 41 1844
[9] 薛 创, 丁宁, 孙顺凯, 肖德龙, 张杨, 黄俊, 宁成, 束小建 2014 物理学报 63 125207Google Scholar
Xue C, Ding N, Sun S K, Xiao D L, Zhang Y, Huang J, Ning C, Su X J 2014 Acta Phys. Sin. 63 125207Google Scholar
[10] 薛创, 丁宁, 张杨, 肖德龙, 孙顺凯, 宁成, 束小建 2016 强激光与粒子束 28 015014Google Scholar
Xue C, Ding N, Zhang Y, Xiao D L, Sun S K, Ning C, Su X J 2016 High power laser and Partical Beams 28 015014Google Scholar
[11] 毛重阳, 薛创, 肖德龙, 丁宁 2020 强激光与粒子束 32 025004
Mao C Y, Xue C, Xiao D L, Ding N 2020 High power laser and Partical Beams 32 025004 (in Chinese)
[12] VanDevender J P, Stinnett R W, Anderson R J 1981 Appl. Phys. Lett. 38 229Google Scholar
[13] Stinnett R W, Stanley T 1982 J. Appl. Phys. 53 3819Google Scholar
[14] Stinnett R W, Palmer M, Spielman R B 1983 IEEE Trans. Plasma Sci. 11 216Google Scholar
[15] Presura R, Bauer B S, Esaulov A, Fuelling S, Ivanov V, Le Galloudec N, Makhin V, Siemon R E, Sotnikov V I, Wirtz R, Astanovitskiy A, Batie S, Faretto H, Le Galloudec B, Oxner A, Angelova M, Laca P, Guzzetta S, Keely S, Rogowski S 2003 IEEE Pulsed power conference, Dallas, Texas, June 15–18, 2003 p859
[16] Ivanov V V, Laca P J, Bauer B S, Presura R, Sotnikov V I, Astanovitskiy A L, Galloudec B L, Glassman J, Wirtz R A 2004 IEEE Trans. Plasma Sci. 32 1843Google Scholar
[17] Bakshaev Y L, Bartov A V, Blinov P I, Chernenko A S, Dan’ko S A, Kalinin Y G, Kingsep A S, Korolev V D, Mizhiritskii V I, Smirnov V P, Shashkov A Y, Sasorov A Y, Tkachenko S I 2007 Plasma Phys. Rep. 33 259Google Scholar
[18] Rose D V, Welch D R, Hughes T P, Clark R E 2008 Phys. Rev. ST Accel. Beams 11 060401Google Scholar
[19] Madrid E A, Rose D V, Welch D R, Clark R E, Mostrom C B, Stygar W A, Cuneo M E, Gomez M R, Hughes T P, Pointon T D, Seidel D B 2013 Phys. Rev. ST Accel. Beams 16 120401Google Scholar
[20] Rose D V, Madrid E A, Welch D R, Clark R E, Mostrom C B, Stygar W A, Cuneo M E 2015 Phys. Rev. ST Accel. Beams 18 030402Google Scholar
[21] Gomez M R, Gilgenbach R M, Cuneo M E, Jennings C A, McBride R D, Waisman E M, Hutsel B T, Stygar W A, Rose D V, Maron Y 2017 Phys. Rev. Accel. Beams 20 010401Google Scholar
[22] Waisman E M, Desjarlais M P, Cuneo M E 2019 Phys. Rev. Accel. Beams 22 030402Google Scholar
[23] Jennings C A, Chittenden J P, Cuneo M E, Stygar W A, Ampleford D J, Waisman E M, Jones M, Savage M E, LeChien K R, Wagoner T C 2010 IEEE Trans. Plasma Sci. 38 529Google Scholar
[24] Bennett N, Welch D R, Jenning C A, Yu E, Hess M H, Hutsel B T, Laity G, Moore J K, Rose D V, Peterson K, Cuneo M E 2019 Phys. Rev. Accel. Beams 22 120401Google Scholar
[25] Rose D V, Waisman E M, Desjarlais M P, Cuneo M E, Hutsel B T, Welch D R, Bennett N, Laity G R 2020 Phys. Rev. Accel. Beams 23 080401Google Scholar
[26] Bennett N, Welch D R, Laity G, Rose D V, Cuneo M E 2021 Phys. Rev. Accel. Beams 24 060401Google Scholar
[27] Samokhin A A 2010 Plasma Phys. Rep. 36 149Google Scholar
[28] Ottinger P F, Schumer J W, Allen R J, Commisso R J 2003 IEEE Pulsed power conference, Dallas, Texas, June 15–18, 2003 p849
[29] Stygar W A, Wagoner T C, Ives H C, Corcoran P A, Cuneo M E, Douglas J W, Gilliland T L, Mazarakis M G, Ramiriez J J, Seamen J F, Seidel D B, Spielman R B 2006 Phys. Rev. ST Accel. Beams 9 090401Google Scholar
[30] Pointon T D, Savage M E 2005 IEEE Pulsed Power Conference, Monterey, California, June 13–17, 2005 p151
[31] Stygar W A, Rosenthal S E, Ives H C, Wagoner T C, Allshouse G O, Androlewicz K E, Donovan G L, Fehl D L, Frese M H, Gilliland T L, Johnson M F, Mills J A, Reisman D B, Reynolds P G, Speas C S, Spielman R B, Struve K W, Toor A, Waisman E M 2008 Phys. Rev. ST Accel. Beams 11 120401Google Scholar
[32] Stygar W A, Awe T J, Bailey J E, Bennett N L, Breden E W, Campbell E M, Clark R E, Cooper R A, Cuneo M E, Ennis J B, Fehl D L, Genoni T C, Gomez M R, Greiser G W, Gruner F R, Herrmann M C, Hutsel B T, Jennings C A, Jobe D O, Jones B M, Jones M C, Jones P A, Knapp P F, Lash J S, LeChien K R, Leckbee J J, Leeper R J, Lewis S A, Long F W, Lucero D J, Madrid E A, Martin M R, Matzen M K, Mazarakis M G, McBride R D, McKee G R, Miller C L, Moore J K. Mostrom C B, Mulville T D, Peterson K J, Porter J L, Reisman D B, Rochau G A, Rochau G E, Rose D V, Rovang D C, Savage M E, Sceiford M E, Schmit P F, Schneider R F, Schwarz J, Sefkow A B, Sinars D B, Slutz S A, Spielman R B, Stoltzfus B S, Thoma C, Vesey R A, Wakeland P E, Welch D R, Wisher M L, Woodworth J R 2015 Phys. Rev. ST Accel. Beams 18 110401Google Scholar
[33] Cuneo M E 1999 IEEE Trans. Dielectrics Electrical Insul. 6 469Google Scholar
[34] Bloomberg H W, Lampe M, Colombant D G 1980 J. Appl. Phys. 51 5277
[35] 邹文康, 陈林, 周良骥, 王勐, 杨礼兵, 谢卫平, 邓建军 2011 物理学报 60 115204Google Scholar
Zou W K, Chen L, Zhou L J, Wang M, Yang L B, Xie W P, Deng J J 2011 Acta Phys. Sin. 60 115204Google Scholar
计量
- 文章访问数: 4862
- PDF下载量: 77
- 被引次数: 0