-
本文报道了基于块材料展宽与棱栅对压缩的飞秒啁啾脉冲放大(chirped-pulse amplification, CPA)系统. 展宽器采用基于Herriott型多通结构的块材料作为色散元件, 压缩器采用透射光栅与色散棱镜组合的棱栅对, 由于它可以同时提供负的二阶和三阶色散, 通过优化光栅刻线与棱镜顶角, 可以实现对放大器中材料的三阶色散完全补偿, 获得更窄的压缩脉冲. 实验中, 将展宽后的脉冲注入到环形再生腔中进行放大, 放大后的脉冲由棱栅对压缩到39.6 fs, 非常接近傅里叶变换极限的35.2 fs. 由于采用块材料展宽器和棱栅对压缩器, 整个放大系统非常紧凑, 可作为后续放大以及超快现象研究的可靠光源.We report a femtosecond chirped-pulse amplification (CPA) system based on block material stretcher and grism compression. An optical material block is employed in Herriott multi-reflection configuration as a pulse stretcher, and a transmission grating is combined with dispersion prism to form grism as a compressor which can provide the negative second and third-order dispersion. By optimizing the prism vertex angle and grating line density, the grism can completely compensate for the third-order material dispersion. We obtain shorter compressed pulses. In the experiment, the stretched pulses are amplified by regenerative amplifier, which amplifies the 800 nm seed pulse to 2.30 W under the 11.4 W, 527 nm, 1 kHz pumping conditions, and the spectral width of the amplified pulse is 26.7 nm. The amplified pulses are compressed to 39.6 fs, which is close to the Fourier transform limit of 35.2 fs. The design of the system simplifies the structure of the conventional chirped pulse amplification system, reduces the space size of the optical path, and improves the operational stability of the laser system. With the block material stretcher and grism compressor, the whole CPA laser system is very compact and can be used as a reliable light source for subsequent amplification as well as ultrafast phenomenon studies.
-
Keywords:
- chirped-pulse amplification /
- pulse stretcher /
- grism compressor /
- dispersion compensation
[1] Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar
[2] Jeong T M, Yu T J, Lee S K, Sung J H, Lee J 2012 Opt. Lett. 20 10807
[3] Schultze M, Bothschafter E M, Sommer A, et al. 2013 Nature 493 75Google Scholar
[4] Remington B A, Drake R P, Takabe H, Arnett D 2000 Phys. Plasmas 7 1641Google Scholar
[5] Clark E L, Krushelnick K, Zepf M, Beg F N, Tatarakis M, Machacek A, Santala M I K, Watts I, Noreys P A, Dangor A E 2000 Phys. Rev. Lett. 85 1654Google Scholar
[6] Murnane M M, Kapteyn H C, Rosen M D, Falcone R W 1991 Science 251 531Google Scholar
[7] 宋晏蓉, 张志刚, 王清月 2003 物理学报 52 581Google Scholar
Song Y R, Zhang Z G, Wang Q Y 2003 Acta Phys. Sin. 52 581Google Scholar
[8] Cheriaux G, Rousseau P, Salin F, Chambaret J P, Dimauro L F 1996 Opt. Lett. 21 414Google Scholar
[9] Du D T, Squier J, Kane S, Korn G, Mourou G, Bogusch C, Cotton C T 1995 Opt. Lett. 20 2114Google Scholar
[10] Grüner-Nielsen L, Jakobsen D, Jespersen K G, Pálsdóttir B 2010 Opt. Express 18 3768Google Scholar
[11] Hentschel M, Cheng Z, Krausz F, Spielmann C 2000 Appl. Phys. B 70 S161Google Scholar
[12] Imeshev G, Hartl I, Fermann M E 2004 Opt. Lett. 29 679Google Scholar
[13] Ricci A, Jullien A, Forget N, Crozatier V, Tournois P, Lopez-Martens R 2012 Opt. Lett. 37 1196Google Scholar
[14] Forget N, Crozatier V, Tournois P 2012 Appl. Phys. B 109 121Google Scholar
[15] 秦爽, 宁笑楠, 陈九成 2019 光子学报 48 0914001Google Scholar
Qin S, Ning X N, Chen J C 2019 Acta Photonica Sin. 48 0914001Google Scholar
[16] 郭淑艳, 叶蓬, 滕浩, 张伟, 李德华, 王兆华, 魏志义 2013 物理学报 62 094202Google Scholar
Guo S Y, Ye P, Teng H, Zhang W, Li D H, Wang Z H, Wei Z Y 2013 Acta Phys. Sin. 62 094202Google Scholar
[17] 苏娟, 刘忠华, 魏涛 2015 激光与光电子学进展 52 060501Google Scholar
Su J, Liu Z H, Wei T, Li J F 2015 Laser Optoelectron. Process 52 060501Google Scholar
[18] Lefort C, Mansuryan T, Louradour F, Barthelemy A 2011 Opt. Lett. 36 292Google Scholar
[19] Kuznetsova L, Wise F, Kane S, Squier J 2007 Advanced Solid-state Photonics January 1, 2007
[20] Bagnoud V, Salin F 1998 IEEE J. Sel. Top. Quantum Electron. 4 445Google Scholar
[21] Zheng J, Zacharias H 2009 Appl. Phys. B 96 445Google Scholar
-
图 5 基于Herriott型多通结构的块材料展宽与棱栅对色散补偿的啁啾脉冲放大系统(ISO, 隔离器; M, 反射镜; CM, 凹面反射镜; GP, 格兰棱镜; G, 光栅; PC, 普克尔盒; P, 棱镜)
Fig. 5. Schematic of the CPA system based on Herriott multi-pass block material stretcher and grism compressor (ISO, Isolator; M, mirror; CM, concave mirror; GP, Glan prism; G, grating; PC, Pockels cell; P, prism).
表 1 kHz钛宝石放大器引入的材料色散
Table 1. Material dispersion introduced by kHz Ti: sapphire amplifier.
材料色散 长度
/mmGDD/
(fs2·mm–1)TOD/
(fs3·mm–1)GDD
/fs2TOD
/fs3钛宝石
晶体400 58.04 42.13 23216 16852 真空窗口 60 36.16 27.50 2169.6 1650 普克尔盒 400 27.36 48.66 10944 19464 格兰棱镜 600 36.16 27.50 21696 16500 总色散量 58025.6 54466 表 2 啁啾脉冲放大系统各部分引入的色散
Table 2. Dispersion introduced by each part of chirped pulse amplification system.
材料色散 GDD/fs2 TOD/fs3 块材料展宽器 +110200 +72520 再生放大器 +58025.6 +54466 棱栅对压缩器 –168225.6 –126717 总色散 0 +269 -
[1] Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar
[2] Jeong T M, Yu T J, Lee S K, Sung J H, Lee J 2012 Opt. Lett. 20 10807
[3] Schultze M, Bothschafter E M, Sommer A, et al. 2013 Nature 493 75Google Scholar
[4] Remington B A, Drake R P, Takabe H, Arnett D 2000 Phys. Plasmas 7 1641Google Scholar
[5] Clark E L, Krushelnick K, Zepf M, Beg F N, Tatarakis M, Machacek A, Santala M I K, Watts I, Noreys P A, Dangor A E 2000 Phys. Rev. Lett. 85 1654Google Scholar
[6] Murnane M M, Kapteyn H C, Rosen M D, Falcone R W 1991 Science 251 531Google Scholar
[7] 宋晏蓉, 张志刚, 王清月 2003 物理学报 52 581Google Scholar
Song Y R, Zhang Z G, Wang Q Y 2003 Acta Phys. Sin. 52 581Google Scholar
[8] Cheriaux G, Rousseau P, Salin F, Chambaret J P, Dimauro L F 1996 Opt. Lett. 21 414Google Scholar
[9] Du D T, Squier J, Kane S, Korn G, Mourou G, Bogusch C, Cotton C T 1995 Opt. Lett. 20 2114Google Scholar
[10] Grüner-Nielsen L, Jakobsen D, Jespersen K G, Pálsdóttir B 2010 Opt. Express 18 3768Google Scholar
[11] Hentschel M, Cheng Z, Krausz F, Spielmann C 2000 Appl. Phys. B 70 S161Google Scholar
[12] Imeshev G, Hartl I, Fermann M E 2004 Opt. Lett. 29 679Google Scholar
[13] Ricci A, Jullien A, Forget N, Crozatier V, Tournois P, Lopez-Martens R 2012 Opt. Lett. 37 1196Google Scholar
[14] Forget N, Crozatier V, Tournois P 2012 Appl. Phys. B 109 121Google Scholar
[15] 秦爽, 宁笑楠, 陈九成 2019 光子学报 48 0914001Google Scholar
Qin S, Ning X N, Chen J C 2019 Acta Photonica Sin. 48 0914001Google Scholar
[16] 郭淑艳, 叶蓬, 滕浩, 张伟, 李德华, 王兆华, 魏志义 2013 物理学报 62 094202Google Scholar
Guo S Y, Ye P, Teng H, Zhang W, Li D H, Wang Z H, Wei Z Y 2013 Acta Phys. Sin. 62 094202Google Scholar
[17] 苏娟, 刘忠华, 魏涛 2015 激光与光电子学进展 52 060501Google Scholar
Su J, Liu Z H, Wei T, Li J F 2015 Laser Optoelectron. Process 52 060501Google Scholar
[18] Lefort C, Mansuryan T, Louradour F, Barthelemy A 2011 Opt. Lett. 36 292Google Scholar
[19] Kuznetsova L, Wise F, Kane S, Squier J 2007 Advanced Solid-state Photonics January 1, 2007
[20] Bagnoud V, Salin F 1998 IEEE J. Sel. Top. Quantum Electron. 4 445Google Scholar
[21] Zheng J, Zacharias H 2009 Appl. Phys. B 96 445Google Scholar
计量
- 文章访问数: 5353
- PDF下载量: 115
- 被引次数: 0