搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

频谱非对称包络调制的圆对称艾里光束的传播特性研究

宁啸坤 耿滔

引用本文:
Citation:

频谱非对称包络调制的圆对称艾里光束的传播特性研究

宁啸坤, 耿滔

Propagation properties of circularly symmetric Airy beam modulated by spectral asymmetric envelope

Ning Xiao-Kun, Geng Tao
PDF
HTML
导出引用
  • 为了增强圆对称艾里光束的自聚焦能力, 本文使用了非对称双曲正割函数对光束的频谱进行了包络调制研究, 详细探讨了频谱中高、低频分量对自聚焦特性的影响. 结果表明单纯增加频谱的高频分量, 并不会使自聚焦能力持续增强, 低频分量对光束的自聚焦特性同样起着不可或缺的作用. 由于非对称包络可以灵活的调节高、低频分量的比重, 因此调制效果要优于高通滤波和对称包络调制. 当调制参数选取适当时, 光束焦点峰值大幅增加, 达到了调制前的3.4倍, 同时焦斑尺寸减小了23.6%. 最后, 本文对理论分析结果进行了实验验证, 实验结果与理论结果相吻合, 证明了频谱的非对称包络调制是一种高效且易于实现的调制方法.
    An asymmetric envelope function for modulating the spectrum of circular Airy beam is proposed in this work. The propagation properties of the modified circular Airy beam are investigated in both theory and experiment. The three parameters of the asymmetric hyperbolic secant function can be used to adjust the ratio of the high frequency components to the low frequency components in Fourier space, and thus tuning the propagation properties of this modified circular Airy beam. The results demonstrate that the focal position is affected mainly by the high frequency components. The maximum focal intensity will not be enhanced continuously by increasing the proportion of the high frequency components. It depends on the ratio of the high frequency components to the low frequency components when the center frequency is determined. Therefore, using an asymmetric envelope in Fourier space is much more reasonable than using the high pass filtering or symmetric Gaussian envelope. The FWHM decreases significantly with the increase of center frequency. When the parameters are chosen appropriately, the size of focal spot will be reduced significantly, the maximum focal intensity, especially the abruptly autofocusing property will be enhanced greatly and the focal position can remain almost the same as the focal position of the common circular Airy beam. The maximum focal intensity of the proposed beam is 3.4 times that of the common circular Airy beam and the abruptly autofocusing property of the proposed beam is much better than that of the beam using the symmetric Gaussian envelope. The phase-only encoding method in Fourier space is used to generate the proposed beam in experiment. The experimental results are in reasonable agreement with the simulation results. It indicates that the modified beam can be generated conveniently by using the same method as that used to generate the common circular Airy beam.
      通信作者: 耿滔, Tao_Geng@hotmail.com
    • 基金项目: 国家自然科学基金(批准号: 61975125)和上海市自然科学基金(批准号: 21ZR1443800)资助的课题.
      Corresponding author: Geng Tao, Tao_Geng@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61975125), and the Natural Science Foundation of Shanghai, China (Grant No. 21ZR1443800).
    [1]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979Google Scholar

    [2]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901Google Scholar

    [3]

    Qian J, Liu B Y, Sun H X, Yuan S Q, Yu X Z 2017 Chin. Phys. B 26 114304Google Scholar

    [4]

    崔省伟, 陈子阳, 胡克磊, 蒲继雄 2013 物理学报 62 094205Google Scholar

    Cui S W, Chen Z Y, Hu K L, Pu J X 2013 Acta Phys. Sin. 62 094205Google Scholar

    [5]

    张泽, 刘京郊, 张鹏, 倪培根, Prakash J, 胡洋, 姜东升, Christodoulides D N, 陈志刚 2013 物理学报 62 034209Google Scholar

    Zhang Z, Liu J J, Zhang P, Ni P G, Prakash J, Hu Y, Jiang D S, Christodoulides D N, Chen Z G 2013 Acta Phys. Sin. 62 034209Google Scholar

    [6]

    Efremidis N K, Christodoulides D N 2010 Opt. Lett. 35 4045Google Scholar

    [7]

    Gu Y L, Gbur G 2010 Opt. Lett. 35 3456Google Scholar

    [8]

    Khonina S N, Ustinov A V 2017 J. Opt. Soc. Am. A 34 1991Google Scholar

    [9]

    Papazoglou D G, Efremidis N K, Christodoulides D N, Tzortzakis S 2011 Opt. Lett. 36 1842Google Scholar

    [10]

    Lu W, Sun X, Chen H, Liu S, Lin Z 2019 Phys. Rev. A 99 013817Google Scholar

    [11]

    Jiang Y, Huang K, Lu X 2013 Opt. Express 21 24413Google Scholar

    [12]

    Koulouklidis A D, Papazoglou D G, Fedorov V Y, Tzortzakis S 2017 Phys. Rev. Lett. 119 223901Google Scholar

    [13]

    Fedorov V Y, Papazoglou D G, Tzortzakis S 2019 Opt. Lett. 44 2974Google Scholar

    [14]

    Panagiotopoulos P, Papazoglou D G, Couairon A, Tzortzakis S 2013 Nat. Commun. 4 2622Google Scholar

    [15]

    Liu K, Koulouklidis A D, Papazoglou D G, Tzortzakis S, Zhang X C 2016 Optica 3 605Google Scholar

    [16]

    Li N, Jiang Y, Huang K, Lu X 2014 Opt. Express 22 22847Google Scholar

    [17]

    Jiang Y, Zhu X, Yu W, Shao H, Zheng W, Lu X 2015 Opt. Express 23 29834Google Scholar

    [18]

    Zhong H, Zhang Y, Beli¢ M R, Li C, Wen F, Zhang Z, Zhang Y 2016 Opt. Express 24 7495Google Scholar

    [19]

    Porfirev A P, Khonina S N 2017 J. Opt. Soc. Am. B 34 2544Google Scholar

    [20]

    Li T, Zhang X, Huang K, Lu X 2021 Opt. Laser Technol. 137 106814Google Scholar

    [21]

    Geng T, Zhang X X 2020 Opt. Express 28 2447Google Scholar

    [22]

    Chremmos I, Zhang P, Prakash J, Efremidis N K, Christodoulides D N, Chen Z 2011 Opt. Lett. 36 3675Google Scholar

    [23]

    Magni V, Cerullo G, De Silvestri S 1992 J. Opt. Soc. Am. A 9 2031Google Scholar

  • 图 1  参数${r_0} = 1\;{\text{mm}}$, $w = $0.1 mm, $\alpha = 0.1$时 (a) CAB 的频谱$ F\left( k \right) $; (b) CAB频谱的绝对值$\left| {F\left( k \right)} \right|$及其包络曲线${E_{\text{V}}}\left( k \right)$

    Fig. 1.  Calculation results of (a)$ F\left( k \right) $, (b)$\left| {F\left( k \right)} \right|$ and ${E_{\text{V}}}\left( k \right)$ with ${r_0} = 1\;{\text{mm}}$, $w = $0.1 mm and $\alpha = 0.1$.

    图 2  不同调制参数的AMCAB的频谱分布以及相对应的初始面光强分布 (a)$ {\gamma _1} = 3\;{\text{m}}{{\text{m}}^{ - 1}} $, $ {\gamma _2} = 1.5\;{\text{m}}{{\text{m}}^{ - 1}} $保持不变, $\beta $不同时的频谱分布及相对应的(b)初始面光强分布; (c)$ \beta = 7\;{\text{m}}{{\text{m}}^{ - 1}} $$ {\gamma _2} = 1\;{\text{m}}{{\text{m}}^{ - 1}} $保持不变, $ {\gamma _1} $不同时的频谱分布及相对应的(d)初始面光强分布; (e)$ \beta = 7\;{\text{m}}{{\text{m}}^{ - 1}} $, $ {\gamma _1} = 1\;{\text{m}}{{\text{m}}^{ - 1}} $保持不变, $ {\gamma _2} $不同时的频谱分布及相对应的(f)初始面光强分布

    Fig. 2.  Spectrum distributions and corresponding intensity distributions of AMCAB at the initial plane with different parameters. (a) Spectrum distributions and (b) corresponding intensity distributions with different $\beta $ when $ {\gamma _1} = 3\;{\text{m}}{{\text{m}}^{ - 1}} $, $ {\gamma _2} = 1.5\;{\text{m}}{{\text{m}}^{ - 1}} $; (c) spectrum distributions and (d) corresponding intensity distributions with different $ {\gamma _1} $ when$ \beta = 7\;{\text{m}}{{\text{m}}^{ - 1}} $, $ {\gamma _2} = 1\;{\text{m}}{{\text{m}}^{ - 1}} $; (e) Spectrum distributions and (f) corresponding intensity distributions with different $ {\gamma _2} $ when$ \beta = 7\;{\text{m}}{{\text{m}}^{ - 1}} $, $ {\gamma _1} = 1\;{\text{m}}{{\text{m}}^{ - 1}} $.

    图 3  CAB和AMCAB的侧面光强分布 (a) CAB; (b) $\beta = $$ 8.3\;{\text{m}}{{\text{m}}^{ - 1}}$, ${\gamma _{\text{1}}} = 5.5\;{\text{m}}{{\text{m}}^{ - 1}}$, ${\gamma _{\text{2}}} = 0.1\;{\text{m}}{{\text{m}}^{ - 1}}$的AMCAB

    Fig. 3.  Propagation dynamics of CAB and AMCAB: (a) CAB; (b) AMCAB with $\beta = 8.3\;{\text{m}}{{\text{m}}^{ - 1}}$, ${\gamma _{\text{1}}} = 5.5\;{\text{m}}{{\text{m}}^{ - 1}}$ and ${\gamma _{\text{2}}} = 0.1\;{\text{m}}{{\text{m}}^{ - 1}}$.

    图 4  $\beta $不同时, AMCAB和CAB的相对焦距差$ \eta $${\gamma _1}$, ${\gamma _2}$的变化情况 (a)$ \beta = 6\;{\text{m}}{{\text{m}}^{ - 1}} $; (b)$ \beta = 7\;{\text{m}}{{\text{m}}^{ - 1}} $; (c)$\beta = $$ 8\;{\text{m}}{{\text{m}}^{ - 1}}$

    Fig. 4.  The relative focal distance difference between the CAB and the AMCAB as a function of ${\gamma _1}$ and ${\gamma _2}$ with different $\beta $. (a) $ \beta = 6\;{\text{m}}{{\text{m}}^{ - 1}} $; (b) $ \beta = 7\;{\text{m}}{{\text{m}}^{ - 1}} $; (c) $\beta = $$ 8\;{\text{m}}{{\text{m}}^{ - 1}}$.

    图 5  $\beta $不同时, AMCAB和CAB的焦点光强比值随${\gamma _1}$, ${\gamma _2}$的变化情况, 其中虚线为光强比值的极大值位置随${\gamma _1}$$ {\gamma _2} $的变化曲线 (a) $ \beta = 6\;{\text{m}}{{\text{m}}^{ - 1}} $; (b) $ \beta = 7\;{\text{m}}{{\text{m}}^{ - 1}} $; (c) $ \beta = 8\;{\text{m}}{{\text{m}}^{ - 1}} $; (d) $ \beta = 9\;{\text{m}}{{\text{m}}^{ - 1}} $

    Fig. 5.  The maximum focal intensity contrast between the AMCAB and the CAB as a function of ${\gamma _1}$ and ${\gamma _2}$ with different $\beta $. Here, the dash lines show the positions of the maximum values as a function of ${\gamma _1}$ and $ {\gamma _2} $. (a) $ \beta = 6\;{\text{m}}{{\text{m}}^{ - 1}} $; (b) $ \beta = 7\;{\text{m}}{{\text{m}}^{ - 1}} $; (c) $\beta = $$ 8\;{\text{m}}{{\text{m}}^{ - 1}}$; (d) $ \beta = 9\;{\text{m}}{{\text{m}}^{ - 1}} $.

    图 6  不同参数的AMCAB在焦平面上的归一化光强分布 (a)$ {\gamma _1} = 3\;{\text{m}}{{\text{m}}^{ - 1}} $, $ {\gamma _2} = 1.5\;{\text{m}}{{\text{m}}^{ - 1}} $时, 不同$\beta $的AMCAB; (b)$ \beta = 7\;{\text{m}}{{\text{m}}^{ - 1}} $, $ {\gamma _2} = 1\;{\text{m}}{{\text{m}}^{ - 1}} $时, 不同$ {\gamma _1} $的AMCAB; (c)$ \beta = 6\;{\text{m}}{{\text{m}}^{ - 1}} $, $ {\gamma _1} = 1\;{\text{m}}{{\text{m}}^{ - 1}} $时, 不同$ {\gamma _2} $的AMCAB.

    Fig. 6.  Normalized intensity distributions of AMCAB with different parameters at the focal plane: (a) AMCAB with different $\beta $ when $ {\gamma _1} = 3\;{\text{m}}{{\text{m}}^{ - 1}} $, $ {\gamma _2} = 1.5\;{\text{m}}{{\text{m}}^{ - 1}} $; (b) AMCAB with different $ {\gamma _1} $ when $ \beta = 7\;{\text{m}}{{\text{m}}^{ - 1}} $, $ {\gamma _2} = 1\;{\text{m}}{{\text{m}}^{ - 1}} $; (c) AMCAB with different $ {\gamma _2} $ when $ \beta = 6\;{\text{m}}{{\text{m}}^{ - 1}} $, ${\gamma _1} = $$ 1\;{\text{m}}{{\text{m}}^{ - 1}}$.

    图 7  不同参数的AMCAB沿z轴的${I_C}$分布仿真结果  (a)${\gamma _1} = 3\;{\text{m}}{{\text{m}}^{ - 1}}$, $ {\gamma _2} = 1.5\;{\text{m}}{{\text{m}}^{ - 1}} $时, 不同$\beta $的AMCAB; (b)$ \beta = 6\;{\text{m}}{{\text{m}}^{ - 1}} $, $ {\gamma _2} = 1.5\;{\text{m}}{{\text{m}}^{ - 1}} $时, 不同$ {\gamma _1} $的AMCAB; (c)$ \beta = 6\;{\text{m}}{{\text{m}}^{ - 1}} $, ${\gamma _1} = 1\;{\text{m}}{{\text{m}}^{ - 1}}$时, 不同$ {\gamma _2} $的AMCAB.

    Fig. 7.  Simulated results of on-axis intensity contrast ${I_C}$ of AMCAB with different parameters. (a) AMCAB with different $\beta $ when ${\gamma _1} = 3\;{\text{m}}{{\text{m}}^{ - 1}}$, $ {\gamma _2} = 1.5\;{\text{m}}{{\text{m}}^{ - 1}} $; (b) AMCAB with different $ {\gamma _1} $ when $ \beta = 6\;{\text{m}}{{\text{m}}^{ - 1}} $, $ {\gamma _2} = 1.5\;{\text{m}}{{\text{m}}^{ - 1}} $; (c) AMCAB with different $ {\gamma _2} $ when $ \beta = 6\;{\text{m}}{{\text{m}}^{ - 1}} $, ${\gamma _1} = 1\;{\text{m}}{{\text{m}}^{ - 1}}$.

    图 8  实验光路示意图

    Fig. 8.  Diagram of experimental setup.

    图 9  初始面光强分布的实验(虚线)和仿真(实线)结果以及相应的加载于SLM上的相位分布图 (a) CAB的归一化径向光强分布和(b)二维光强分布实验结果以及(c)SLM上加载的相位分布; (d) $ \beta = 6\;{\text{m}}{{\text{m}}^{ - 1}} $, ${\gamma _{\text{1}}} = 2.3\;{\text{m}}{{\text{m}}^{ - 1}}$, ${\gamma _{\text{2}}} = 0.8\;{\text{m}}{{\text{m}}^{ - 1}}$时, AMCAB的归一化径向光强分布和(e)二维光强分布实验结果以及(f)SLM上加载的相位分布; (g)$ \beta = 8.3\;{\text{m}}{{\text{m}}^{ - 1}} $, ${\gamma _{\text{1}}} = 5.5\;{\text{m}}{{\text{m}}^{ - 1}}$, ${\gamma _{\text{2}}} = 0.1\;{\text{m}}{{\text{m}}^{ - 1}}$时, AMCAB的归一化径向光强分布和(h)二维光强分布实验结果以及(i) SLM上加载的相位分布

    Fig. 9.  Phase masks on the SLM, experimental (dash line) and simulated (solid line) results of normalized intensity distributions profiles at initial plane: (a) Radial intensity distributions and (b) measured 2D intensity distributions of CAB, and (c) corresponding phase mask on the SLM; (d) radial intensity distributions and (e) measured 2D intensity distributions of AMCAB with $ \beta = 6\;{\text{m}}{{\text{m}}^{ - 1}} $, ${\gamma _{\text{1}}} = 2.3\;{\text{m}}{{\text{m}}^{ - 1}}$, ${\gamma _{\text{2}}} = 0.8\;{\text{m}}{{\text{m}}^{ - 1}}$, and (f) corresponding phase mask on the SLM; (g) radial intensity distributions and (h) measured 2D intensity distributions of AMCAB with $ \beta = 8.3\;{\text{m}}{{\text{m}}^{ - 1}} $, ${\gamma _{\text{1}}} = 5.5\;{\text{m}}{{\text{m}}^{ - 1}}$, ${\gamma _{\text{2}}} = 0.1\;{\text{m}}{{\text{m}}^{ - 1}}$, and (i) corresponding phase mask on the SLM.

    图 10  参数$ \beta = 8.3\;{\text{m}}{{\text{m}}^{ - 1}} $, ${\gamma _{\text{1}}} = 5.5\;{\text{m}}{{\text{m}}^{ - 1}}$, ${\gamma _{\text{2}}} = 0.1\;{\text{m}}{{\text{m}}^{ - 1}}$时, AMCAB在不同截面光强分布的实验(虚线)和仿真(实线)结果, 其中${I_{\max }}\left( 0 \right)$为初始面光强峰值 (a)$z = 400\;{\text{mm}}$处的径向光强比值分布和相应的(b)二维光强分布实验结果; (c)焦平面($z = 655\;{\text{mm}}$)处的径向光强比值分布和相应的(d)二维光强分布实验结果

    Fig. 10.  Experimental (dash line) and simulated (solid line) results of intensity contrast $ I/{I_{\max }}(0) $ of AMCAB with $ \beta = 8.3\;{\text{m}}{{\text{m}}^{ - 1}} $, ${\gamma _{\text{1}}} = 5.5\;{\text{m}}{{\text{m}}^{ - 1}}$, ${\gamma _{\text{2}}} = 0.1\;{\text{m}}{{\text{m}}^{ - 1}}$ at different propagation planes: (a) Radial intensity contrast and (b) corresponding measured 2D intensity distributions at $z = 400\;{\text{mm}}$; (c) radial intensity contrast and (d) the corresponding measured 2D intensity distributions at the focal plane ($z = 655\;{\text{mm}}$).

    表 1  CAB与GCAB, AMCAB最佳调制结果的比较

    Table 1.  The optimized results of GCAB and AMCAB, and the results of CAB are also presented for comparison.

    光束
    类型
    $ {I_{\max }}/{\left( {{I_{\rm CAB}}} \right)_{\max }} $$( I_{\rm{C} })_{\max } = $$ I_{\max }/I_{\max} (0)$焦斑F
    WHM/μm
    CAB15238
    GCAB[21]2.969434
    AMCAB3.4136929
    注: ${I_{\max }}$为焦点最大光强, $ {\left( {{I_{{\text{CAB}}}}} \right)_{\max }} $为CAB焦点最大光强, $ {I_{\max }}\left( 0 \right) $为初始面最大光强
    下载: 导出CSV
  • [1]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979Google Scholar

    [2]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901Google Scholar

    [3]

    Qian J, Liu B Y, Sun H X, Yuan S Q, Yu X Z 2017 Chin. Phys. B 26 114304Google Scholar

    [4]

    崔省伟, 陈子阳, 胡克磊, 蒲继雄 2013 物理学报 62 094205Google Scholar

    Cui S W, Chen Z Y, Hu K L, Pu J X 2013 Acta Phys. Sin. 62 094205Google Scholar

    [5]

    张泽, 刘京郊, 张鹏, 倪培根, Prakash J, 胡洋, 姜东升, Christodoulides D N, 陈志刚 2013 物理学报 62 034209Google Scholar

    Zhang Z, Liu J J, Zhang P, Ni P G, Prakash J, Hu Y, Jiang D S, Christodoulides D N, Chen Z G 2013 Acta Phys. Sin. 62 034209Google Scholar

    [6]

    Efremidis N K, Christodoulides D N 2010 Opt. Lett. 35 4045Google Scholar

    [7]

    Gu Y L, Gbur G 2010 Opt. Lett. 35 3456Google Scholar

    [8]

    Khonina S N, Ustinov A V 2017 J. Opt. Soc. Am. A 34 1991Google Scholar

    [9]

    Papazoglou D G, Efremidis N K, Christodoulides D N, Tzortzakis S 2011 Opt. Lett. 36 1842Google Scholar

    [10]

    Lu W, Sun X, Chen H, Liu S, Lin Z 2019 Phys. Rev. A 99 013817Google Scholar

    [11]

    Jiang Y, Huang K, Lu X 2013 Opt. Express 21 24413Google Scholar

    [12]

    Koulouklidis A D, Papazoglou D G, Fedorov V Y, Tzortzakis S 2017 Phys. Rev. Lett. 119 223901Google Scholar

    [13]

    Fedorov V Y, Papazoglou D G, Tzortzakis S 2019 Opt. Lett. 44 2974Google Scholar

    [14]

    Panagiotopoulos P, Papazoglou D G, Couairon A, Tzortzakis S 2013 Nat. Commun. 4 2622Google Scholar

    [15]

    Liu K, Koulouklidis A D, Papazoglou D G, Tzortzakis S, Zhang X C 2016 Optica 3 605Google Scholar

    [16]

    Li N, Jiang Y, Huang K, Lu X 2014 Opt. Express 22 22847Google Scholar

    [17]

    Jiang Y, Zhu X, Yu W, Shao H, Zheng W, Lu X 2015 Opt. Express 23 29834Google Scholar

    [18]

    Zhong H, Zhang Y, Beli¢ M R, Li C, Wen F, Zhang Z, Zhang Y 2016 Opt. Express 24 7495Google Scholar

    [19]

    Porfirev A P, Khonina S N 2017 J. Opt. Soc. Am. B 34 2544Google Scholar

    [20]

    Li T, Zhang X, Huang K, Lu X 2021 Opt. Laser Technol. 137 106814Google Scholar

    [21]

    Geng T, Zhang X X 2020 Opt. Express 28 2447Google Scholar

    [22]

    Chremmos I, Zhang P, Prakash J, Efremidis N K, Christodoulides D N, Chen Z 2011 Opt. Lett. 36 3675Google Scholar

    [23]

    Magni V, Cerullo G, De Silvestri S 1992 J. Opt. Soc. Am. A 9 2031Google Scholar

  • [1] 陆万利. 锥角调制的圆艾里涡旋光束构建光学针. 物理学报, 2024, 73(17): 174203. doi: 10.7498/aps.73.20240878
    [2] 范海玲, 郭志坚, 李明强, 卓红斌. 等离子体中涡旋光束自聚焦与成丝现象的模拟研究. 物理学报, 2023, 72(1): 014206. doi: 10.7498/aps.72.20221232
    [3] 王志鹏, 王秉中, 刘金品, 王任. 实现散射场强整形的微散射体阵列逆向设计方法. 物理学报, 2021, 70(1): 010202. doi: 10.7498/aps.70.20200825
    [4] 朱一帆, 耿滔. 谐振腔内的高质量圆对称艾里光束的产生方法. 物理学报, 2020, 69(1): 014205. doi: 10.7498/aps.69.20191088
    [5] 吕浩, 尤凯, 兰燕燕, 高冬, 赵秋玲, 王霞. 非对称光束干涉制备二维微纳光子结构研究. 物理学报, 2017, 66(21): 217801. doi: 10.7498/aps.66.217801
    [6] 张羽, 罗秀娟, 曹蓓, 陈明徕, 刘辉, 夏爱利, 兰富洋. 傅里叶望远镜发射阵列的冗余度及冗余度-斯特列尔比-目标信息特性分析. 物理学报, 2016, 65(11): 114201. doi: 10.7498/aps.65.114201
    [7] 赵维谦, 唐芳, 邱丽荣, 刘大礼. 轴对称矢量光束聚焦特性研究现状及其应用. 物理学报, 2013, 62(5): 054201. doi: 10.7498/aps.62.054201
    [8] 张泽, 刘京郊, 张鹏, 倪培根, Prakash Jai, 胡洋, 姜东升, Christodoulides Demetrios N, 陈志刚. 多艾里光束合成自聚焦光束的实验实现. 物理学报, 2013, 62(3): 034209. doi: 10.7498/aps.62.034209
    [9] 李湘衡, 张冰志, 佘卫龙. 相干光伏空间孤子非对称碰撞研究. 物理学报, 2011, 60(7): 074216. doi: 10.7498/aps.60.074216
    [10] 程文雍, 张小民, 粟敬钦, 赵圣之, 董军, 李平, 周丽丹. 利用运动光束抑制高功率激光小尺度自聚焦. 物理学报, 2009, 58(10): 7012-7016. doi: 10.7498/aps.58.7012
    [11] 李平, 粟敬钦, 马驰, 张锐, 景峰. 光谱色散匀滑对焦斑光强频谱的影响. 物理学报, 2009, 58(9): 6210-6215. doi: 10.7498/aps.58.6210
    [12] 易煦农, 胡 巍, 罗海陆, 朱 静. 用高阶对比度研究光束的小尺度自聚焦. 物理学报, 2005, 54(2): 749-754. doi: 10.7498/aps.54.749
    [13] 冯敏, 卫青, 施解龙, 薛云. 自聚焦克尔类电介质中非傍轴光束调制非稳的研究. 物理学报, 2004, 53(4): 1088-1094. doi: 10.7498/aps.53.1088
    [14] 刘劲松. 非对称光折变全息空间光孤子的存在曲线. 物理学报, 2004, 53(9): 3014-3019. doi: 10.7498/aps.53.3014
    [15] 彭志涛, 景峰, 刘兰琴, 朱启华, 陈波, 张昆, 刘华, 张清泉, 程晓峰, 蒋东镔, 刘红婕, 彭翰生. 自聚焦激光束光束质量评价的功率谱密度方法. 物理学报, 2003, 52(1): 87-90. doi: 10.7498/aps.52.87
    [16] 文双春, 范滇元. 增益(损耗)介质中高功率激光束的小尺度自聚焦理论研究. 物理学报, 2000, 49(7): 1282-1286. doi: 10.7498/aps.49.1282
    [17] 文双春, 范滇元. 非傍轴光束的小尺度自聚焦研究. 物理学报, 2000, 49(3): 460-462. doi: 10.7498/aps.49.460
    [18] 李建庆, 周国生, 杨伯君, 徐大雄. 时空非对称光脉冲在饱和自聚焦克尔介质中的传输. 物理学报, 1998, 47(1): 19-26. doi: 10.7498/aps.47.19
    [19] 佘卫龙, 何穗荣, 汪河洲, 余振新, 莫党. 热自聚焦诱导光折变非对称自散焦. 物理学报, 1996, 45(12): 2022-2026. doi: 10.7498/aps.45.2022
    [20] 许超, 张静娟, 陈俊本. 用于圆对称光束波前变换的位相型光学系统. 物理学报, 1993, 42(8): 1245-1251. doi: 10.7498/aps.42.1245
计量
  • 文章访问数:  4544
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-05
  • 修回日期:  2022-02-06
  • 上网日期:  2022-02-21
  • 刊出日期:  2022-05-20

/

返回文章
返回