搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自混沌光相位调制光反馈半导体激光器输出光的混沌特性

庞爽 冯玉玲 于萍 姚治海

引用本文:
Citation:

自混沌光相位调制光反馈半导体激光器输出光的混沌特性

庞爽, 冯玉玲, 于萍, 姚治海

Chaotic characteristics of output light from semiconductor laser with self-chaotic phase modulation and optical feedback

Pang Shuang, Feng Yu-Ling, Yu Ping, Yao Zhi-Hai
PDF
HTML
导出引用
  • 混沌光的延时特征(time delay signature, TDS)和带宽是影响混沌激光应用的两个重要参量, 常用来表征混沌光的混沌特性. 将具有外腔光反馈的半导体激光器(semiconductor laser, SL)作为主激光器, 以具有自混沌光相位调制光反馈的SL作为从激光器, 并将主激光器输出的混沌光双路注入到从激光器中, 构成具有外光双路注入的自混沌光相位调制光反馈的半导体激光器系统. 数值研究了外光注入系数和反馈系数等参数对系统输出光TDS的影响, 然后将此系统对TDS的抑制效果和具有外光双路注入的光反馈半导体激光器以及具有外光单路注入的自混沌光相位调制光反馈半导体激光器进行对比和分析, 从而阐明了本文所提出的方案对TDS的抑制效果较好. 在TDS被有效抑制的参数条件下, 研究了混沌光的带宽, 结果表明: 本文提出的方案可以有效提高系统输出混沌光的带宽, 获得混沌光的3 dB带宽的最大值约为16 GHz.
    Distributed feedback semiconductor lasers (DFB-SLs) are the class B lasers, and would output chaotic laser under the external disturbances, such as external optical feedback and optical injection. Chaotic laser are widely used in many fields, including optical fiber sensing, chaotic laser secure communication, and better entropy sources for generating high-speed random number. However, the chaotic laser outputted from the semiconductor lasers with external cavity optical feedback produces a time delay signature (TDS) , which limits the applications of chaotic laser. On the other hand, the bandwidth (BW) of chaotic carrier signal plays the important role in determining the transmission rate of information signal. Therefore, the TDS and BW are two important parameters that will affect chaotic laser’s applications, and they are usually used to describe the chaos characteristics of chaotic laser.In this paper, we present a new scheme used to describe the TDS and investigate the BW of chaotic laser from semiconductor laser. For this scheme, the output laser from a DFB-SL with external single optical feedback is injected in double ways into another DFB-SL with phase modulation optical feedback by self chaos light. Thus they form a semiconductor laser system with external double optical injection and phase modulation optical feedback by self chaos light (SL-EDOI-PMOFBSCL). We investigate numerically the influences of the system parameters on TDS, such as the injection coefficient and feedback coefficient. Then the suppression effects on TDS are contrasted and analyzed with two other systems, that is to say, the semiconductor laser with external double optical injection and optical feedback (SL-EDOI-OF) and the semiconductor laser with external single optical injection and phase modulation optical feedback by self chaos light (SL-ESOI-PMOFBSCL). The results indicate that the proposed scheme in this work has the better suppression effect on TDS. Then the BW of the chaotic laser is investigated under the parameters conditions of effectively suppressing TDS. The simulation results show that the scheme proposed in this work can enhance the BW of chaotic laser by appropriately selecting the parametric values, and the maximum BW value of the obtained chaotic laser reaches about 16 GHz.
      通信作者: 冯玉玲, FYLCUST@163.com
    • 基金项目: 吉林省科技发展计划 (批准号: 20190201135JC) 资助的课题.
      Corresponding author: Feng Yu-Ling, FYLCUST@163.com
    • Funds: Project supported by the Science and Technology Development Project of Jilin Province, China (Grant No. 20190201135JC).
    [1]

    Wang Y, Wang B, Wang A 2008 IEEE Photonics. Technol. Lett. 20 1636Google Scholar

    [2]

    王宇, 靳宝全, 张建国, 王东, 张明江, 王安帮, 王云才 2018 光学学报 38 0328016Google Scholar

    Wang Y, Jin B Q, Zhang J G, Wang D, Zhang M J, Wang A B, Wang Y C 2018 Acta Opt. Sin. 38 0328016Google Scholar

    [3]

    Simpson T B, Liu J M, Gavrielides A, Kovanis V, Alsing P M 1995 Phys. Rev. A 51 4181Google Scholar

    [4]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173Google Scholar

    [5]

    Senlin Y 2009 J. Opt. Commun. 30 20Google Scholar

    [6]

    Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243Google Scholar

    [7]

    Argyris A, Syvridis D, Larger L, Annovazzi V 2005 Nature 438 343Google Scholar

    [8]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Yoshimura K 2008 Nat. Photonics. 2 728Google Scholar

    [9]

    Metropolis N, Ulam S 1949 J. Am. Stat. Assoc. 44 335Google Scholar

    [10]

    张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 物理学报 59 7679Google Scholar

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679Google Scholar

    [11]

    Wu J G, Xia G Q, Tang X, Lin X D, Wu Z M 2010 Opt. Express. 18 6661Google Scholar

    [12]

    Jafari A, Sedghi H, Mabhouti K, Behnia S 2011 Opt. Commun. 284 3018Google Scholar

    [13]

    Udaltsov V S, Goedgebuer J P, Larger L, Vladimir S, Cuenot J, William T, Rhodes 2003 Phys. Lett. E 308 54Google Scholar

    [14]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960Google Scholar

    [15]

    Vicente R, Daudén J, Colet P, Toral R 2005 IEEE J. Quantum Electron. 41 541Google Scholar

    [16]

    Xiang S, Pan W, Zhang L 2014 Opt. Commun. 324 38Google Scholar

    [17]

    贾耕涛, 陈毅龙, 余江涛, 柯俊翔, 义理林 2018 光通信研究 2 11Google Scholar

    Jia G T, Chen Y L, Yu J T, Ke J X, Yi L L 2018 Study Opt. Commun. 2 11Google Scholar

    [18]

    张晓旭, 吴天安, 常凯歌, 张胜海 2017 中国激光 44 0501010Google Scholar

    Zhang X X, Wu T A, Chang K G, Zhang S H 2017 Chin. J. Lasers. 44 0501010Google Scholar

    [19]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 815Google Scholar

    [20]

    Wang Y, Zhang G, Wang A 2007 Opt. Commun. 277 156Google Scholar

    [21]

    颜森林 2019 中国激光 46 0808003Google Scholar

    Yan S L 2019 Chin. J. Lasers. 46 0808003Google Scholar

    [22]

    Wang A, Yang Y, Wang B, Zhang B, Li L, Wang Y C 2013 Opt. Express 21 8701Google Scholar

    [23]

    Zhao A, Jiang N, Liu S, Xue C P, Tang J M, Qiu K 2019 Opt. Express 27 12336Google Scholar

    [24]

    孙巍阳, 胡宝洁, 王航 2019 激光与光电子学进展 56 211404Google Scholar

    Sun W Y, Hu B J, Wang H 2019 Las. Optoelect. Prog. 56 211404Google Scholar

    [25]

    Cui S, Zhang J Z 2019 IEEE Photonics J. 11 7905208Google Scholar

    [26]

    Zhang R, Zhou P, Yang Y G, Fang Q, Mu P H 2020 Opt. Express. 28 7197Google Scholar

    [27]

    李增, 冯玉玲, 王晓茜, 姚治海 2018 物理学报 67 140501Google Scholar

    Li Z, Feng Y L, Wang X Q, Yao Z H 2018 Acta Phys. Sin. 67 140501Google Scholar

    [28]

    张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海 2020 物理学报 69 090501Google Scholar

    Zhang Y N, Feng Y L, Wang X Q, Zhao Z M, Gao C, Yao Z H 2020 Acta Phys. Sin. 69 090501Google Scholar

    [29]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347Google Scholar

    [30]

    卢东, 钟祝强, 夏光琼, 吴正茂 2016 光子学报 45 1014003Google Scholar

    Lu D, Zhong Z Q, Xia G Q, Wu Z M 2016 Acta Photon. Sin. 45 1014003Google Scholar

    [31]

    Mikami T, Kanno K, Aoyama K 2012 Phys. Rev. E 85 016211Google Scholar

    [32]

    王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭萍 2007 物理学报 56 4372Google Scholar

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372Google Scholar

    [33]

    阎娟, 潘炜, 李念强, 张力月, 刘庆喜 2016 物理学报 65 204203Google Scholar

    Yan J, Pan W, Li N Q, Zhang L Y, Liu Q X 2016 Acta Phys. Sin. 65 204203Google Scholar

    [34]

    王永胜, 赵彤, 王安帮, 张明江, 王云才 2017 激光与光电子进展 54 111401Google Scholar

    Wang Y S, Zhao T, Wang A B, Zhang M J, Wang Y C 2017 Las. Optoelect. Prog. 54 111401Google Scholar

  • 图 1  具有外光双路注入的自混沌光相位调制的光反馈半导体激光器系统的示意图

    Fig. 1.  Schematic diagram of semiconductor laser system with external double optical injection and phase modulation optical feedback by self chaos light.

    图 2  SL-EDOI-PMOFBSCL在延迟时间$ {\tau _{\text{s}}} = 3 $ ns下输出混沌激光的(a)时间序列和(b)对应的自相关函数曲线

    Fig. 2.  Time series (a) and the corresponding ACF curves (b) of chaotic laser from the SL-EDOI-PMOFBSCL at times delay $ {\tau _{\text{s}}} = 3 $ ns.

    图 3  SL-EDOI-PMOFBSCL输出混沌光延时特征值$ \beta $随参数$ {K_{\text{s}}} $$ {K_{\text{m}}} $变化的二维图

    Fig. 3.  Two-dimensional maps of the time-delay characteristic value $ \beta $ in the parameter space of $ {K_{\text{s}}} $ and $ {K_{\text{m}}} $ for chaotic laser from the SL-EDOI-PMOFBSCL.

    图 4  SL-EDOI-PMOFBSCL输出混沌激的延时特征值$ \beta $随参数$ {K_{\text{1}}} $$ {K_{\text{2}}} $变化的二维图

    Fig. 4.  Two-dimensional maps of the time-delay characteristic value $ \beta $ in the parameter space of $ {K_{\text{1}}} $ and $ {K_{\text{2}}} $ for chaotic laser from the SL-EDOI-PMOFBSCL.

    图 5  SL-EDOI-PMOFBSCL输出混沌光的延时特征值$ \beta $随参数$ {K_{\text{s}}} $$ {K_{\text{2}}} $变化的二维图

    Fig. 5.  Two-dimensional maps of the time-delay characteristic value $ \beta $ in the parameter space of $ {K_{\text{s}}} $ and $ {K_{\text{2}}} $ for chaotic laser from the SL-EDOI-PMOFBSCL.

    图 6  SL-EDOI-PMOFBSCL输出混沌光的延时特征值$ \beta $$ {P_{\text{m}}} $的变化曲线

    Fig. 6.  Curve of the time delay characteristic values $ \beta $ with $ {P_{\text{m}}} $ for chaotic laser from the SL-EDOI-PMOFBSCL.

    图 7  SL-EDOI-PMOFBSCL输出混沌激光的延时特征值$ \beta $$ \Delta f $的变化曲线

    Fig. 7.  Curve of the time delay characteristic values $ \beta $ versus $ \Delta f $ for chaotic laser from the SL-EDOI-PMOFBSCL.

    图 8  对于SL-EDOI-OF和SL-ESOI-PMOFBSCL以及SL-EDOI-PMOFBSCL 输出的混沌光(a)延时特征值$ \beta $$ {K_{\text{2}}} $和(b)$ {K_{\text{s}}} $的变化曲线

    Fig. 8.  Curves of the time delay characteristic value $ \beta $ versus (a) $ {K_{\text{2}}} $ and (b) $ {K_{\text{s}}} $ for chaotic laser from the SL-EDOI-OF, SL-ESOI-PMOFBSCL and SL-EDOI-PMOFBSCL

    图 9  SL-EDOI-PMOFBSCL在反馈系数$ {K_{\text{m}}} $= 0.06下输出混沌激光的(a)时间序列和(b)对应的功率谱. 其中(b)中的虚线标示了混沌光的3 dB带宽值

    Fig. 9.  Time series (a) and the corresponding power spectra (b) for chaotic laser from SL-EDOI-PMOFBSCL at feedback factor $ {K_{\text{m}}} $= 0.06, the dashed lines in (b) indicate the value of the 3 dB bandwidth of the chaotic laser.

    图 10  SL-EDOI-PMOFBSCL输出混沌激光带宽随反馈系数$ {K_{\text{m}}} $的变化曲线

    Fig. 10.  Curve of bandwidth versus feedback coefficient $ {K_{\text{m}}} $ for chaotic laser from SL-EDOI-PMOFBSCL.

    图 11  在不同$ {K_{\text{m}}} $值下SL-EDOI-PMOFBSCL输出混沌光带宽随反馈系数$ {K_{\text{s}}} $变化曲线 (a) $ {K_{\text{m}}} $= 0.12; (b) $ {K_{\text{m}}} $= 0.18

    Fig. 11.  Curves of bandwidth versus feedback coefficient $ {K_{\text{s}}} $ for chaotic laser from the SL-EDOI-PMOFBSCL at different Km: (a) $ {K_{\text{m}}} $= 0.12; (b) $ {K_{\text{m}}} $= 0.18.

    图 12  SL-EDOI-PMOFBSCL输出混沌激光的带宽随$ {K_{\text{2}}} $的变化曲线

    Fig. 12.  Bandwidth versus $ {K_{\text{2}}} $ for chaotic laser from the SL-EDOI-PMOFBSCL.

    图 13  SL-EDOI-PMOFBSCL输出混沌激光的带宽随$ {P_{\text{m}}} $的变化

    Fig. 13.  Bandwidth versus $ {P_{\text{m}}} $ for chaotic laser from the SL-EDOI-PMOFBSCL.

    图 14  SL-EDOI-PMOFBSCL输出混沌激光带宽随$ \Delta f $的变化

    Fig. 14.  Bandwidth versus $ \Delta f $ for chaotic laser from the SL-EDOI-PMOFBSCL.

  • [1]

    Wang Y, Wang B, Wang A 2008 IEEE Photonics. Technol. Lett. 20 1636Google Scholar

    [2]

    王宇, 靳宝全, 张建国, 王东, 张明江, 王安帮, 王云才 2018 光学学报 38 0328016Google Scholar

    Wang Y, Jin B Q, Zhang J G, Wang D, Zhang M J, Wang A B, Wang Y C 2018 Acta Opt. Sin. 38 0328016Google Scholar

    [3]

    Simpson T B, Liu J M, Gavrielides A, Kovanis V, Alsing P M 1995 Phys. Rev. A 51 4181Google Scholar

    [4]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173Google Scholar

    [5]

    Senlin Y 2009 J. Opt. Commun. 30 20Google Scholar

    [6]

    Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243Google Scholar

    [7]

    Argyris A, Syvridis D, Larger L, Annovazzi V 2005 Nature 438 343Google Scholar

    [8]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Yoshimura K 2008 Nat. Photonics. 2 728Google Scholar

    [9]

    Metropolis N, Ulam S 1949 J. Am. Stat. Assoc. 44 335Google Scholar

    [10]

    张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 物理学报 59 7679Google Scholar

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679Google Scholar

    [11]

    Wu J G, Xia G Q, Tang X, Lin X D, Wu Z M 2010 Opt. Express. 18 6661Google Scholar

    [12]

    Jafari A, Sedghi H, Mabhouti K, Behnia S 2011 Opt. Commun. 284 3018Google Scholar

    [13]

    Udaltsov V S, Goedgebuer J P, Larger L, Vladimir S, Cuenot J, William T, Rhodes 2003 Phys. Lett. E 308 54Google Scholar

    [14]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960Google Scholar

    [15]

    Vicente R, Daudén J, Colet P, Toral R 2005 IEEE J. Quantum Electron. 41 541Google Scholar

    [16]

    Xiang S, Pan W, Zhang L 2014 Opt. Commun. 324 38Google Scholar

    [17]

    贾耕涛, 陈毅龙, 余江涛, 柯俊翔, 义理林 2018 光通信研究 2 11Google Scholar

    Jia G T, Chen Y L, Yu J T, Ke J X, Yi L L 2018 Study Opt. Commun. 2 11Google Scholar

    [18]

    张晓旭, 吴天安, 常凯歌, 张胜海 2017 中国激光 44 0501010Google Scholar

    Zhang X X, Wu T A, Chang K G, Zhang S H 2017 Chin. J. Lasers. 44 0501010Google Scholar

    [19]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 815Google Scholar

    [20]

    Wang Y, Zhang G, Wang A 2007 Opt. Commun. 277 156Google Scholar

    [21]

    颜森林 2019 中国激光 46 0808003Google Scholar

    Yan S L 2019 Chin. J. Lasers. 46 0808003Google Scholar

    [22]

    Wang A, Yang Y, Wang B, Zhang B, Li L, Wang Y C 2013 Opt. Express 21 8701Google Scholar

    [23]

    Zhao A, Jiang N, Liu S, Xue C P, Tang J M, Qiu K 2019 Opt. Express 27 12336Google Scholar

    [24]

    孙巍阳, 胡宝洁, 王航 2019 激光与光电子学进展 56 211404Google Scholar

    Sun W Y, Hu B J, Wang H 2019 Las. Optoelect. Prog. 56 211404Google Scholar

    [25]

    Cui S, Zhang J Z 2019 IEEE Photonics J. 11 7905208Google Scholar

    [26]

    Zhang R, Zhou P, Yang Y G, Fang Q, Mu P H 2020 Opt. Express. 28 7197Google Scholar

    [27]

    李增, 冯玉玲, 王晓茜, 姚治海 2018 物理学报 67 140501Google Scholar

    Li Z, Feng Y L, Wang X Q, Yao Z H 2018 Acta Phys. Sin. 67 140501Google Scholar

    [28]

    张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海 2020 物理学报 69 090501Google Scholar

    Zhang Y N, Feng Y L, Wang X Q, Zhao Z M, Gao C, Yao Z H 2020 Acta Phys. Sin. 69 090501Google Scholar

    [29]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347Google Scholar

    [30]

    卢东, 钟祝强, 夏光琼, 吴正茂 2016 光子学报 45 1014003Google Scholar

    Lu D, Zhong Z Q, Xia G Q, Wu Z M 2016 Acta Photon. Sin. 45 1014003Google Scholar

    [31]

    Mikami T, Kanno K, Aoyama K 2012 Phys. Rev. E 85 016211Google Scholar

    [32]

    王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭萍 2007 物理学报 56 4372Google Scholar

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372Google Scholar

    [33]

    阎娟, 潘炜, 李念强, 张力月, 刘庆喜 2016 物理学报 65 204203Google Scholar

    Yan J, Pan W, Li N Q, Zhang L Y, Liu Q X 2016 Acta Phys. Sin. 65 204203Google Scholar

    [34]

    王永胜, 赵彤, 王安帮, 张明江, 王云才 2017 激光与光电子进展 54 111401Google Scholar

    Wang Y S, Zhao T, Wang A B, Zhang M J, Wang Y C 2017 Las. Optoelect. Prog. 54 111401Google Scholar

  • [1] 穆鹏华, 陈昊, 刘国鹏, 胡国四. 级联耦合纳米激光器混沌时延特征消除和带宽增强. 物理学报, 2024, 73(10): 104204. doi: 10.7498/aps.73.20231643
    [2] 张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海. 半导体激光器混沌输出的延时特征和带宽. 物理学报, 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [3] 李增, 冯玉玲, 王晓茜, 姚治海. 半导体激光器输出混沌光的延时特性和带宽. 物理学报, 2018, 67(14): 140501. doi: 10.7498/aps.67.20180035
    [4] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [5] 起俊丰, 钟祝强, 王广娜, 夏光琼, 吴正茂. 高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性. 物理学报, 2017, 66(24): 244207. doi: 10.7498/aps.66.244207
    [6] 杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂. 主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析. 物理学报, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [7] 安颖, 杜振辉, 刘景旺, 徐可欣. 激光自外差相干测量中分布反馈半导体激光器电流调谐非线性的补偿方法. 物理学报, 2012, 61(3): 034207. doi: 10.7498/aps.61.034207
    [8] 丁灵, 吴加贵, 夏光琼, 沈金亭, 李能尧, 吴正茂. 双光反馈半导体激光混沌系统中外腔延时反馈特征的抑制. 物理学报, 2011, 60(1): 014210. doi: 10.7498/aps.60.014210
    [9] 朱樟明, 郝报田, 李儒, 杨银堂. 一种基于延时和带宽约束的纳米级互连线优化模型. 物理学报, 2010, 59(3): 1997-2003. doi: 10.7498/aps.59.1997
    [10] 任爱红, 刘正颖, 张蓉竹, 刘静伦, 孙年春. 准相位匹配倍频系统的带宽性质研究. 物理学报, 2010, 59(10): 7050-7054. doi: 10.7498/aps.59.7050
    [11] 杨玲珍, 乔占朵, 邬云翘, 王云才. 掺铒光纤环形激光器混沌带宽特性数值研究. 物理学报, 2010, 59(6): 3965-3972. doi: 10.7498/aps.59.3965
    [12] 颜森林. 交叉相位调制提高半导体激光器混沌载波发射机带宽方法. 物理学报, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [13] 刘涛, 顾畹仪, 史培明, 喻松, 张华. 基于准相位匹配晶体的宽带可调谐光参量放大过程研究. 物理学报, 2009, 58(4): 2482-2487. doi: 10.7498/aps.58.2482
    [14] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [15] 卢 俊, 陈新邑, 汪剑波. 圆环单元FSS对吸波材料特性的影响研究. 物理学报, 2008, 57(11): 7200-7203. doi: 10.7498/aps.57.7200
    [16] 颜森林. 延时反馈半导体激光器双劈控制混沌方法研究. 物理学报, 2008, 57(5): 2827-2831. doi: 10.7498/aps.57.2827
    [17] 颜森林. 半导体激光器混沌光电延时负反馈控制方法研究. 物理学报, 2008, 57(4): 2100-2106. doi: 10.7498/aps.57.2100
    [18] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽. 物理学报, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [19] 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器. 物理学报, 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
    [20] 张瑞峰, 葛春风, 王书慧, 胡智勇, 李世忱. 熔锥型全波耦合器. 物理学报, 2003, 52(2): 390-394. doi: 10.7498/aps.52.390
计量
  • 文章访问数:  4918
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-28
  • 修回日期:  2022-04-08
  • 上网日期:  2022-07-25
  • 刊出日期:  2022-08-05

/

返回文章
返回