搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电路量子电动力学中基于超绝热捷径的控制相位门实现

王雪梅 张安琪 赵生妹

引用本文:
Citation:

电路量子电动力学中基于超绝热捷径的控制相位门实现

王雪梅, 张安琪, 赵生妹

Implementation of controlled phase gate based on superadiabatic shortcut in circuit quantum electrodynamics

Wang Xue-Mei, Zhang An-Qi, Zhao Sheng-Mei
PDF
HTML
导出引用
  • 针对绝热算法在系统演化过程中需要较长操作时间的问题, 本文提出了电路量子电动力学系统中基于超绝热捷径的两量子比特控制相位门的快速制备方案. 首先将量子比特的能级进行编码, 针对不同初始态分类讨论, 获得系统的有效哈密顿量. 通过反绝热驱动, 推导出系统有效哈密顿量的修正项, 以抑制不同本征态之间不必要的跃迁, 从而获得了高保真度的基于超绝热捷径控制相位门. 数值模拟验证了本方案的有效性, 最终保真度为0.991. 所提方案可以加速演化, 并且比绝热通道更有效. 此外, 本方案对谐振器的衰减和超导量子比特的退相干具有鲁棒性. 通过对谐振腔的泄漏、量子比特的自发辐射和退相位的影响分析, 得到的系统最终保真度始终保持在0.984以上.
    With high speed and big storage power, quantum computer has received increasing attention. The operation on the quantum computer can be composed of several single-bit and multi-bit quantum logic gates, among which the controlled phase gate is one of the essential two-qubit logic gates. Usually, the quantum gate is realized in a real physical system, and the circuit quantum electrodynamics system (QED) has become a promising candidate due to its long coherent time, easily coupled with other physical system and scaled up to large scale. In this work, we propose a scheme to fast implement a two-qubit controlled phase gate based on the circuit QED by using the superadiabatic-based shortcut, in order to solve the problem that the adiabatic algorithm needs a long time in the process of system evolution. Here, a coding strategy is first designed for the circuit QED system and the two transmon qubits, and the effective Hamiltonian of the system is then presented by dividing different initial states in the rotating-wave approximation. By using the superadiabatic-based shortcut algorithm for two iterations, a correction term in the same form as the system effective Hamiltonian is obtained through anti-diabatic driving, so that the effective Hamiltonian can suppress unwanted transitions between different instantaneous eigenstates. According to the evolution path, the appropriate boundary conditions are also obtained to complete the preparation of the controlled phase gate. The numerical simulation results show the availability of the proposed scheme, that is, the $ - \left| {11} \right\rangle $ state can be obtained by system evolution when the initial state is $ \left| {11} \right\rangle $, while the system does not change at all when the other initial states are prepared. Furthermore, the controlled phase gate with high-fidelity can be obtained . It is shown that the fidelity of the controlled phase gate is stable and greater than 0.991 when the evolution time is greater than $0.7{t \mathord{\left/ {\vphantom {t {{t_f}}}} \right. } {{t_{\rm f}}}}$. In addition, the proposed scheme can accelerate the evolution and is robust to decoherence. By the resonator decay and the spontaneous emission and dephasing of qubit, the final fidelity of the controlled phase gate is greater than 0.984. Since the controlled phase gate does not need additional parameters, the propsoed scheme is feasible in experiment.
      通信作者: 赵生妹, zhaosm@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61871234)资助的课题.
      Corresponding author: Zhao Sheng-Mei, zhaosm@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61871234).
    [1]

    Gong M, Wang S Y, Zha C, Chen M C, H L, Wu Y L, Zhu Q L, Zhao Y W, Li S W, Guo S J, Qian H R, Ye Y S, Chen F S, Ying C, Yu J L, Fan D J, Wu D H, Su H, Deng H, Rong H, Zhang K L, Cao S R, Lin J, Xu Y, Sun L H, Guo C, Li N, Liang F T, Bastidas V M, Nemoto K, Munro W J, Huo Y H, Lu C Y, Peng C Z, Zhu X B, Pan J W 2021 Science 372 948Google Scholar

    [2]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [3]

    Preskill J 2018 Quantum 2 79Google Scholar

    [4]

    刘超, 邬云文 2018 物理学报 67 170302Google Scholar

    Liu C, Wu Y W 2018 Acta Phys. Sin. 67 170302Google Scholar

    [5]

    Yu D M, Wang H, Ma D D, Zhao X D, Qian J 2019 Opt. Express 27 23080Google Scholar

    [6]

    Shi H M, Yu Y F, Zhang Z M 2012 Chin. Phys. B 21 064205Google Scholar

    [7]

    Liu G Q, Pan X Y 2018 Chin. Phys. B 27 020304Google Scholar

    [8]

    Wan Y, Kienzler D, Erickson S D, Mayer K H, Tan T R, Wu J J, Vasconcelos H M, Glancy S, Knill E, Wineland D J, Wilson A C, Leibfried D 2019 Science 364 875Google Scholar

    [9]

    Qiu C D, Ne X F, Lu D W 2021 Chin. Phys. B 30 048201Google Scholar

    [10]

    Zhang M, Wei L F 2012 Chin. Phys. Lett. 29 080301Google Scholar

    [11]

    Wen J W, Kong X Y, Wei S J, Wang B X, Xin T, Long G L 2019 Phys. Rev. A 99 012320Google Scholar

    [12]

    Zhang F Y, Pei P, Li C, Song H S 2011 Chin. Phys. Lett. 28 120304Google Scholar

    [13]

    Alqahtani M M 2020 Quantum Inf. Process. 19 12Google Scholar

    [14]

    Yang C P, Zheng Z F, Zhang Y 2018 Opt. Lett. 43 5765Google Scholar

    [15]

    Göppl M, Fragner A, Baur M, et al. 2008 J. Appl. Phys. 104 113904Google Scholar

    [16]

    Clarke J, Wilhelm F K 2008 Nature 453 1031Google Scholar

    [17]

    Wendin G 2017 Rep. Prog. Phys. 80 106001Google Scholar

    [18]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [19]

    Huang H L, Wu D, Fan D, et al. 2020 Sci. China Inf. Sci. 63 180501

    [20]

    Yang C P, Chu S I, Han S Y 2004 Phys. Rev. Lett. 92 117902Google Scholar

    [21]

    Wang X M, Zhang A Q, Xu P, Zhao S M 2021 Chin. Phys. B 30 030307Google Scholar

    [22]

    Wallraff A, Schuster D I, Blais A, et al. 2007 Phys. Rev. A 76 042319Google Scholar

    [23]

    Sangouard N, Lacour X, Guerin S, Jauslin H R 2005 Phys. Rev. A 72 062309Google Scholar

    [24]

    Zheng S B 2005 Phys. Rev. Lett. 95 080502Google Scholar

    [25]

    Shao X Q, Chen L, Zhang S, Yeon K H 2009 J. Phys. B 42 165507Google Scholar

    [26]

    Rousseaux B, Guerin S, Vitanov N V 2013 Phys. Rev. A 87 032328Google Scholar

    [27]

    Liang Y, Wu Q C, Su S L, Ji X, Zhang S 2015 Phys. Rev. A 91 032304Google Scholar

    [28]

    Liang Z T, Yue X X, Lv Q X, Du Y X, Huang W, Yan H, Zhu S L 2016 Phys. Rev. A 93 040305Google Scholar

    [29]

    Wang T H, Zhang Z X, Xiang L, Jia Z L, Duan P, Cai W Z, Gong Z H, Zong Z W, Wu M M, Wu J L, Sun L Y, Yin Y, Guo G P 2018 New J. Phys. 20 065003Google Scholar

    [30]

    Chu J, Li D Y, Yang X P, Song S Q, Han Z K, Yang Z, Dong Y Q, Zheng W, Wang Z M, Yu X M, Lan D, Tan X S, Yu Y 2020 Phys. Rev. A 13 064012Google Scholar

    [31]

    Spillane S M, Kippenberg T J, Painter O J, Vahala K J 2003 Phys. Rev. Lett. 91 043902Google Scholar

    [32]

    Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817Google Scholar

    [33]

    Baksic A, Ribeiro H, Clerk A A 2016 Phys. Rev. Lett. 116 230503Google Scholar

  • 图 1  量子比特能级结构. qubit A和qubit B被囚禁在一个传输线性谐振器中, 每个量子比特拥有四个能级: $ {\left| {{L_1}} \right\rangle _l} $, $ {\left| {{L_2}} \right\rangle _l} $, $ {\left| R \right\rangle _l} $$ {\left| e \right\rangle _l} $, $ l = {\text{A, B}} $, 其中$ {\left| e \right\rangle _l} $是辅助激发态. 有效信息被编码在$ {\left| {{L_1}} \right\rangle _l} $, $ {\left| {{L_2}} \right\rangle _l} $$ {\left| R \right\rangle _l} $三个不同能级上. qubit A为控制比特, qubit B为受控比特.

    Fig. 1.  Structure of qubit energy level, qubit A and qubit B are fabricated in a transmission line resonator, each has four-level i.e., $ {\left| {{L_1}} \right\rangle _l} $, $ {\left| {{L_2}} \right\rangle _l} $, $ {\left| R \right\rangle _l} $ and $ {\left| e \right\rangle _l} $, $ l = {\text{A, B}} $ here, $ {\left| e \right\rangle _l} $ is an auxiliary excited state. The information is encoded on the states $ {\left| {{L_1}} \right\rangle _l} $, $ {\left| {{L_2}} \right\rangle _l} $ and $ {\left| R \right\rangle _l} $. Qubit A is a controlling qubit, and qubit B is a controlled qubit.

    图 2  (a) 脉冲幅度取不同值时, 参数$ {\theta _0}\left( t \right) $随时间的变化情况; $ {\varOmega _0} = 0.1 t_{\text{f}}^{ - 1} $(黑色虚线), ${\varOmega _0} = 50 t_{\text{f}}^{{{ - 1}}}$(浅绿色实线); (b) 脉冲幅度取不同值时, 参数$ {\theta _1}(t) $随时间的变化情况; $ {\varOmega _0} = 0.1 t_f^{ - 1} $(蓝色), $ {\varOmega _0} = 1 t_{\text{f}}^{ - 1} $(红色), $ {\varOmega _0} = 10 t_{\text{f}}^{ - 1} $(粉色), $ {\varOmega _0} = 20 t_{\text{f}}^{ - 1} $(浅绿色), $ {\varOmega _0} = 40 t_{\text{f}}^{ - 1} $(绿色).

    Fig. 2.  (a) Variation of $ {\theta _0}\left( t \right) $ with time when the amplitude of pulse has different values. $ {\varOmega _0} = 0.1 t_{\text{f}}^{ - 1} $(black dotted line), ${\varOmega _0} = 50 t_{\text{f}}^{{{ - 1}}}$ (light green line); (b) variation of $ {\theta _1}(t) $ with time when the amplitude of pulse has different values. $ {\varOmega _0} = 0.1 t_f^{ - 1} $(blue), $ {\varOmega _0} = 1 t_{\text{f}}^{ - 1} $(red), $ {\varOmega _0} = 10 t_{\text{f}}^{ - 1} $(pink), $ {\varOmega _0} = 20 t_{\text{f}}^{ - 1} $(light green), $ {\varOmega _0} = 40 t_{\text{f}}^{ - 1} $(green).

    图 3  保真度随时间变化.

    Fig. 3.  Variation of fidelity with time.

    图 4  参数为${\varOmega _0} = 0.3 t_{\text{f}}^{{{ - 1}}}$$g = 100 t_{\text{f}}^{{{ - 1}}}$时, 量子态$\left| {{\phi _1}} \right\rangle - $$ \left| {{\phi _5}} \right\rangle$布居随时间变化

    Fig. 4.  Variations of quantum state $\left| {{\phi _1}} \right\rangle -\left| {{\phi _5}} \right\rangle$ with time when ${\varOmega _0} = 0.3 t_{\text{f}}^{{{ - 1}}}$ and $g = 100 t_{\text{f}}^{{{ - 1}}}$.

    图 5  $ \left\langle {\psi (t)} \right|\left. {{\phi _1}} \right\rangle $随时间的变化图

    Fig. 5.  Variation of $ \left\langle {\psi (t)} \right|\left. {{\phi _1}} \right\rangle $varies with time.

    图 6  不同的退相干因素$ \kappa $, $ \gamma $$ {\gamma _\phi } $对最终保真度的影响 (a) $ \gamma $$ \kappa $的影响; (b) $ \gamma $$ {\gamma _\phi } $的影响; (c) 退相干中不含$ \gamma $时的影响

    Fig. 6.  Influence of different decoherence factors $ \kappa $, $ \gamma $ and $ {\gamma _\phi } $ to the final fidelity: (a) The effect of $ \gamma $ and $ \kappa $ to fidelity; (b) the effect of $ \gamma $ and $ {\gamma _\phi } $ to fidelity; (c) the effect of $ \kappa $ and $ {\gamma _\phi } $ to fidelity.

  • [1]

    Gong M, Wang S Y, Zha C, Chen M C, H L, Wu Y L, Zhu Q L, Zhao Y W, Li S W, Guo S J, Qian H R, Ye Y S, Chen F S, Ying C, Yu J L, Fan D J, Wu D H, Su H, Deng H, Rong H, Zhang K L, Cao S R, Lin J, Xu Y, Sun L H, Guo C, Li N, Liang F T, Bastidas V M, Nemoto K, Munro W J, Huo Y H, Lu C Y, Peng C Z, Zhu X B, Pan J W 2021 Science 372 948Google Scholar

    [2]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [3]

    Preskill J 2018 Quantum 2 79Google Scholar

    [4]

    刘超, 邬云文 2018 物理学报 67 170302Google Scholar

    Liu C, Wu Y W 2018 Acta Phys. Sin. 67 170302Google Scholar

    [5]

    Yu D M, Wang H, Ma D D, Zhao X D, Qian J 2019 Opt. Express 27 23080Google Scholar

    [6]

    Shi H M, Yu Y F, Zhang Z M 2012 Chin. Phys. B 21 064205Google Scholar

    [7]

    Liu G Q, Pan X Y 2018 Chin. Phys. B 27 020304Google Scholar

    [8]

    Wan Y, Kienzler D, Erickson S D, Mayer K H, Tan T R, Wu J J, Vasconcelos H M, Glancy S, Knill E, Wineland D J, Wilson A C, Leibfried D 2019 Science 364 875Google Scholar

    [9]

    Qiu C D, Ne X F, Lu D W 2021 Chin. Phys. B 30 048201Google Scholar

    [10]

    Zhang M, Wei L F 2012 Chin. Phys. Lett. 29 080301Google Scholar

    [11]

    Wen J W, Kong X Y, Wei S J, Wang B X, Xin T, Long G L 2019 Phys. Rev. A 99 012320Google Scholar

    [12]

    Zhang F Y, Pei P, Li C, Song H S 2011 Chin. Phys. Lett. 28 120304Google Scholar

    [13]

    Alqahtani M M 2020 Quantum Inf. Process. 19 12Google Scholar

    [14]

    Yang C P, Zheng Z F, Zhang Y 2018 Opt. Lett. 43 5765Google Scholar

    [15]

    Göppl M, Fragner A, Baur M, et al. 2008 J. Appl. Phys. 104 113904Google Scholar

    [16]

    Clarke J, Wilhelm F K 2008 Nature 453 1031Google Scholar

    [17]

    Wendin G 2017 Rep. Prog. Phys. 80 106001Google Scholar

    [18]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [19]

    Huang H L, Wu D, Fan D, et al. 2020 Sci. China Inf. Sci. 63 180501

    [20]

    Yang C P, Chu S I, Han S Y 2004 Phys. Rev. Lett. 92 117902Google Scholar

    [21]

    Wang X M, Zhang A Q, Xu P, Zhao S M 2021 Chin. Phys. B 30 030307Google Scholar

    [22]

    Wallraff A, Schuster D I, Blais A, et al. 2007 Phys. Rev. A 76 042319Google Scholar

    [23]

    Sangouard N, Lacour X, Guerin S, Jauslin H R 2005 Phys. Rev. A 72 062309Google Scholar

    [24]

    Zheng S B 2005 Phys. Rev. Lett. 95 080502Google Scholar

    [25]

    Shao X Q, Chen L, Zhang S, Yeon K H 2009 J. Phys. B 42 165507Google Scholar

    [26]

    Rousseaux B, Guerin S, Vitanov N V 2013 Phys. Rev. A 87 032328Google Scholar

    [27]

    Liang Y, Wu Q C, Su S L, Ji X, Zhang S 2015 Phys. Rev. A 91 032304Google Scholar

    [28]

    Liang Z T, Yue X X, Lv Q X, Du Y X, Huang W, Yan H, Zhu S L 2016 Phys. Rev. A 93 040305Google Scholar

    [29]

    Wang T H, Zhang Z X, Xiang L, Jia Z L, Duan P, Cai W Z, Gong Z H, Zong Z W, Wu M M, Wu J L, Sun L Y, Yin Y, Guo G P 2018 New J. Phys. 20 065003Google Scholar

    [30]

    Chu J, Li D Y, Yang X P, Song S Q, Han Z K, Yang Z, Dong Y Q, Zheng W, Wang Z M, Yu X M, Lan D, Tan X S, Yu Y 2020 Phys. Rev. A 13 064012Google Scholar

    [31]

    Spillane S M, Kippenberg T J, Painter O J, Vahala K J 2003 Phys. Rev. Lett. 91 043902Google Scholar

    [32]

    Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817Google Scholar

    [33]

    Baksic A, Ribeiro H, Clerk A A 2016 Phys. Rev. Lett. 116 230503Google Scholar

  • [1] 陈臻, 王帅鹏, 李铁夫, 游建强. 超强耦合电路量子电动力学系统中反旋波效应对量子比特频率移动的影响. 物理学报, 2020, 69(12): 124204. doi: 10.7498/aps.69.20200474
    [2] 于宛让, 计新. 基于超绝热捷径技术快速制备超导三量子比特Greenberger-Horne-Zeilinger态. 物理学报, 2019, 68(3): 030302. doi: 10.7498/aps.68.20181922
    [3] 李晓克, 冯伟. 非绝热分子动力学的量子路径模拟. 物理学报, 2017, 66(15): 153101. doi: 10.7498/aps.66.153101
    [4] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性. 物理学报, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [5] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [6] 孟建宇, 王培月, 冯伟, 杨国建, 李新奇. 关于电路量子电动力学系统中光子自由度的消除方案. 物理学报, 2012, 61(18): 180302. doi: 10.7498/aps.61.180302
    [7] 陈翔, 米贤武. 量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究. 物理学报, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [8] 林青. 量子控制交换门的光学实现. 物理学报, 2009, 58(9): 5983-5987. doi: 10.7498/aps.58.5983
    [9] 余晓光, 王兵兵, 程太旺, 李晓峰, 傅盘铭. 高阶阈值上电离的量子电动力学理论. 物理学报, 2005, 54(8): 3542-3547. doi: 10.7498/aps.54.3542
    [10] 蒋维洲, 傅德基, 王震遐, 艾小白, 朱志远. 柱环腔中的量子电动力学效应. 物理学报, 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
    [11] 袁晓利, 施 毅, 杨红官, 卜惠明, 吴 军, 赵 波, 张 荣, 郑有钭. 硅量子点中电子的荷电动力学特征. 物理学报, 2000, 49(10): 2037-2040. doi: 10.7498/aps.49.2037
    [12] 刘 辽. 时空泡沫结构与量子电动力学中发散的消除. 物理学报, 1998, 47(3): 363-367. doi: 10.7498/aps.47.363
    [13] 倪光炯, 徐建军. 含Chern-Simons项的(2+1)维标量量子电动力学. 物理学报, 1991, 40(8): 1217-1221. doi: 10.7498/aps.40.1217
    [14] 陈宗蕴, 周义昌, 黄念宁. 关于标量量子电动力学有效势的泛函算法. 物理学报, 1982, 31(5): 660-663. doi: 10.7498/aps.31.660
    [15] 安瑛, 陈时, 郭汉英. Born-Infeld电动力学的U1主丛表述. 物理学报, 1981, 30(11): 1562-1564. doi: 10.7498/aps.30.1562
    [16] 安瑛, 陈时, 郭汉英. Born-Infeld电动力学的U1主丛表述. 物理学报, 1981, 30(11): 148-150. doi: 10.7498/aps.30.148
    [17] 张元仲. 运动介质电动力学和(包含色散项的)牵引效应. 物理学报, 1977, 26(5): 455-458. doi: 10.7498/aps.26.455
    [18] 张元仲. 运动介质电动力学和Fresnel牵引实验. 物理学报, 1975, 24(3): 180-186. doi: 10.7498/aps.24.180
    [19] 林为干. 由已知相应的静电静磁问题求电动力学问题的解. 物理学报, 1959, 15(9): 449-464. doi: 10.7498/aps.15.449
    [20] 张宗燧. 在经典电动力学中纵场的消除. 物理学报, 1955, 11(6): 453-468. doi: 10.7498/aps.11.453
计量
  • 文章访问数:  4235
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-08
  • 修回日期:  2022-03-13
  • 上网日期:  2022-07-25
  • 刊出日期:  2022-08-05

/

返回文章
返回