搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于特征谱线与约束拟合相位的绝对波数标定方法

王迪 韩涛 钱黄河 刘智毅 丁志华

引用本文:
Citation:

基于特征谱线与约束拟合相位的绝对波数标定方法

王迪, 韩涛, 钱黄河, 刘智毅, 丁志华

An absolute wavenumber calibration method based on characteristic spectral line and constrained fitting phase

Wang Di, Han Tao, Qian Huang-He, Liu Zhi-Yi, Ding Zhi-Hua
PDF
HTML
导出引用
  • 谱域光学相干层析成像(spectral-domain optical coherence tomography, SD-OCT)系统中普遍存在波数域的非线性采样问题. 为实现常规快速傅里叶变换算法下离散界面的精确定位与OCT图像的高质量重建, 需要解决光谱仪中离散采样点绝对波数的精确标定问题. 本文提出了一种基于精确光程差下特征谱线与约束拟合相位的绝对波数标定方法, 在谱域OCT系统的样品臂中, 使用具有精确厚度差异的金属量规, 获得特征谱线对应的绝对相位值, 进一步精确求解出特征谱线对应的相位包裹次数, 克服了常规干涉光谱相位方法中普遍存在的2π 歧义, 结合窗口约束条件下高信噪比区域的拟合相位, 实现光谱仪采样点绝对波数的精确标定. 通过全面比较本文方法与传统插值重采样方法在离散界面定位、轴向分辨率以及图像重建质量等方面的差异, 验证了本方法的显著优势.
    Spectral-domain optical coherence tomography (SD-OCT) systems generally have nonlinear sampling problems in wavenumber domain. In order to realize the precise positioning of the discrete interfaces and the high-quality reconstruction of OCT images under conventional fast Fourier transform, it is necessary to solve the precise calibration problem of the absolute wavenumber of the discrete sampling points in the spectrometer. In this work, an absolute wavenumber calibration method is proposed based on the absolute phase of the characteristic spectral line and the constraint polynomial fitting phase under precise optical path difference. In the sample arm of the SD-OCT system, the metal gauges with precise thickness difference are used to obtain the absolute phase value of the characteristic spectral line, and the phase wrapping times corresponding to the characteristic spectral line are further accurately solved. Thus, this method overcomes the 2π ambiguity of spectral phase in conventional interferometric phase methods. At the same time, combined with the polynomial fitting phase of the high signal-to-noise ratio region under window constraint, the accurate calibration of the absolute wavenumber of each sampling point is realized. Finally, comprehensive comparison between the proposed method and the traditional resampling method in terms of discrete interface positioning, axial resolution and image reconstruction quality verifies the significant advantages of this method.
      通信作者: 丁志华, zh_ding@zju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0700501)、国家自然科学基金(批准号: 62035011, 11974310, 31927801, 61905214)和浙江省自然科学基金(批准号: LR20F050001)资助的课题.
      Corresponding author: Ding Zhi-Hua, zh_ding@zju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0700501), the National Natural Science Foundation of China (Grant Nos. 62035011, 11974310, 31927801, 61905214), and the Natural Science Foundation of Zhejiang Province, China (Grant No. LR20F050001).
    [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178Google Scholar

    [2]

    Tomlins P H, Wang R K 2005 J. Phys. D: Appl. Phys. 38 2519Google Scholar

    [3]

    赵晨, 陈志彦, 丁志华, 李鹏, 沈毅, 倪秧 2014 物理学报 63 194201Google Scholar

    Zhao C, Chen Z Y, Ding Z H, Li P, Shen Y, Ni Y 2014 Acta Phys. Sin. 63 194201Google Scholar

    [4]

    Kumar M, Islam M N, Terry F L, Aleksoff C C, Davidson D 2010 Opt. Express 18 22471Google Scholar

    [5]

    Heise B, Schausberger S E, Häuser S, Plank B, Salaberger D, Leiss-Holzinger E, Stifter D 2012 Opt. Fiber. Technol. 18 403Google Scholar

    [6]

    Wiesauer K, Pircher M, Götzinger E, Bauer S, Engelke R, Ahrens G, Grützner G, Hitzenberger C K, Stifter D 2005 Opt. Express 13 1015Google Scholar

    [7]

    Endo T, Yasuno Y, Makita S, Itoh M, Yatagai T 2005 Opt. Express 13 695Google Scholar

    [8]

    Leitgeb R, Hitzenberger C K, Fercher A F 2003 Opt. Express 11 889Google Scholar

    [9]

    Choma M A, Sarunic M V, Yang C, Izatt J A 2003 Opt. Express 11 2183Google Scholar

    [10]

    de Boer J F, Cense B, Park B H, Pierce M C, Tearney G J, Bouma B E 2003 Opt. Lett. 28 2067Google Scholar

    [11]

    Dorrer C, Belabas N, Likforman J P, Joffre M 2000 J. Opt. Soc. Am. B 17 1795Google Scholar

    [12]

    Uribe-Patarroyo N, Kassani S H, Villiger M, Bouma B E 2018 Opt. Express 26 9081Google Scholar

    [13]

    Hu Z, Rollins A M 2007 Opt. Lett. 32 3525Google Scholar

    [14]

    吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文 2018 物理学报 67 104208Google Scholar

    Wu T, Sun S S, Wang X H, Wang J M, He C J, Gu X R, Liu Y W 2018 Acta Phys. Sin. 67 104208Google Scholar

    [15]

    Hyle Park B, Pierce M C, Cense B, Yun S H, Mujat M, Tearney G J, Bouma B E, Boer J F D 2005 Opt. Express 13 3931Google Scholar

    [16]

    Perret E, Balmer T E, Heuberger M 2010 Appl. Spectrosc. 64 1139Google Scholar

    [17]

    Eom T J, Ahn Y C, Kim C S, Chen Z P 2011 J. Biomed. Opt. 16 1Google Scholar

    [18]

    Wang K, Ding Z 2008 Chin. Opt. Lett. 6 902Google Scholar

    [19]

    Wu X, Ye X, Yu D, Yu J, Huang Y, Tan H, Qin J, An L 2020 OSA Continuum. 3 2156Google Scholar

    [20]

    Ikeda T, Popescu G, Dasari R R, Feld M S 2005 Opt. Lett. 30 1165Google Scholar

    [21]

    Meissner M 2012 Acta Phys. Pol. A 121 164Google Scholar

    [22]

    Yan Y, Ding Z, Shen Y, Chen Z, Zhao C, Ni Y 2013 Opt. Express 21 25734Google Scholar

    [23]

    Han T, Qiu J, Wang D, Meng J, Liu Z, Ding Z 2020 J. Innov. Opt. Heal. Sci. 14 2140008Google Scholar

    [24]

    唐弢, 赵晨, 陈志彦, 李鹏, 丁志华 2015 物理学报 64 174201Google Scholar

    Tang T, Zhao C, Chen Z Y, Li P, Ding Z H 2015 Acta Phys. Sin. 64 174201Google Scholar

    [25]

    Wang C, You Y J, Ai S, Zhang W, Liao W, Zhang X, Hsieh J, Zhang N, Tang B, Pan C L, Xue P 2019 J. Innov. Opt. Heal. Sci. 12 1950009Google Scholar

  • 图 1  用于光谱仪标定实验的谱域OCT系统

    Fig. 1.  Schematic diagram of the spectral domain optical coherence tomography system for spectrometer calibration.

    图 2  He-Ne特征谱线恢复“空气隙”绝对相位的过程 (a) He-Ne特征谱线标定光谱; (b)两组金属量规的互相关干涉信号; (c)连续化处理后的相对相位分布; (d)恢复的“空气隙”绝对相位分布

    Fig. 2.  Process of recovering the absolute phase of “air gap” from He-Ne characteristic spectral line: (a) Spectrum of He-Ne characteristic line calibration; (b) cross correlation interference signals of two groups of metal gauges; (c) relative phase distribution after continuity; (d) recovered absolute phase of “air gap”.

    图 3  “空气隙”采样绝对相位的相位差波动及不同区域相位差波动情况

    Fig. 3.  Phase difference fluctuations of absolute phase of “air gap” and phase difference fluctuations in different sampling regions.

    图 4  最佳窗口约束条件下的拟合绝对相位及不同窗约束条件下相位标准偏差分布曲线 (a)最佳拟合绝对相位分布; (b)不同窗约束下相位标准偏差变化曲线

    Fig. 4.  Absolute phase fitting curve under optimum window constraints and phase standard deviation curve under different window constraints: (a) The optimal fitting of the absolute phase distribution; (b) phase standard deviation curve under different window constraints.

    图 5  不同方法获得的轴向点扩散函数比较

    Fig. 5.  Axial PSFs obtained by different methods.

    图 6  经KDSI方法和WC-KDSI方法处理得到的量规反射面定位结果

    Fig. 6.  Positioning results of gauges’ interfaces processed by KDSI method and WC-KDSI method.

    图 7  使用(a)直接FFT, (b) KDSI, (c) WC-KDSI算法获得的镜面腐蚀微形貌OCT重建图像; (d)不同扫描位置轴向PSF比较

    Fig. 7.  Reconstructed OCT images of mirror corrosion by (a) direct FFT, (b) KDSI, (c) WC-KDSI method; (d) comparison of axial PSFs at different scanning points.

    图 8  使用(a) KDSI算法及(b) WC-KDSI算法处理获得的橘子果肉OCT重建图像; (c)特定扫描位置的轴向PSF比较

    Fig. 8.  Reconstructed OCT images of orange pulp by (a) KDSI and (b) WC-KDSI algorithm; (c) comparison of axial PSFs at certain scanning position.

    表 1  不同方法获得的轴向分辨率和峰值归一化强度

    Table 1.  Axial resolution and peak intensity resulted from different methods.

    WC-KDSI
    (Best fitting)
    WC-KDSI
    (1800 window)
    KDSIDirect FFT
    Axial resolution/μm1.61.62.15.3
    Normalized intensity1.00.970.810.73
    下载: 导出CSV
  • [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178Google Scholar

    [2]

    Tomlins P H, Wang R K 2005 J. Phys. D: Appl. Phys. 38 2519Google Scholar

    [3]

    赵晨, 陈志彦, 丁志华, 李鹏, 沈毅, 倪秧 2014 物理学报 63 194201Google Scholar

    Zhao C, Chen Z Y, Ding Z H, Li P, Shen Y, Ni Y 2014 Acta Phys. Sin. 63 194201Google Scholar

    [4]

    Kumar M, Islam M N, Terry F L, Aleksoff C C, Davidson D 2010 Opt. Express 18 22471Google Scholar

    [5]

    Heise B, Schausberger S E, Häuser S, Plank B, Salaberger D, Leiss-Holzinger E, Stifter D 2012 Opt. Fiber. Technol. 18 403Google Scholar

    [6]

    Wiesauer K, Pircher M, Götzinger E, Bauer S, Engelke R, Ahrens G, Grützner G, Hitzenberger C K, Stifter D 2005 Opt. Express 13 1015Google Scholar

    [7]

    Endo T, Yasuno Y, Makita S, Itoh M, Yatagai T 2005 Opt. Express 13 695Google Scholar

    [8]

    Leitgeb R, Hitzenberger C K, Fercher A F 2003 Opt. Express 11 889Google Scholar

    [9]

    Choma M A, Sarunic M V, Yang C, Izatt J A 2003 Opt. Express 11 2183Google Scholar

    [10]

    de Boer J F, Cense B, Park B H, Pierce M C, Tearney G J, Bouma B E 2003 Opt. Lett. 28 2067Google Scholar

    [11]

    Dorrer C, Belabas N, Likforman J P, Joffre M 2000 J. Opt. Soc. Am. B 17 1795Google Scholar

    [12]

    Uribe-Patarroyo N, Kassani S H, Villiger M, Bouma B E 2018 Opt. Express 26 9081Google Scholar

    [13]

    Hu Z, Rollins A M 2007 Opt. Lett. 32 3525Google Scholar

    [14]

    吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文 2018 物理学报 67 104208Google Scholar

    Wu T, Sun S S, Wang X H, Wang J M, He C J, Gu X R, Liu Y W 2018 Acta Phys. Sin. 67 104208Google Scholar

    [15]

    Hyle Park B, Pierce M C, Cense B, Yun S H, Mujat M, Tearney G J, Bouma B E, Boer J F D 2005 Opt. Express 13 3931Google Scholar

    [16]

    Perret E, Balmer T E, Heuberger M 2010 Appl. Spectrosc. 64 1139Google Scholar

    [17]

    Eom T J, Ahn Y C, Kim C S, Chen Z P 2011 J. Biomed. Opt. 16 1Google Scholar

    [18]

    Wang K, Ding Z 2008 Chin. Opt. Lett. 6 902Google Scholar

    [19]

    Wu X, Ye X, Yu D, Yu J, Huang Y, Tan H, Qin J, An L 2020 OSA Continuum. 3 2156Google Scholar

    [20]

    Ikeda T, Popescu G, Dasari R R, Feld M S 2005 Opt. Lett. 30 1165Google Scholar

    [21]

    Meissner M 2012 Acta Phys. Pol. A 121 164Google Scholar

    [22]

    Yan Y, Ding Z, Shen Y, Chen Z, Zhao C, Ni Y 2013 Opt. Express 21 25734Google Scholar

    [23]

    Han T, Qiu J, Wang D, Meng J, Liu Z, Ding Z 2020 J. Innov. Opt. Heal. Sci. 14 2140008Google Scholar

    [24]

    唐弢, 赵晨, 陈志彦, 李鹏, 丁志华 2015 物理学报 64 174201Google Scholar

    Tang T, Zhao C, Chen Z Y, Li P, Ding Z H 2015 Acta Phys. Sin. 64 174201Google Scholar

    [25]

    Wang C, You Y J, Ai S, Zhang W, Liao W, Zhang X, Hsieh J, Zhang N, Tang B, Pan C L, Xue P 2019 J. Innov. Opt. Heal. Sci. 12 1950009Google Scholar

  • [1] 周强, 吴腾飞, 曾周末, 邾继贵. 基于双向吸收光谱精准标定的光频扫描干涉绝对测距. 物理学报, 2024, 73(17): 170601. doi: 10.7498/aps.73.20240840
    [2] 邢阳光, 彭吉龙, 段紫雯, 闫雷, 李林, 刘越. 太阳极紫外He II 30.4 nm谱线层析成像及其光谱数据反演. 物理学报, 2022, 71(15): 159501. doi: 10.7498/aps.71.20220084
    [3] 钱黄河, 王迪, 韩涛, 丁志华. 基于复数主从光学相干层析成像相位信息的离散界面快速定位方法. 物理学报, 2022, 71(21): 214202. doi: 10.7498/aps.71.20220444
    [4] 王迪, 韩涛, 钱黄河, 刘智毅, 丁志华. 基于特征谱线与约束拟合相位的绝对波数标定方法. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120220314
    [5] 吴彤, 霍文麒, 黄蕴智, 王吉明, 顾晓蓉, 路元刚, 赫崇君, 刘友文. 用于内窥光学相干层析成像的小型化预标定Lissajous扫描光纤探头. 物理学报, 2021, 70(15): 150701. doi: 10.7498/aps.70.20210151
    [6] 张腾, 李大为, 王韬, 崔勇, 张天雄, 王丽, 张杰, 徐光. 基于铌酸锂双折射晶体的皮秒拍瓦激光系统光谱整形. 物理学报, 2021, 70(8): 084202. doi: 10.7498/aps.70.20201719
    [7] 胡喆皓, 上官紫微, 邱建榕, 杨珊珊, 鲍文, 沈毅, 李鹏, 丁志华. 基于受激辐射信号的谱域光学相干层析分子成像方法. 物理学报, 2018, 67(17): 174201. doi: 10.7498/aps.67.20171738
    [8] 吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文. 基于最优化线性波数光谱仪的谱域光学相干层析成像系统. 物理学报, 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [9] 樊金宇, 高峰, 孔文, 黎海文, 史国华. 多面转镜激光器扫频光学相干层析成像系统的全光谱重采样方法. 物理学报, 2017, 66(11): 114204. doi: 10.7498/aps.66.114204
    [10] 王毅, 郭哲, 朱立达, 周红仙, 马振鹤. 基于谱域相位分辨光学相干层析的纳米级表面形貌成像. 物理学报, 2017, 66(15): 154202. doi: 10.7498/aps.66.154202
    [11] 秦爽, 王兆华, 王羡之, 何会军, 沈忠伟, 魏志义. 饱和功率密度下线性啁啾对交叉偏振波输出特性的影响. 物理学报, 2017, 66(9): 094206. doi: 10.7498/aps.66.094206
    [12] 潘聪, 郭立, 沈毅, 严雪过, 丁志华, 李鹏. 基于界面信号的扫频光学相干层析成像系统相位矫正方法. 物理学报, 2016, 65(1): 014201. doi: 10.7498/aps.65.014201
    [13] 上官紫微, 沈毅, 李鹏, 丁志华. 扫频光学相干层析成像系统的波数校正与相位测量研究. 物理学报, 2016, 65(3): 034201. doi: 10.7498/aps.65.034201
    [14] 赵晨, 陈志彦, 丁志华, 李鹏, 沈毅, 倪秧. 线照明并行谱域光学相干层析成像系统与缺陷检测应用研究. 物理学报, 2014, 63(19): 194201. doi: 10.7498/aps.63.194201
    [15] 刘国忠, 周哲海, 邱钧, 王晓飞, 刘桂礼, 王瑞康. 幅值和相位配准技术及其在光学相干层析血流成像中的应用. 物理学报, 2013, 62(15): 158702. doi: 10.7498/aps.62.158702
    [16] 颜扬治, 丁志华, 王玲, 沈毅. 联合谱域与深度域光谱相位显微方法. 物理学报, 2013, 62(16): 164204. doi: 10.7498/aps.62.164204
    [17] 鲍文, 丁志华, 王川, 梅胜涛. 基于相位敏感谱域光学相干层析术的潜指纹获取方法. 物理学报, 2013, 62(11): 114202. doi: 10.7498/aps.62.114202
    [18] 杨亚良, 丁志华, 王凯, 吴凌, 吴兰. 全场光学相干层析成像系统的研制. 物理学报, 2009, 58(3): 1773-1778. doi: 10.7498/aps.58.1773
    [19] 王 鹏, 赵 环, 赵研英, 王兆华, 田金荣, 李德华, 魏志义. 用SPIDER法测量超宽带钛宝石振荡器的激光脉宽研究. 物理学报, 2007, 56(1): 224-228. doi: 10.7498/aps.56.224
    [20] 王 鹏, 王兆华, 魏志义, 郑加安, 孙敬华, 张 杰. 用SPIDER法测量飞秒激光脉冲的光谱相位. 物理学报, 2004, 53(9): 3004-3009. doi: 10.7498/aps.53.3004
计量
  • 文章访问数:  3415
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 修回日期:  2022-07-04
  • 上网日期:  2022-10-24
  • 刊出日期:  2022-11-05

/

返回文章
返回