搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电四极跃迁对电子束离子阱等离子体中离子能级布居的影响

孟举 何贞岑 颜君 吴泽清 姚科 李冀光 吴勇 王建国

引用本文:
Citation:

电四极跃迁对电子束离子阱等离子体中离子能级布居的影响

孟举, 何贞岑, 颜君, 吴泽清, 姚科, 李冀光, 吴勇, 王建国

Effects of electric quadrupole transitions on ion energy-level populations of in electron beam ion trap plasma

Meng Ju, He Zhen-Cen, Yan Jun, Wu Ze-Qing, Yao Ke, Li Ji-Guang, Wu Yong, Wang Jian-Guo
PDF
HTML
导出引用
  • 在稳态近似下, 通过构建三能级体系碰撞辐射模型, 解析研究了电四极(E2)跃迁对等离子体中离子能级布居的影响. 研究发现, 随着原子序数增加, E2跃迁速率逐渐增强, E2跃迁在低电子密度条件下对离子能级布居的影响愈发显著. 进一步地, 以电子束离子阱中类铁钼(Z = 42)和铀(Z = 92)等离子体为例, 数值求解了包含不同退激通道的离子能级布居. 在此基础上, 分析了考虑E2退激通道导致的能级布居变化对基组态磁偶极(M1)跃迁线强比的影响, 并指出在利用高离化态离子M1跃迁线强比进行等离子体电子密度诊断时E2退激发通道的重要性.
    The effects of electric-quadrupole (E2) transitions on ion energy-level populations in plasma are studied by constructing the collisional radiative model of a three-level atomic system in the steady-state approximation. It is found that the influence is non-negligible at the low electron density, and becomes larger when the E2 transition rate grows with atomic number increasing. Furthermore, we investigate the E2-transition effects on the populations of levels in the ground configuration for Fe-like Mo16+ and U66+ ions in an electron-beam ion-trap plasma. The level populations are obtained by solving the large-scale rate equation numerically. On this basis, we discuss the influence of the E2 transition on the line intensity ratio of the magnetic dipole (M1) lines. In addition, we point out the significance of the E2 transitions on the intensity ratio of the M1 lines that can be used to diagnose the electron density of plasma.
      通信作者: 姚科, keyao@fudan.edu.cn ; 李冀光, li_jiguang@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11874090, 11874008, 11734013, 11934004, 11404180, 11604052, 11774037)和国家重点研究发展计划(批准号: 2017YFA0403200, 2017YFA0402300)资助的课题.
      Corresponding author: Yao Ke, keyao@fudan.edu.cn ; Li Ji-Guang, li_jiguang@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874090, 11874008, 11734013, 11934004, 11404180, 11604052 and 11774037) and the National Key Research and Development Program of China (Grant Nos. 2017YFA0403200, 2017YFA0402300).
    [1]

    Silwal R, Takacs E, Dreiling J M, Gillaspy J D, Ralchenko Y 2017 Atoms 5 30Google Scholar

    [2]

    Nakamura N, Numadate N, Kono Y, Murakami I, Kato D, Sakaue H A, Hara H 2021 Astrophys. J. 921 115Google Scholar

    [3]

    黄文忠, 张覃鑫, 何绍堂, 谷渝秋, 尤永录, 江文勉 1995 物理学报 44 1783Google Scholar

    Huang W Z, Zhang Q X, He S T, Gu Y Q, You Y L, Jiang W M 1995 Acta Phys. Sin. 44 1783Google Scholar

    [4]

    Feldman U, Doron R, Klapisch M, Bar-Shalom A 2001 Phys. Scr. 63 284Google Scholar

    [5]

    Doron R, Feldman U 2001 Phys. Scr. 64 319Google Scholar

    [6]

    Ralchenko Y 2007 J. Phys. B:At. , Mol. Opt. Phys. 40 F175Google Scholar

    [7]

    Ralchenko Y, Draganic I N, Osin D, Gillaspy J D, Reader J 2011 Phys. Rev. A 83 032517Google Scholar

    [8]

    Ding X B, Liu J X, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N, Dong C Z 2016 Phys. Lett. A 380 874Google Scholar

    [9]

    He Z C, Meng J, Li Y J, Jia F S, Khan N, Niu B, Huang L Y, Hu Z M, Li J G, Wang J G, Zou Y M, Wei B R, Yao K 2022 J. Quant. Spectrosc. Radiat. Transf. 288 108276Google Scholar

    [10]

    Jonauskas V, Masys S, Kyniene A, Gaigalas G 2013 J. Quant. Spectrosc. Radiat. Transf. 127 64Google Scholar

    [11]

    Lu Q, Yan C L, Meng J, Xu G Q, Yang Y, Chen C Y, Xiao J, Li J G, Wang J G, Zou Y 2021 Phys. Rev. A 103 022808Google Scholar

    [12]

    Lu Q, He J, Tian H, Li M, Yang Y, Yao K, Chen C, Xiao J, Li J G, Tu B, Zou Y 2019 Phys. Rev. A 99 042510Google Scholar

    [13]

    Li W, Shi Z, Yang Y, Xiao J, Brage T, Hutton R, Zou Y 2015 Phys. Rev. A 91 062501Google Scholar

    [14]

    Han X Y, Gao X, Zeng D L, Jin R, Yan J, Li J M 2014 Phys. Rev. A 89 042514Google Scholar

    [15]

    Gu M F 2008 Can. J. Phys. 86 675Google Scholar

    [16]

    Ding X B, Yang J X, Zhu L F, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N, Dong C Z 2018 Phys. Lett. A 382 2321Google Scholar

    [17]

    Ding X, Zhang F, Yang Y, Zhang L, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N, Dong C 2020 Phys. Rev. A 101 042509Google Scholar

    [18]

    Lu Q, Yan C L, Fu N, Yang Y, Chen C Y, Xiao J, Wang K, Zou Y 2021 J. Quant. Spectrosc. Radiat. Transf. 262 107533Google Scholar

    [19]

    Qiu M L, Zhao R F, Guo X L, Zhao Z Z, Li W X, Du S Y, Xiao J, Yao K, Chen C Y, Hutton R, Zou Y 2014 J. Phys. B:At. , Mol. Opt. Phys. 47 175002Google Scholar

    [20]

    Gu M F, Holczer T, Behar E and Kahn S M 2006 Astrophys. J. 641 1227Google Scholar

    [21]

    Lindgren I 1974 J. Phys. B:At. , Mol. Opt. Phys. 7 2441Google Scholar

    [22]

    Kramida A, Ralchenko Y, Reader J, and NIST ASD Team 2021 NIST Atomic Spectra Database (ver. 5.9) [Online]. Available:https://physics.nist.gov/asd [2022, May 19]. National Institute of Standards and Technology, Gaithersburg, MD

    [23]

    Sugar J and Musgrove A 1988 J. Phys. Chem. Ref. Data 17 155Google Scholar

    [24]

    Ralchenko Y, Gillaspy J D, Reader J, Osin D, Curry J J, Podpaly Y A 2013 Phys. Scr. T156

    [25]

    Guo X L, Si R, Li S, Huang M, Hutton R, Wang Y S, Chen C Y, Zou Y M, Wang K, Yan J, Li C Y, Brage T 2016 Phys. Rev. A 93 012513Google Scholar

    [26]

    Ralchenko Y 2013 Plasma Fusion Res. 8 2503024Google Scholar

  • 图 1  三能级原子体系能级图 (a) 模型I不包含E2跃迁; (b) 模型II包含E2跃迁示意图

    Fig. 1.  Energy levels of the three-level atomic system: (a) Model I without the E2 transition; (b) Model II with inclusion of the E2 transition.

    图 2  类铁钼(Mo16+)离子(a)和铀(U66+)离子(b)基组态内的禁戒跃迁, 其中实线为M1跃迁, 虚线为E2跃迁, 图中的数字(0, 1, 2, ···)表示能级序号

    Fig. 2.  Energy-level diagram of the ground state configuration of Fe-like Mo16+ (a) and Fe-like U66+ (b) ions. Solid lines represent the M1 transitions and dashed lines represent the E2 transitions. The numbers (0, 1, 2, ···) correspond to the energy levels labels.

    图 3  类铁钼离子(a)和铀离子(b)处于基组态3d8能级的离子布居对密度的依赖关系, 图中的数字(0, 1, 2, ···)对应于图1中类铁钼离子和铀离子的能级序号

    Fig. 3.  The electron-density dependence of the population distribution of energy levels belonging to 3d8 configuration of Fe-like Mo16+(a) and U66+(b) ions. The numbers (0, 1, 2, ···) correspond to the energy levels of Mo16+ and U66+ of Fig.1.

    图 4  类铁钼离子(a)和铀离子(b)基组态内M1跃迁谱线强度对密度的依赖关系, 图中的(0 –1, ···)是相应跃迁, 数字表示该跃迁的下能级和上能级序号

    Fig. 4.  The electron-density dependence of the intensity ratios for the M1 transitions from the ground configuration of Mo16+(a) and U66+(b). The numbers (0 –1, ···) correspond to the lower and upper energy levels of the lines, respectively.

    图 5  类铁钼离子(a)和铀离子(b)的密度敏感线, 图中的数字(9/7, ···)对应于跃迁标号, 与表1一致

    Fig. 5.  Density-sensitive line radios for Mo16+(a) and U66+(b). The numbers (9/7, ···) correspond to the transitions in Table 1.

    表 1  类铁钼离子和铀离子的基组态精细能级激发能

    Table 1.  Excitation energies of the lowest excited levels of Fe-like Mo16+, U66+ ions.

    ZConfig-
    uration
    KeyLevelERMBPT/
    eV
    ENIST/
    eV [22, 23]
    423d80$ (3{\rm d}_+^4)_4 $0.0000
    423d81$ ((3{\rm d}_-^3)_{3/2}(3{\rm d}_+^5)_{\rm 5/2})_3 $3.0123.007
    423d82$ (3{\rm d}_{+}^{4})_{2} $3.3583.351
    423d83$ ((3{\rm d}_{-}^3)_{3/2}(3{\rm d}_+^5)_{5/2})_2 $6.3316.323
    423d84$ (3{\rm d}_+^4)_0 $8.4788.474
    423d85$ ((3{\rm d}_{-}^3)_{3/2}(3{\rm d}_+^5)_{5/2})_{1} $8.7218.717
    423d86$ (3{\rm d}_{-}^{2})_2 $9.6809.666
    423d87$ ((3{\rm d}_{-}^3)_{3/2}(3{\rm d}_+^5)_{5/2})_4 $10.18310.219
    423d88$ (3{\rm d}_{-}^2)_0 $21.97221.906
    923d80$ (3{\rm d}_{+}^4)_4$0.000
    923d81$ (3{\rm d}_+^4)_2 $12.183
    923d82$ (3{\rm d}_+^4)_0 $40.048
    923d83$ ((3{\rm d}_{-}^3)_{3/2}(3{\rm d}_+^5)_{5/2})_3 $188.701
    923d84$((3{\rm d}_{-}^3)_{3/2}(3{\rm d}_+^5)_{5/2})_2$201.451
    923d85$ ((3{\rm d}_-^3)_3/2(3{\rm d}_+^5)_{5/2})_4 $207.021
    923d86$ ((3{\rm d}_-^3)_{3/2}(3{\rm d}_+^5)_{5/2})_1 $208.894
    923d87$ (3{\rm d_-^2})_2 $386.738
    923d88$ (3{\rm d}_{-}^2)_0 $419.338
    下载: 导出CSV

    表 2  类铁钼离子和铀离子的基组态M1跃迁的跃迁能ΔE、波长λ、跃迁速率A和振子强度gf

    Table 2.  Transition energies ΔE, wavelengths λ, transition rates A and oscillator strength gf for the M1 transitions in the ground configuration of Fe-like Mo16+ and U66+.

    ZLineUpperLowerΔE/eVλ/ nmgfA/s–1
    RMBPTNIST[20,21]
    4218513.393.5694.015.80 × 10–74.42 × 103
    4227010.2121.76121.336.65 × 10–73.33 × 102
    423717.17172.89171.912.86 × 10–770.9
    424616.67185.93186.191.62 × 10–66.26 × 102
    425626.32196.10196.335.21 × 10–91
    426525.36231.18231.054.08 × 10–71.70 × 102
    427633.35370.16370.922.60 × 10–62.53 × 102
    428313.32373.56373.832.40 × 10–62.30 × 102
    429103.01411.66412.376.28 × 10–63.53 × 102
    4210322.97417.04417.191.87 × 10–61.43 × 102
    4211532.39518.72517.871.03 × 10–684.9
    4212650.9591292.391306.472.70 × 10–71
    4213210.3463583.173604.193.93 × 10–70.408
    4214540.2435107.125102.221.42 × 10–70.121
    921713.75 × 1023.313.93 × 10–84.79 × 104
    922862.10 × 1025.897.32 × 10–51.41 × 108
    923502.07 × 1025.991.01 × 10–42.09 × 107
    924731.98 × 1026.262.68 × 10–49.12 × 107
    925611.97 × 1026.306.79 × 10–53.80 × 107
    926411.89 × 1026.551.47 × 10–44.56 × 107
    927301.89 × 1026.573.39 × 10–47.48 × 107
    928741.85 × 1026.699.07 × 10–52.70 × 107
    929761.78 × 1026.978.10 × 10–62.22 × 106
    9210311.77 × 1027.023.01 × 10–55.81 × 106
    9211621.69 × 1027.344.86 × 10–52.00 × 107
    92125318.367.686.64 × 10–61.07 × 104
    92134312.797.247.80 × 10–61.10 × 104
    下载: 导出CSV
  • [1]

    Silwal R, Takacs E, Dreiling J M, Gillaspy J D, Ralchenko Y 2017 Atoms 5 30Google Scholar

    [2]

    Nakamura N, Numadate N, Kono Y, Murakami I, Kato D, Sakaue H A, Hara H 2021 Astrophys. J. 921 115Google Scholar

    [3]

    黄文忠, 张覃鑫, 何绍堂, 谷渝秋, 尤永录, 江文勉 1995 物理学报 44 1783Google Scholar

    Huang W Z, Zhang Q X, He S T, Gu Y Q, You Y L, Jiang W M 1995 Acta Phys. Sin. 44 1783Google Scholar

    [4]

    Feldman U, Doron R, Klapisch M, Bar-Shalom A 2001 Phys. Scr. 63 284Google Scholar

    [5]

    Doron R, Feldman U 2001 Phys. Scr. 64 319Google Scholar

    [6]

    Ralchenko Y 2007 J. Phys. B:At. , Mol. Opt. Phys. 40 F175Google Scholar

    [7]

    Ralchenko Y, Draganic I N, Osin D, Gillaspy J D, Reader J 2011 Phys. Rev. A 83 032517Google Scholar

    [8]

    Ding X B, Liu J X, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N, Dong C Z 2016 Phys. Lett. A 380 874Google Scholar

    [9]

    He Z C, Meng J, Li Y J, Jia F S, Khan N, Niu B, Huang L Y, Hu Z M, Li J G, Wang J G, Zou Y M, Wei B R, Yao K 2022 J. Quant. Spectrosc. Radiat. Transf. 288 108276Google Scholar

    [10]

    Jonauskas V, Masys S, Kyniene A, Gaigalas G 2013 J. Quant. Spectrosc. Radiat. Transf. 127 64Google Scholar

    [11]

    Lu Q, Yan C L, Meng J, Xu G Q, Yang Y, Chen C Y, Xiao J, Li J G, Wang J G, Zou Y 2021 Phys. Rev. A 103 022808Google Scholar

    [12]

    Lu Q, He J, Tian H, Li M, Yang Y, Yao K, Chen C, Xiao J, Li J G, Tu B, Zou Y 2019 Phys. Rev. A 99 042510Google Scholar

    [13]

    Li W, Shi Z, Yang Y, Xiao J, Brage T, Hutton R, Zou Y 2015 Phys. Rev. A 91 062501Google Scholar

    [14]

    Han X Y, Gao X, Zeng D L, Jin R, Yan J, Li J M 2014 Phys. Rev. A 89 042514Google Scholar

    [15]

    Gu M F 2008 Can. J. Phys. 86 675Google Scholar

    [16]

    Ding X B, Yang J X, Zhu L F, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N, Dong C Z 2018 Phys. Lett. A 382 2321Google Scholar

    [17]

    Ding X, Zhang F, Yang Y, Zhang L, Koike F, Murakami I, Kato D, Sakaue H A, Nakamura N, Dong C 2020 Phys. Rev. A 101 042509Google Scholar

    [18]

    Lu Q, Yan C L, Fu N, Yang Y, Chen C Y, Xiao J, Wang K, Zou Y 2021 J. Quant. Spectrosc. Radiat. Transf. 262 107533Google Scholar

    [19]

    Qiu M L, Zhao R F, Guo X L, Zhao Z Z, Li W X, Du S Y, Xiao J, Yao K, Chen C Y, Hutton R, Zou Y 2014 J. Phys. B:At. , Mol. Opt. Phys. 47 175002Google Scholar

    [20]

    Gu M F, Holczer T, Behar E and Kahn S M 2006 Astrophys. J. 641 1227Google Scholar

    [21]

    Lindgren I 1974 J. Phys. B:At. , Mol. Opt. Phys. 7 2441Google Scholar

    [22]

    Kramida A, Ralchenko Y, Reader J, and NIST ASD Team 2021 NIST Atomic Spectra Database (ver. 5.9) [Online]. Available:https://physics.nist.gov/asd [2022, May 19]. National Institute of Standards and Technology, Gaithersburg, MD

    [23]

    Sugar J and Musgrove A 1988 J. Phys. Chem. Ref. Data 17 155Google Scholar

    [24]

    Ralchenko Y, Gillaspy J D, Reader J, Osin D, Curry J J, Podpaly Y A 2013 Phys. Scr. T156

    [25]

    Guo X L, Si R, Li S, Huang M, Hutton R, Wang Y S, Chen C Y, Zou Y M, Wang K, Yan J, Li C Y, Brage T 2016 Phys. Rev. A 93 012513Google Scholar

    [26]

    Ralchenko Y 2013 Plasma Fusion Res. 8 2503024Google Scholar

  • [1] 裴柏杨, 庄革, 谢锦林, 周乙楠. EAST装置上电子回旋辐射成像诊断系统的绝对标定方法. 物理学报, 2024, 73(13): 135202. doi: 10.7498/aps.73.20240497
    [2] 王均武, 玄洪文, 俞航航, 王新兵, Vassily S. Zakharov. 激光诱导放电等离子体极紫外辐射的模拟. 物理学报, 2024, 73(1): 015203. doi: 10.7498/aps.73.20231158
    [3] 陈纪辉, 王峰, 理玉龙, 张兴, 姚科, 关赞洋, 刘祥明. 针对微尺寸X射线源的非相干全息层析成像. 物理学报, 2023, 72(19): 195203. doi: 10.7498/aps.72.20230920
    [4] 赵子博, 庄革, 谢锦林, 渠承明, 强子薇. 用于等离子体相干模式自动识别的谱聚类算法实现. 物理学报, 2022, 71(15): 155202. doi: 10.7498/aps.71.20220367
    [5] 王彦飞, 朱悉铭, 张明志, 孟圣峰, 贾军伟, 柴昊, 王旸, 宁中喜. 基于前馈神经网络的等离子体光谱诊断方法. 物理学报, 2021, 70(9): 095211. doi: 10.7498/aps.70.20202248
    [6] 吴坚, 李兴文, 李沫, 杨泽锋, 史宗谦, 贾申利, 邱爱慈. AlK壳层等离子体辐射谱模型的比对. 物理学报, 2015, 64(20): 205201. doi: 10.7498/aps.64.205201
    [7] 王琛, 安红海, 王伟, 方智恒, 贾果, 孟祥富, 孙今人, 刘正坤, 付绍军, 乔秀梅, 郑无敌, 王世绩. 利用软X射线双频光栅剪切干涉技术诊断金等离子体. 物理学报, 2014, 63(12): 125210. doi: 10.7498/aps.63.125210
    [8] 王琛, 安红海, 贾果, 方智恒, 王伟, 孟祥富, 谢志勇, 王世绩. 软X射线激光探针诊断高Z材料等离子体. 物理学报, 2014, 63(21): 215203. doi: 10.7498/aps.63.215203
    [9] 谢会乔, 谭熠, 刘阳青, 王文浩, 高喆. 中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用. 物理学报, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [10] 刘正坤, 邱克强, 陈火耀, 刘颖, 徐向东, 付绍军, 王琛, 安红海, 方智恒. 软X射线双频光栅剪切干涉法研究. 物理学报, 2013, 62(7): 070703. doi: 10.7498/aps.62.070703
    [11] 于新明, 程书博, 易有根, 张继彦, 蒲昱东, 赵阳, 胡峰, 杨家敏, 郑志坚. Al等离子体类锂伴线的布居机制分析及实验应用. 物理学报, 2011, 60(8): 085201. doi: 10.7498/aps.60.085201
    [12] 邵旭萍, 龚天林, 陈艳, 陈景霞, 陈扬骎, 杨晓华. 不同载气下气体相对电离度的光谱诊断. 物理学报, 2010, 59(3): 1677-1680. doi: 10.7498/aps.59.1677
    [13] 冉林松, 王红斌, 李向东, 张继彦, 程新路. Ti类氦Kα线在高温稠密等离子体中的漂移. 物理学报, 2009, 58(9): 6096-6100. doi: 10.7498/aps.58.6096
    [14] 王 琛, 方智恒, 孙今人, 王 伟, 熊 俊, 叶君建, 傅思祖, 顾 援, 王世绩, 郑无敌, 叶文华, 乔秀梅, 张国平. 利用X射线激光进行激光等离子体射流的诊断. 物理学报, 2008, 57(12): 7770-7775. doi: 10.7498/aps.57.7770
    [15] 赵太泽, 王 飞, 郭少峰, 郭文康, 须 平. 快速焓探针. 物理学报, 2007, 56(10): 5952-5957. doi: 10.7498/aps.56.5952
    [16] 龚天林, 杨晓华, 李红兵, 韩良恺, 陈扬骎. 分子离子光谱强度与母体分子气体压强的关系. 物理学报, 2004, 53(2): 418-422. doi: 10.7498/aps.53.418
    [17] 万 雄, 于盛林, 王长坤, 乐淑萍, 李冰颖, 何兴道. 多目标优化发射层析算法在等离子体场光谱诊断中的应用. 物理学报, 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
    [18] 张 红, 程新路, 杨向东, 谢方军, 张继彦, 杨国洪. 金等离子体平均离化度随电子温度变化关系的研究. 物理学报, 2003, 52(12): 3098-3101. doi: 10.7498/aps.52.3098
    [19] 杨洪琼, 杨建伦, 温树槐, 王根兴, 郭玉芝, 唐正元, 牟维兵, 马驰. 激光直接驱动内爆DT燃料面密度诊断. 物理学报, 2001, 50(12): 2408-2412. doi: 10.7498/aps.50.2408
    [20] 余建华, 黄建军. 射频放电阻抗测量用于等离子体诊断研究. 物理学报, 2001, 50(12): 2403-2407. doi: 10.7498/aps.50.2403
计量
  • 文章访问数:  4904
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-18
  • 修回日期:  2022-05-24
  • 上网日期:  2022-10-12
  • 刊出日期:  2022-10-05

/

返回文章
返回