搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂系统中的层次结构提取与分析

范开宇 刘艳华 杨培才 吴吉哲 王革丽

引用本文:
Citation:

复杂系统中的层次结构提取与分析

范开宇, 刘艳华, 杨培才, 吴吉哲, 王革丽

Extraction and analysis of hierarchy in complex system

Fan Kai-Yu, Liu Yan-Hua, Yang Pei-Cai, Wu Ji-Zhe, Wang Ge-Li
PDF
HTML
导出引用
  • 气候系统是一个非平稳复杂系统的事实已经得到了广泛认同, 产生这种非平稳性质的根本原因在于气候系统存在的层次结构, 处于高层系统中的外强迫信号随时间发生变化, 造成了大气运动的非平稳现象. 慢特征分析法可以从快变的非平稳信号中提取慢变的外强迫信号, 并已应用于气候系统的归因分析中. 本文利用慢特征分析法提取改进的Henon 映射模型构造的非平稳时间序列以及北京月平均气温的外强迫信号, 并且使用小波变换方法对外强迫信号的尺度特征及物理背景机理进行分析. 结果表明, 气候系统受到长周期的外强迫信号与短周期外强迫信号的共同作用. 同时, 长周期的外强迫信号影响短周期外强迫信号.该工作有助于理解气候系统的层次结构特征.
    The non-stationary characteristics of the climate system have been widely recognized. The occurrence of this non-stationary phenomenon is caused by the hierarchical structure of the climate system. As a high-level system, the external driving forcing changes with time, which leads to the non-stationary phenomenon of atmospheric movement. Slow feature analysis (SFA) method can extract the slow-changing features from fast-changing non-stationary signal. The SFA has been applied to attribution analysis of the climate system. In this paper, we use the SFA method to extract the driving force signal from the non-stationary time series obtained by the Henon mapping model to test its extraction capability. Then we extract the external driving force signal from Beijing monthly average temperature time series, and analyze the scale characteristics and physical mechanism of external driving forcing signals combined with wavelet transform. The results show that the long-period external driving forcing signal and the short-period external driving forcing signal jointly work on the climate system. At the same time, the long-period external driving forcing signal also works on short-period external driving forcing signal. This work contributes to understanding the hierarchical characteristics of the climate system.
      通信作者: 王革丽, wgl@mail.iap.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 42075054)资助的课题.
      Corresponding author: Wang Ge-Li, wgl@mail.iap.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 42075054).
    [1]

    Schmutz C, Luterbacher J, Gyalistras D, Xoplaki E, Wanner H 2000 Geophys. Res. Lett. 27 1135Google Scholar

    [2]

    Stern D I, Kaufmann R K 2000 Clim. Change 47 411Google Scholar

    [3]

    Yang P C, Zhou X J, Bian J C 2000 J. Geophys. Res. Atmos. 105 12253Google Scholar

    [4]

    Slonosky V C, Jones P D, Davies T D 2001 Int. J. Climatol. 21 63Google Scholar

    [5]

    Tsonis A A 1996 Nature 382 700Google Scholar

    [6]

    杨培才, 卞建春, 王革丽, 周秀骥 2003 科学通报 48 1470Google Scholar

    Yang P C, Bian J C, Wang G L, Zhou X J 2003 Chin. Sci. Bull 48 1470Google Scholar

    [7]

    杨培才, 周秀骥 2005 气象学报 63 556Google Scholar

    Yang P C, Zhou X J 2005 Acta. Meteor. Sinica 63 556Google Scholar

    [8]

    O’Neill RV 1988 Scales and Global Change: Spatial and Temporal Variability in Biospheric and Geospheric Processes (New York: John Wiley) p29

    [9]

    林振山 1990 北京大学学报(自然科学版) 26 355Google Scholar

    Lin Z S 1990 Acta Scientiarum Naturalium Universitatis Pekinensis 26 355Google Scholar

    [10]

    Wiedermann, Marc, Donner, Reik V, Handorf, Doerthe, Kurths, Juergen, Donges, Jonathan F 2017 Int. J. Climatol. 37 3821Google Scholar

    [11]

    Konen W, Koch P https://arxiv.org/pdf/0911.4397.pdf [2021-12-21]

    [12]

    潘昕浓, 王革丽, 杨培才 2017 物理学报 66 080501Google Scholar

    Pan X N, Wang G L, Yang P C 2017 Acta Phys. Sin. 66 080501Google Scholar

    [13]

    Yang P C, Zhou X J, Wang G L, Zhang F 2016 Clim. Dyn. 46 3197Google Scholar

    [14]

    Wang G L, Yang P C, Zhou X J 2016 Theor. Appl. Climatol. 124 985Google Scholar

    [15]

    Wiskott L, Sejnowski T J 2002 Neural Comput 14 715Google Scholar

    [16]

    Berkes P, Wiskott L 2005 J. Vision 5 579

    [17]

    Packard N H, Crutchfield J P, Shaw R S 1980 Phys. Rev. Lett. 45 712Google Scholar

    [18]

    Takens F 1981 Lect. Notes Math. 898 366

    [19]

    迟洪钦, 吴忠英 1994 上海交通大学学报 5 96

    Chi H Q, Wu Z Y 1994 J. Shanghai Jiaotong Univ. 5 96

    [20]

    张宾, 李月, 卢金 2004 吉林大学学报(信息科学版) 22 4Google Scholar

    Zhang B, Li Y, Lu J 2004 J. Jilin Univ. (Information Science Edition) 22 4Google Scholar

    [21]

    张勇, 关伟 2009 物理学报 58 756Google Scholar

    Zhang Y, Guan W 2009 Acta Phys. Sin. 58 756Google Scholar

    [22]

    范开宇, 王革丽, 李超, 潘昕浓 2018 气候与环境研究 23 287Google Scholar

    Fan K Y, Wang G L, Li C, Pan X N 2018 Climatic and Environmental Research 23 287Google Scholar

    [23]

    范开宇 2018 硕士学位论文 (成都: 成都信息工程大学)

    Fan K Y 2018 M. S. Thesis (Chengdu: Chengdu University of Information Technology) (in Chinese)

  • 图 1  (a) 基频信号$ \left\{n\left(t\right)\right\} $; (b) 调制信号$ \left\{m\left(t\right)\right\} $; (c) 时变参数$ \left\{a\left(t\right)\right\} $(蓝线)与其调制信号(包络)M(红线)

    Fig. 1.  (a) Fundamental frequency signal $ \left\{n\left(t\right)\right\} $; (b) modulation signal $ \left\{m\left(t\right)\right\} $; (c) time-varying parameter $ \left\{a\left(t\right)\right\} $ (blue line) and its modulation signal (envelope) M (red line).

    图 2  (a) 真实外强迫信号$ \{{s}_{1}(t)\} $; (b) 非平稳时间试验序列$ \{{y}_{1}(t)\} $; (c) SFA方法提取得到的外强迫$ \{{as}_{1}(t)\} $ (蓝线)及其包络 M(红线); (d) 外强迫$ \{{as}_{1}(t)\} $ (红线)及真实外强迫信号$ \{{s}_{1}(t)\} $ (蓝线)比较

    Fig. 2.  (a) The true driving force signal$ \{{s}_{1}(t)\} $; (b) the testing non-stationary time series $ \{{y}_{1}(t)\} $; (c) the driving force signal extracted by SFA method $ \{a{s}_{1}(t)\} $ (blue line) and its modulation signal (envelope) M (red line); (d) the driving force signal extracted by SFA method $ \{a{s}_{1}(t)\} $ (red line) and the true driving force signal$ \{{s}_{1}(t)\} $ (blue line).

    图 3  北京月平均气温外强迫信号的提取与分析流程图

    Fig. 3.  Flow chart of extraction and analysis of driving force signal of monthly mean temperature of Beijing.

    图 4  (a)—(f)北京月平均气温外强迫信号特征尺度$ {S}_{1} $$ {S}_{6} $ 对应的信号分量

    Fig. 4.  (a)–(f) Signal components corresponding to the characteristic scale $ {S}_{1} $$ {S}_{6} $ of the driving force signal of monthly mean temperature in Beijing.

    图 5  尺度分量$ {S}_{6} $(黑线)与调制信号$ {M}_{1} $(红线)比较

    Fig. 5.  Comparison of scale component signal $ {S}_{6} $ (black line) and modulated signal $ {M}_{1} $ (red line).

    图 6  利用尺度分量$ {S}_{6} $(蓝线)来拟合尺度分量$ {S}_{1} $(黑线)得到结果 ${S}_{1}''$(红线)

    Fig. 6.  Use the scale component signal $ {S}_{6} $ (blue line) to simulate the scale component signal $ {S}_{1} $ (black line) to obtain the result ${S}_{1}''$ (red line).

    图 7  气候系统的层次结构示意图

    Fig. 7.  Schematic diagram of the hierarchy of the climate system.

    表 1  北京月平均气温时间序列外强迫信号小波分析周期频率及谐波关系

    Table 1.  Periods and frequencies of the driving force signal of temperature extracted by SFA method of Beijing.

    成分
    ${{S} }_{{n} }$
    周期
    ${{P} }_{{n} }$/a
    频率
    ${{f} }_{{n} }$
    谐波关系物理背景
    $ {S}_{1} $$ {P}_{1}=3.2 $$ {f}_{1}=0.312 $基频分量东太平洋海温
    $ {S}_{2} $$ {P}_{2}=5.8 $$ {f}_{2}=0.172 $$ {f}_{2}=2{f}_{3} $
    $ {S}_{3} $$ {P}_{3}=11.6 $$ {f}_{3}=0.086 $基频分量the Hale cycle
    $ {S}_{4} $$ {P}_{4}=13.8 $$ {f}_{4}=0.072 $$ {f}_{4}\approx $$ 3{f}_{3}-4{f}_{5} $
    $ {S}_{5} $$ {P}_{5}=21.3 $$ {f}_{5}=0.047 $基频分量the Schwabe cycle
    $ {S}_{6} $$ {P}_{6}=42.7 $$ {f}_{6}=0.023 $${P}_{6}=2{P}_{5}$太阳双黑
    子周期2倍
    下载: 导出CSV

    表 2  模拟尺度分量${S}_{1}'$${S}_{6}'$ 与真实尺度分量信号$ {S}_{1} $$ {S}_{6} $比较

    Table 2.  Comparison of analog scale component signal ${S}_{1}'$${S}_{6}'$ and real scale component signal $ {S}_{1} $$ {S}_{6} $

    成分${{S} }_{{n} }$$R$/%${{D} }_{ {{s} }' }/{{D} }_{{s} }$
    ${{S} }_{ {{1} } }$60.50.94
    ${{S} }_{ {{2} } }$78.41.05
    ${{S} }_{ {{3} } }$90.61.08
    ${{S} }_{ {{4} } }$93.41.11
    ${{S} }_{ {{5} } }$99.31.05
    ${{S} }_{ {{6} } }$99.81.01
    下载: 导出CSV
  • [1]

    Schmutz C, Luterbacher J, Gyalistras D, Xoplaki E, Wanner H 2000 Geophys. Res. Lett. 27 1135Google Scholar

    [2]

    Stern D I, Kaufmann R K 2000 Clim. Change 47 411Google Scholar

    [3]

    Yang P C, Zhou X J, Bian J C 2000 J. Geophys. Res. Atmos. 105 12253Google Scholar

    [4]

    Slonosky V C, Jones P D, Davies T D 2001 Int. J. Climatol. 21 63Google Scholar

    [5]

    Tsonis A A 1996 Nature 382 700Google Scholar

    [6]

    杨培才, 卞建春, 王革丽, 周秀骥 2003 科学通报 48 1470Google Scholar

    Yang P C, Bian J C, Wang G L, Zhou X J 2003 Chin. Sci. Bull 48 1470Google Scholar

    [7]

    杨培才, 周秀骥 2005 气象学报 63 556Google Scholar

    Yang P C, Zhou X J 2005 Acta. Meteor. Sinica 63 556Google Scholar

    [8]

    O’Neill RV 1988 Scales and Global Change: Spatial and Temporal Variability in Biospheric and Geospheric Processes (New York: John Wiley) p29

    [9]

    林振山 1990 北京大学学报(自然科学版) 26 355Google Scholar

    Lin Z S 1990 Acta Scientiarum Naturalium Universitatis Pekinensis 26 355Google Scholar

    [10]

    Wiedermann, Marc, Donner, Reik V, Handorf, Doerthe, Kurths, Juergen, Donges, Jonathan F 2017 Int. J. Climatol. 37 3821Google Scholar

    [11]

    Konen W, Koch P https://arxiv.org/pdf/0911.4397.pdf [2021-12-21]

    [12]

    潘昕浓, 王革丽, 杨培才 2017 物理学报 66 080501Google Scholar

    Pan X N, Wang G L, Yang P C 2017 Acta Phys. Sin. 66 080501Google Scholar

    [13]

    Yang P C, Zhou X J, Wang G L, Zhang F 2016 Clim. Dyn. 46 3197Google Scholar

    [14]

    Wang G L, Yang P C, Zhou X J 2016 Theor. Appl. Climatol. 124 985Google Scholar

    [15]

    Wiskott L, Sejnowski T J 2002 Neural Comput 14 715Google Scholar

    [16]

    Berkes P, Wiskott L 2005 J. Vision 5 579

    [17]

    Packard N H, Crutchfield J P, Shaw R S 1980 Phys. Rev. Lett. 45 712Google Scholar

    [18]

    Takens F 1981 Lect. Notes Math. 898 366

    [19]

    迟洪钦, 吴忠英 1994 上海交通大学学报 5 96

    Chi H Q, Wu Z Y 1994 J. Shanghai Jiaotong Univ. 5 96

    [20]

    张宾, 李月, 卢金 2004 吉林大学学报(信息科学版) 22 4Google Scholar

    Zhang B, Li Y, Lu J 2004 J. Jilin Univ. (Information Science Edition) 22 4Google Scholar

    [21]

    张勇, 关伟 2009 物理学报 58 756Google Scholar

    Zhang Y, Guan W 2009 Acta Phys. Sin. 58 756Google Scholar

    [22]

    范开宇, 王革丽, 李超, 潘昕浓 2018 气候与环境研究 23 287Google Scholar

    Fan K Y, Wang G L, Li C, Pan X N 2018 Climatic and Environmental Research 23 287Google Scholar

    [23]

    范开宇 2018 硕士学位论文 (成都: 成都信息工程大学)

    Fan K Y 2018 M. S. Thesis (Chengdu: Chengdu University of Information Technology) (in Chinese)

  • [1] 孙东永, 张洪波, 王义民. 滑动移除小波分析法在动力学结构突变检验中的应用. 物理学报, 2017, 66(7): 079201. doi: 10.7498/aps.66.079201
    [2] 潘昕浓, 王革丽, 杨培才. 利用慢特征分析法提取层次结构系统中的外强迫. 物理学报, 2017, 66(8): 080501. doi: 10.7498/aps.66.080501
    [3] 赵珊珊, 何文平. 北京气候中心气候系统模式对中国四季日平均气温的模拟性能评估. 物理学报, 2015, 64(4): 049201. doi: 10.7498/aps.64.049201
    [4] 王皓, 郑志海, 于海鹏, 黄建平, 季明霞. 国家气候中心大气环流模式冬季模式误差特征分析. 物理学报, 2014, 63(9): 099202. doi: 10.7498/aps.63.099202
    [5] 赵珊珊, 何文平. 基于长程相关性特征的北京气候中心气候系统模式对中国气温的模拟性能评估. 物理学报, 2014, 63(20): 209201. doi: 10.7498/aps.63.209201
    [6] 韩祥临, 欧阳成, 宋涛, 戴孙圣. 交通拥堵相变问题的同伦分析法. 物理学报, 2013, 62(17): 170203. doi: 10.7498/aps.62.170203
    [7] 陈丽娟, 鲁世平. 零维气候系统非线性模式的周期解问题. 物理学报, 2013, 62(20): 200201. doi: 10.7498/aps.62.200201
    [8] 高向东, 汪润林, 龙观富, Katayama Seiji. 盘型激光焊金属蒸汽特征色调-色饱和度-亮度分析法研究. 物理学报, 2012, 61(14): 148103. doi: 10.7498/aps.61.148103
    [9] 黎爱兵, 张立凤, 项杰. 外强迫对Lorenz系统初值可预报性的影响. 物理学报, 2012, 61(11): 119202. doi: 10.7498/aps.61.119202
    [10] 石玉仁, 杨红娟. 同伦分析法在求解耗散系统中的应用. 物理学报, 2010, 59(1): 67-74. doi: 10.7498/aps.59.67
    [11] 周磊, 支蓉, 冯爱霞, 龚志强. 基于二分图的温度网络拓扑性质研究. 物理学报, 2010, 59(9): 6689-6696. doi: 10.7498/aps.59.6689
    [12] 李 月, 徐 凯, 杨宝俊, 袁 野, 吴 宁. 混沌振子系统周期解几何特征量分析与微弱周期信号的定量检测. 物理学报, 2008, 57(6): 3353-3358. doi: 10.7498/aps.57.3353
    [13] 杨 汝, 张 波, 褚利丽. 开关变换器倍周期分岔精细层次结构及其普适常数研究. 物理学报, 2008, 57(5): 2770-2778. doi: 10.7498/aps.57.2770
    [14] 张 文, 何文平, 邹明玮, 封国林. 大尺度环流与中尺度对流的作用研究. 物理学报, 2007, 56(10): 6150-6156. doi: 10.7498/aps.56.6150
    [15] 万仕全, 封国林, 董文杰, 李建平. 气候代用资料动力学结构的区域与全球特征. 物理学报, 2005, 54(11): 5487-5493. doi: 10.7498/aps.54.5487
    [16] 徐 伟, 孙中奎, 杨晓丽. 基于参数展开的同伦分析法在强非线性随机动力系统中的应用. 物理学报, 2005, 54(11): 5069-5076. doi: 10.7498/aps.54.5069
    [17] 汪 萍, 戴新刚. 外强迫作用下正压大气非线性特征数值模拟. 物理学报, 2005, 54(10): 4961-4970. doi: 10.7498/aps.54.4961
    [18] 胡隐樵. 强迫耗散系统的有序结构和系统的发展(Ⅱ),广义能量极小值原理和系统的发展. 物理学报, 2003, 52(6): 1354-1359. doi: 10.7498/aps.52.1354
    [19] 胡隐樵. 强迫耗散系统的有序结构和系统的发展(Ⅰ),最小熵产生原理和有序结构. 物理学报, 2003, 52(6): 1379-1384. doi: 10.7498/aps.52.1379
    [20] 施士元;杨铭珍. 积分强度的光电定量光谱分析法. 物理学报, 1956, 12(6): 577-584. doi: 10.7498/aps.12.577
计量
  • 文章访问数:  3080
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-22
  • 修回日期:  2022-05-10
  • 上网日期:  2022-08-25
  • 刊出日期:  2022-09-05

/

返回文章
返回