搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分子囊泡在微管流中惯性迁移现象的有限元分析

郝鹏 张丽丽 丁明明

引用本文:
Citation:

高分子囊泡在微管流中惯性迁移现象的有限元分析

郝鹏, 张丽丽, 丁明明

Finite element analysis of inertial migration of polymer vesicles in microtubule flow

Hao Peng, Zhang Li-Li, Ding Ming-Ming
PDF
HTML
导出引用
  • 采用基于流固耦合的有限元方法, 对二维模型中高分子囊泡在微管流中惯性迁移现象进行了系统研究, 分析了囊泡因受到流体作用力而形变并发生惯性迁移现象的机理. 研究表明: 随着雷诺数的增大, 囊泡惯性迁移的平衡位置离其初始位置越来越远; 随着阻塞比的增加, 囊泡惯性迁移后的平衡位置越来越接近壁面. 对于囊泡膜的模量和黏度以及膜厚, 结果表明模量和黏度决定了囊泡的变形程度, 模量对囊泡平衡位置影响较小, 但增大黏度和膜厚会促进囊泡的平衡位置偏向管道中心. 本研究有助于进一步明晰囊泡在惯性迁移过程中的形变和平衡位置, 为囊泡在药物输运、化学反应和生理过程的应用提供可靠的计算依据.
    The finite element method based on fluid-structure interaction is used to systematically study the inertial migration of polymer vesicles in microtubule flow with a two-dimensional model, and the mechanism of the vesicles deformed by the fluid and the inertial migration phenomena are analyzed. The studies show that with the increase Reynolds number, the equilibrium position of vesicle inertial migration is farther and farther from its initial position; with the increase of blocking ratio, the equilibrium position of vesicle inertial migration is closer to the wall surface. For the modulus and viscosity of the vesicle membrane and for the membrane thickness, the results show that the modulus and viscosity determine the degree of deformation of the vesicle, and the modulus has little effect on the equilibrium position of the vesicle, but increases the viscosity, and the membrane thickness will promote the equilibrium position of the vesicle to be biased toward the center of the tube. This study helps to further clarify the deformation and equilibrium position of vesicles during inertial migration, and provides a reliable computational basis for the application of vesicles in drug transport, chemical reactions and physiological processes.
      通信作者: 丁明明, mmding@gdut.edu.cn
    • 基金项目: 新疆维吾尔自治区重点实验室开放课题(批准号: 2021D04015)、新疆维吾尔自治区高校科技计划(批准号: XJEDU2021Y044)和伊犁师范大学博士启动基金(批准号: 2021YSBS009)资助的课题.
      Corresponding author: Ding Ming-Ming, mmding@gdut.edu.cn
    • Funds: Project supported by the Xinjiang Uygur Autonomous Region key Laboratory Open Subject, China (Grant No. 2021D04015), the Xinjiang Uygur Autonomous Region University Science and Technology Plan Project, China (Grant No. XJEDU2021Y044), and the Doctoral Starting Fund of Yili Normal University, China (Grant No. 2021YSBS009).
    [1]

    Discher D E, Eisenberg A 2002 Science 297 967Google Scholar

    [2]

    Thery C, Ostrowski M, Segura E 2009 Nat. Rev. Immunol. 9 581Google Scholar

    [3]

    Yingchoncharoen P, Kalinowski D S, Richardson D R 2016 Pharmacol. Rev. 68 701Google Scholar

    [4]

    Finean J B 1983 Trends Biochem. Sci. 8 225Google Scholar

    [5]

    Rubinow S I, Keller J B 1961 J. Fluid Mech. 11 447Google Scholar

    [6]

    Saffman P G 2006 J. Fluid Mech. 22 385Google Scholar

    [7]

    Asmolov E S 1999 J. Fluid Mech. 381 63Google Scholar

    [8]

    Matas J P, Morris J F, Guazzelli É 2004 J. Fluid Mech. 515 171Google Scholar

    [9]

    Matas J P, Glezer V, Guazzelli E 2004 Phys. Fluids 16 4192Google Scholar

    [10]

    Coupier G, Kaoui B, Podgorski T 2008 Phys. Fluids 20 111702Google Scholar

    [11]

    Risso F, Colle-Paillot F, Zagzoule M 2006 J. Fluid Mech. 547 149Google Scholar

    [12]

    Bagchi P 2007 Biophys. J. 92 1858Google Scholar

    [13]

    Lázaro G R, Hernández-Machado A, Pagonabarraga I 2014 Soft Matter 10 7207Google Scholar

    [14]

    Bächer C, Schrack L, Gekle S 2017 Phys. Rev. Fluids 2 013102Google Scholar

    [15]

    Abay A, Recktenwald S M, John T 2020 Soft Matter 16 534Google Scholar

    [16]

    Segr G, Silberberg A 1961 Nature 189 209Google Scholar

    [17]

    Carlo D D 2009 Lab Chip 9 3038Google Scholar

    [18]

    Carlo D D, Edd J F, Humphry K J 2009 Phys. Rev. Lett. 102 094503Google Scholar

    [19]

    Feng J, Hu H H, Joseph D D 1994 J. Fluid Mech. 277 271Google Scholar

    [20]

    Brenner H 1961 Chem. Eng. Sci. 16 242Google Scholar

    [21]

    Carlo D D, Irimia D, Tompkins R G 2007 P Natl. Acad. Sci. U. S. A. 104 18892Google Scholar

    [22]

    Morita Y, Itano T, Sugihara-Seki M 2017 J. Fluid Mech. 813 750Google Scholar

    [23]

    Yao T L, Yu Z S, Shao X M 2014 J. Mech. Electr. Eng. 31 301Google Scholar

    [24]

    Nakayama S, Yamashita H, Yabu T 2019 J. Fluid Mech. 871 952Google Scholar

    [25]

    Salac D, Miksis M J 2012 J. Fluid Mech. 711 122Google Scholar

    [26]

    Mach A J, Carlo D D 2010 Biotechnol. Bioeng. 107 302Google Scholar

    [27]

    Doddi S K, Bagchi P 2008 Int. J. Multiphase Flow 34 966Google Scholar

    [28]

    Sun D K, Bo Z 2015 Int. J. Heat Mass Transfer 80 139Google Scholar

    [29]

    Shin S J, Sung H J 2011 Phys. Rev. E:Stat. Nonlinear Soft Matter Phys. 83 046321Google Scholar

    [30]

    Alghalibi D, Rosti M E, Brandt L 2019 Phys. Rev. Fluids 4 104201Google Scholar

    [31]

    Krüger T, Kaoui B, Harting J 2013 J. Fluid Mech. 751 725Google Scholar

    [32]

    Hur S C, Henderson-Maclennan N K, Mccabe E R B, Carlo D D 2011 Lab Chip 11 912Google Scholar

    [33]

    Hotz J, Meier W 1998 Langmuir 14 1031Google Scholar

    [34]

    Bah M G, Bilal H M, Wang J T 2020 Soft Matter 16 570Google Scholar

    [35]

    Kim B, Chang C B, Park S G, Sunget H J 2015 Int. J. Heat Fluid Flow 54 87Google Scholar

    [36]

    Han Y L, Lin H, Ding M M, Li R, Shi T F 2019 Soft Matter 15 3307Google Scholar

    [37]

    Han Y L, Ding M M, Li R, Shi T F 2019 Chin. J. Polym. Sci. 38 776Google Scholar

    [38]

    Zhang R L, Han Y L, Zhang L L, Chen Q Y, Ding M M, Shi T F 2021 Colloids Surf. , A 609 125560Google Scholar

    [39]

    Zhang Y L, Han Y L, Zhang L L, Chen Q Y, Ding M M, Shi T F 2020 Phys Fluids 32 103310Google Scholar

    [40]

    Han Y L, Li R, Ding M M, Ye F, Shi T F 2021 Phys. Fluids 33 012010Google Scholar

    [41]

    Li Y X, Xing B H, Ding M M, Shi T F, Sun Z Y 2021 Soft Matter 17 9154Google Scholar

    [42]

    Zhang R L, Ding M M, Duan X Z, Shi T F 2021 Phys. Fluids 33 121901Google Scholar

    [43]

    Zeng L, Najjar F, Balachandar S, Fischer P 2009 Phys. Fluids 21 1Google Scholar

    [44]

    Esfahani S A, Hassani K, Espino D M 2019 Comput. Meth. Biomech. Biomed. Eng. 22 288Google Scholar

    [45]

    Espino D M, Shepherd D, Hukins D 2015 Eur. J. Mech. B. Fluids 51 54Google Scholar

    [46]

    Lac E, BarthèS B D 2005 Phys. Fluids 17 072105Google Scholar

    [47]

    Shin S J, Sung H 2012 Int. J. Heat Fluid Flow. 36 167Google Scholar

    [48]

    Kilimnik A, Mao W, Alexeev A 2011 Phys. Fluids 23 123302Google Scholar

  • 图 1  囊泡受力分析图(剪切梯度升力指向通道壁面, 壁面诱导升力指向通道中心)

    Fig. 1.  Vesicle force analysis. (Shear gradient lift points to the channel wall, wall-induced lift points to the channel center).

    图 2  (a) 囊泡惯性迁移示意图; (b)—(d) 不同时刻囊泡周围流速图 (管道宽为H = 150 μm、长为D = 1300 μm, 囊泡半径为a = 20 μm, 囊泡膜厚1 μm, 囊泡内外均为水. 膜的杨氏模量为5000 Pa. 管道入口速度为V, 囊泡表面到管道壁面的距离为L)

    Fig. 2.  (a) Schematic representation of the vesicle inertial migration; (b)–(d) flow velocity around vesicles at different times (The channel width is H = 150 μm and length is D = 1300 μm. The vesicle radius is a = 20 μm and the vesicle membrane is 1 μm thick. Water is both inside and outside the vesicles. The Young’s modulus of the membrane is 5000 Pa. The inlet speed is V, L is distance from the vesicle surface to the channel wall).

    图 3  不同阻塞比下, 雷诺数对惯性迁移平衡位置的影响 (r代表囊泡达到平衡位置后质心的纵坐标. 黑色虚线代表Matas等[8]的实验报道结果, 其颗粒直径为190 μm—1 mm, 管道宽度为8 mm, 即颗粒的阻塞比范围为0.0238—0.125)

    Fig. 3.  Effect of Reynold numbers on the equilibrium position of inertial migration with different blocking ratios (r represents the ordinate of the centroid of the vesicle after reaching the equilibrium position. The black dashed line represents the experimentally reported results of Matas et al.[8] with particle diameters of 190 μm–1 mm and pipe widths of 8 mm, i.e. the particle blocking ratios ranged from 0.0238 to 0.125)

    图 4  不同雷诺数和阻塞比下囊泡升力随时间的变化图 (a) Re = 100, κ = 0.1, 0.3, 0.5; (b) Re = 50, 100, 250, κ = 0.3 (F为升力, 即是壁面诱导升力与剪切梯度升力的总和, 方向为管道径向)

    Fig. 4.  Plot of vesicle lift over time under different Reynolds numbers and blocking ratios: (a) Re = 100, κ = 0.1, 0.3, 0.5; (b) Re = 50, 100, 250, κ = 0.3 (Lift is the sum of wall-induced lift and shear gradient lift, in the tube radial).

    图 5  囊泡初始位置对惯性迁移的影响

    Fig. 5.  Effect of the initial vesicle position on the inertial migration.

    图 6  不同初始位置时囊泡升力随时间的变化 (a) Re = 50; (b) Re = 200

    Fig. 6.  Variations of vesicle lift with time at different initial positions: (a) Re = 50; (b) Re = 200.

    图 7  囊泡膜模量对惯性迁移的影响

    Fig. 7.  Effect of the modulus of vesicle membrane on the inertial migration.

    图 8  不同膜黏度时囊泡的形变及其迁移位置轨迹图

    Fig. 8.  Deformation of vesicles and their migration location trajectories at different membrane viscosities.

    图 9  囊泡膜的黏度对惯性迁移的影响

    Fig. 9.  Effect of vesicle membrane viscosity on the inertial migration.

    图 10  囊泡膜厚对惯性迁移的影响

    Fig. 10.  Effects of vesicle membrane thickness on inertial migration.

  • [1]

    Discher D E, Eisenberg A 2002 Science 297 967Google Scholar

    [2]

    Thery C, Ostrowski M, Segura E 2009 Nat. Rev. Immunol. 9 581Google Scholar

    [3]

    Yingchoncharoen P, Kalinowski D S, Richardson D R 2016 Pharmacol. Rev. 68 701Google Scholar

    [4]

    Finean J B 1983 Trends Biochem. Sci. 8 225Google Scholar

    [5]

    Rubinow S I, Keller J B 1961 J. Fluid Mech. 11 447Google Scholar

    [6]

    Saffman P G 2006 J. Fluid Mech. 22 385Google Scholar

    [7]

    Asmolov E S 1999 J. Fluid Mech. 381 63Google Scholar

    [8]

    Matas J P, Morris J F, Guazzelli É 2004 J. Fluid Mech. 515 171Google Scholar

    [9]

    Matas J P, Glezer V, Guazzelli E 2004 Phys. Fluids 16 4192Google Scholar

    [10]

    Coupier G, Kaoui B, Podgorski T 2008 Phys. Fluids 20 111702Google Scholar

    [11]

    Risso F, Colle-Paillot F, Zagzoule M 2006 J. Fluid Mech. 547 149Google Scholar

    [12]

    Bagchi P 2007 Biophys. J. 92 1858Google Scholar

    [13]

    Lázaro G R, Hernández-Machado A, Pagonabarraga I 2014 Soft Matter 10 7207Google Scholar

    [14]

    Bächer C, Schrack L, Gekle S 2017 Phys. Rev. Fluids 2 013102Google Scholar

    [15]

    Abay A, Recktenwald S M, John T 2020 Soft Matter 16 534Google Scholar

    [16]

    Segr G, Silberberg A 1961 Nature 189 209Google Scholar

    [17]

    Carlo D D 2009 Lab Chip 9 3038Google Scholar

    [18]

    Carlo D D, Edd J F, Humphry K J 2009 Phys. Rev. Lett. 102 094503Google Scholar

    [19]

    Feng J, Hu H H, Joseph D D 1994 J. Fluid Mech. 277 271Google Scholar

    [20]

    Brenner H 1961 Chem. Eng. Sci. 16 242Google Scholar

    [21]

    Carlo D D, Irimia D, Tompkins R G 2007 P Natl. Acad. Sci. U. S. A. 104 18892Google Scholar

    [22]

    Morita Y, Itano T, Sugihara-Seki M 2017 J. Fluid Mech. 813 750Google Scholar

    [23]

    Yao T L, Yu Z S, Shao X M 2014 J. Mech. Electr. Eng. 31 301Google Scholar

    [24]

    Nakayama S, Yamashita H, Yabu T 2019 J. Fluid Mech. 871 952Google Scholar

    [25]

    Salac D, Miksis M J 2012 J. Fluid Mech. 711 122Google Scholar

    [26]

    Mach A J, Carlo D D 2010 Biotechnol. Bioeng. 107 302Google Scholar

    [27]

    Doddi S K, Bagchi P 2008 Int. J. Multiphase Flow 34 966Google Scholar

    [28]

    Sun D K, Bo Z 2015 Int. J. Heat Mass Transfer 80 139Google Scholar

    [29]

    Shin S J, Sung H J 2011 Phys. Rev. E:Stat. Nonlinear Soft Matter Phys. 83 046321Google Scholar

    [30]

    Alghalibi D, Rosti M E, Brandt L 2019 Phys. Rev. Fluids 4 104201Google Scholar

    [31]

    Krüger T, Kaoui B, Harting J 2013 J. Fluid Mech. 751 725Google Scholar

    [32]

    Hur S C, Henderson-Maclennan N K, Mccabe E R B, Carlo D D 2011 Lab Chip 11 912Google Scholar

    [33]

    Hotz J, Meier W 1998 Langmuir 14 1031Google Scholar

    [34]

    Bah M G, Bilal H M, Wang J T 2020 Soft Matter 16 570Google Scholar

    [35]

    Kim B, Chang C B, Park S G, Sunget H J 2015 Int. J. Heat Fluid Flow 54 87Google Scholar

    [36]

    Han Y L, Lin H, Ding M M, Li R, Shi T F 2019 Soft Matter 15 3307Google Scholar

    [37]

    Han Y L, Ding M M, Li R, Shi T F 2019 Chin. J. Polym. Sci. 38 776Google Scholar

    [38]

    Zhang R L, Han Y L, Zhang L L, Chen Q Y, Ding M M, Shi T F 2021 Colloids Surf. , A 609 125560Google Scholar

    [39]

    Zhang Y L, Han Y L, Zhang L L, Chen Q Y, Ding M M, Shi T F 2020 Phys Fluids 32 103310Google Scholar

    [40]

    Han Y L, Li R, Ding M M, Ye F, Shi T F 2021 Phys. Fluids 33 012010Google Scholar

    [41]

    Li Y X, Xing B H, Ding M M, Shi T F, Sun Z Y 2021 Soft Matter 17 9154Google Scholar

    [42]

    Zhang R L, Ding M M, Duan X Z, Shi T F 2021 Phys. Fluids 33 121901Google Scholar

    [43]

    Zeng L, Najjar F, Balachandar S, Fischer P 2009 Phys. Fluids 21 1Google Scholar

    [44]

    Esfahani S A, Hassani K, Espino D M 2019 Comput. Meth. Biomech. Biomed. Eng. 22 288Google Scholar

    [45]

    Espino D M, Shepherd D, Hukins D 2015 Eur. J. Mech. B. Fluids 51 54Google Scholar

    [46]

    Lac E, BarthèS B D 2005 Phys. Fluids 17 072105Google Scholar

    [47]

    Shin S J, Sung H 2012 Int. J. Heat Fluid Flow. 36 167Google Scholar

    [48]

    Kilimnik A, Mao W, Alexeev A 2011 Phys. Fluids 23 123302Google Scholar

  • [1] 洪昕, 王晓强, 李冬雪, 商云晶. 不依赖激发光偏振方向的芯帽异构二聚体. 物理学报, 2022, 71(3): 037801. doi: 10.7498/aps.71.20211381
    [2] 马聪, 刘斌, 梁宏. 耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟. 物理学报, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [3] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟. 物理学报, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [4] 孙明健, 刘婷, 程星振, 陈德应, 闫锋刚, 冯乃章. 基于多模态信号的金属材料缺陷无损检测方法. 物理学报, 2016, 65(16): 167802. doi: 10.7498/aps.65.167802
    [5] 孙明健, 程星振, 王艳, 章欣, 沈毅, 冯乃章. 基于光声信号的高铁钢轨表面缺陷检测方法. 物理学报, 2016, 65(3): 038105. doi: 10.7498/aps.65.038105
    [6] 张立广, 屈惠明. 红外无损探测中多宗量多热源反演问题的研究. 物理学报, 2015, 64(10): 108104. doi: 10.7498/aps.64.108104
    [7] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [8] 赵寰宇, 何存富, 吴斌, 汪越胜. 二维正方晶格多点缺陷声子晶体实验研究. 物理学报, 2013, 62(13): 134301. doi: 10.7498/aps.62.134301
    [9] 刘磊, 张锁良, 马亚坤, 吴国浩, 郑树凯, 王永青. 平板集热太阳热电器件建模及结构优化. 物理学报, 2013, 62(3): 038802. doi: 10.7498/aps.62.038802
    [10] 孙东科, 项楠, 陈科, 倪中华. 格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为. 物理学报, 2013, 62(2): 024703. doi: 10.7498/aps.62.024703
    [11] 胡海涛, 肖立志, 吴锡令. 核磁共振测井仪探头设计中的数值方法. 物理学报, 2012, 61(14): 149302. doi: 10.7498/aps.61.149302
    [12] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析. 物理学报, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [13] 吴兆春. 导热几何形状反演的变分原理及边界条件的确立. 物理学报, 2010, 59(9): 6326-6330. doi: 10.7498/aps.59.6326
    [14] 杜诚, 徐敏义, 米建春. 雷诺数对圆形渐缩喷嘴湍流射流的影响. 物理学报, 2010, 59(9): 6331-6338. doi: 10.7498/aps.59.6331
    [15] 米建春, 冯宝平, Deo Ravinesh C, Nathan Graham J. 出口雷诺数对平面射流自保持性的影响. 物理学报, 2009, 58(11): 7756-7764. doi: 10.7498/aps.58.7756
    [16] 庞 浩, 李 根, 王赞基. 磁环中非晶丝的阻抗效应分析. 物理学报, 2008, 57(11): 7194-7199. doi: 10.7498/aps.57.7194
    [17] 刘明强, 李斌成. 光学薄膜样品的温度场和形变场分析. 物理学报, 2008, 57(6): 3402-3409. doi: 10.7498/aps.57.3402
    [18] 刘小毅, 张方迪, 张 民, 叶培大. 基于谐振吸收效应的单模单偏振光子晶体光纤研究. 物理学报, 2007, 56(1): 301-307. doi: 10.7498/aps.56.301
    [19] 李汉明, 刘 峰, 李英骏, 张 翼, 张 喆, Jens Bernhardt, Perez Renaud, 程 涛, 李玉同, 张 杰. 20 μm单微液滴的产生和特性研究. 物理学报, 2007, 56(10): 5926-5930. doi: 10.7498/aps.56.5926
    [20] 杜启振, 杨慧珠. 方位各向异性黏弹性介质波场有限元模拟. 物理学报, 2003, 52(8): 2010-2014. doi: 10.7498/aps.52.2010
计量
  • 文章访问数:  4383
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-01
  • 修回日期:  2022-04-26
  • 上网日期:  2022-09-08
  • 刊出日期:  2022-09-20

/

返回文章
返回