搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热电空气消毒系统

季仁才 彭桂龙 徐振伟 杨诺 郝磬

引用本文:
Citation:

热电空气消毒系统

季仁才, 彭桂龙, 徐振伟, 杨诺, 郝磬

Thermoelectric air disinfection system

Ji Ren-Cai, Peng Gui-Long, Xu Zhen-Wei, Yang Nuo, Hao Qing
PDF
HTML
导出引用
  • 流行性病毒严重影响着人类健康和社会正常运行, 因此有效杀灭病毒变得尤为重要。 本文对热电空气消毒系统的传热性能进行研究, 该系统利用半导体热片具有冷热两端的特点, 可以实现对空气加热(可用于消毒)与冷却降温至舒适温度. 测量结果显示流入系统的空气首先被升至80 ℃进行消毒, 之后被冷却降温至35 ℃. 该系统总的能量利用率最高可达1.2. 此外, 结合测量结果和数值计算, 本文分析了热电片级数、输入功率、空气流量以及边界保温等参数对系统传热性能和能量利用率的影响. 该系统在公共卫生、医疗、和家庭等空气消毒领域具有应用潜力.实际消毒效果需要结合医学应用进一步研究.
    Epidemic viruses seriously affect human health and the normal operation of society, so it is particularly important to effectively kill viruses. In this work, the thermal performance of a thermoelectric air disinfection system are studied. Utilizing the characteristics of semiconductor thermoelectric sheets with both cold and hot ends, the system can increase the air temperature by heating (cound be used in sterilization), and then, reduce the temperature of the air by cooling. The measurement results show that the air temperature can be increased to 80 ℃ first, and then cooled to 35 ℃. The total energy utilization rate of the system can reach up to 1.2. In addition, combined with the measurement results and numerical calculations, the parameters such as the number of thermoelectric element series, input power, air flow, and boundary insulation can be used to analyze their effects on the system performance. The system may have broad potential applications in public health, medical care, and household disinfection.
      通信作者: 杨诺, nuo@hust.edu.cn ; 郝磬, qinghao@email.arizona.edu
      Corresponding author: Yang Nuo, nuo@hust.edu.cn ; Hao Qing, qinghao@email.arizona.edu
    [1]

    Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N F, Soropogui B, Sow M S, Keïta S, De Clerck H 2014 N. Engl. J. Med. 371 1418Google Scholar

    [2]

    Feldmann H, Geisbert T W 2011 The Lancet 377 849Google Scholar

    [3]

    Chidlow G, Harnett G, Williams S, Levy A, Speers D, Smith D W 2010 J. Clin. Microbiol. 48 862Google Scholar

    [4]

    Hurt A C, Ernest J, Deng Y M, Iannello P, Besselaar T G, Birch C, Buchy P, Chittaganpitch M, Chiu S C, Dwyer D 2009 Antiviral Res. 83 90Google Scholar

    [5]

    Ferguson N M, Keeling M J, John Edmunds W, Gani R, Grenfell B T, Anderson R M, Leach S 2003 Nature 425 681Google Scholar

    [6]

    Gani R, Leach S 2001 Nature 414 748Google Scholar

    [7]

    Control C F D 2011 MMWR Morb. Mortal. Wkly. Rep. 60 1618

    [8]

    Douek D C, Brenchley J M, Betts M R, Ambrozak D R, Hill B J, Okamoto Y, Casazza J P, Kuruppu J, Kunstman K, Wolinsky S 2002 Nature 417 95Google Scholar

    [9]

    Stadler K, Masignani V, Eickmann M, Becker S, Abrignani S, Klenk H-D, Rappuoli R 2003 Nat. Rev. Microbiol. 1 209Google Scholar

    [10]

    Fouchier R A, Kuiken T, Schutten M, et al. 2003 Nature 423 240Google Scholar

    [11]

    Prather K A, Wang C C, Schooley R T 2020 Science 368 1422Google Scholar

    [12]

    Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y 2020 The Lancet 395 507Google Scholar

    [13]

    World Health Organization. Coronavirus disease (COVID-19)https://www.who.int/emergencies/diseases/novel-coronavirus-2019 [2022-02-20]

    [14]

    疫情监测 https://coronavirus.app [2022-02-20]

    https://coronavirus.app [2022-02-20]

    [15]

    刘洋, 谢珊珊, 杨凯, 曹巧玲, 田葆萍, 王木根 2017 职业与健康 33 1422

    Liu Y, Xie S S, Yang K, Cao Q L, Tian B P, Wang M G 2017 Occupat. Health 33 1422

    [16]

    Boo Y C 2020 Antioxidants 9 637Google Scholar

    [17]

    Narayanan D L, Saladi R N, Fox J L 2010 Int. J. Dermatol. 49 978Google Scholar

    [18]

    Yap T F, Liu Z, Shveda R A, Preston D J 2020 Appl. Phys. Lett. 117 060601Google Scholar

    [19]

    Burton J, Love H, Richards K, Burton C, Summers S, Pitman J, Easterbrook L, Davies K, Spencer P, Killip M 2021 J. Virol. Methods 290 114087Google Scholar

    [20]

    Wang T T, Lien C Z, Liu S, Selvaraj P 2020 MedRxiv 10.1101/2020.04. 29.20085498 [Physics]

    [21]

    Pastorino B, Touret F, Gilles M, de Lamballerie X, Charrel R N 2020 BioRxiv 10.3390/v12060624 [physics]

    [22]

    Chin A W, Chu J T, Perera M R, Hui K P, Yen H-L, Chan M C, Peiris M, Poon L L 2020 The Lancet Microbe 1 e10Google Scholar

    [23]

    Pratelli A 2008 Vet. J. 177 71Google Scholar

    [24]

    Darnell M E, Subbarao K, Feinstone S M, Taylor D R 2004 J. Virol. Methods 121 85Google Scholar

    [25]

    Charm S E, Landau S, Williams B, Horowitz B, Prince A M, Pascual D 1992 Vox Sang. 62 12Google Scholar

    [26]

    Trancossi M, Carli C, Cannistraro G, Pascoa J, Sharma S 2021 Int. J. Heat Mass Transf. 170 120983Google Scholar

    [27]

    Yu L, Peel G K, Cheema F H, Lawrence W S, Bukreyeva N, Jinks C W, Peel J E, Peterson J W, Paessler S, Hourani M 2020 Mater. Today Phys. 15 100249Google Scholar

    [28]

    Correia G, Rodrigues L, Da Silva M G, Gonçalves T 2020 Med. Hypotheses 141 109781Google Scholar

    [29]

    Rezaei N, Jafari M, Nazari A, Salehi S, Talati F, Torab R, Nejad-Rahim R 2020 AIP Adv. 10 085308Google Scholar

    [30]

    Shan X, Zhang H, Liu C, Yu L, Di Y, Zhang X, Dong L, Gan Z 2020 ACS Appl. Mater. Interfaces 12 56579Google Scholar

    [31]

    Ji R, Pan T, Peng G, Ma J, Yang N, Hao Q 2021 Mater. Today Phys. 19 100430Google Scholar

    [32]

    Simons R, Ellsworth M, Chu R 2005 J. Heat Transfer 127 76Google Scholar

    [33]

    Han J, Park J S, Lei C 1985 J. Eng. Gas Turbines Power 107 628Google Scholar

    [34]

    Han J, Park J S 1988 Int. J. Heat Mass Transf. 31 183Google Scholar

    [35]

    Yang N, Hao Q, Ji R C 2021 Chinese Patent CN 214 746 278 U(in Chinese)[杨诺, 郝馨, 季仁才 2021 中国专利 CN 214 746 278 U]

    [36]

    Yang N, Hao Q, Ji R C Wang Y P Li Z W 2021 Chinese Patent CN 119 211 14 B(in Chinese)[杨诺, 郝磬, 季仁才, 王云鹏, 李忠炜 2021 Patent CN111921114 B]

    [37]

    杨诺, 郝磬, 季仁才, 定志东 2021 Patent CN112089882 B

    Yang N, Hao Q, Ji R C Ding Z D 2021 Chinese Patent CN 112 089 882 B (in Chinese)

  • 图 1  热电消毒系统结构示意图

    Fig. 1.  Diagram of thermoelectric disinfection system.

    图 2  实验搭建测量平台实物图 (a)单个半导体制冷片和换热片单元; (b)多级半导体热电片组成通道; (c)测量过程实物图; (d)加厚保温层后测量实物图

    Fig. 2.  Physical diagram of the measurement platform built in the experiment: (a) A single semiconductor refrigeration element and heat exchange element unit; (b) the multi-stage semiconductor thermoelectric element constitutes a channel; (c) the physical diagram of the measurement process; (d) the physical diagram of the measurement after adding the insulation layer.

    图 3  热电消毒系统数值计算网格模型

    Fig. 3.  Numerical calculation grid model of thermoelectric disinfection system.

    图 4  不同功率下实验测试和计算结果 (a)电压1.3 V时不同位置的空气温度测试和计算; (b)不同功率下计算的温度云图; (c)不同功率下的温度比较; (d)不同功率下的换热量和性能系数

    Fig. 4.  Experimental test and calculation results under different input powers. (a) Temperature measurement and calculation at different positions when the voltage is 1.3 V; (b) cloud diagram of temperature under different power; (c) comparison of temperature under different power; (d) heat exchange and COP under different power.

    图 5  不同半导体热电片数量工作的影响(电压1.3 V) (a)温度比较; (b)换热量和性能系数

    Fig. 5.  The effect of the number of different semiconductor thermoelectric sheets (voltage 1.3 V): (a) Comparison of temperature; (b) heat exchange and COP.

    图 6  (a)流量为7.52 L/min温度测试和计算; (b)不同空气流量下的温度云图; (c)不同空气流量下的温度; (d)不同空气流量下的换热量和COP*

    Fig. 6.  (a) Temperature test and calculation with a flow rate of 7.52 L/min; (b) temperature cloud diagram under different air flow rates; (c) temperature under different air flow rates; (d) heat exchange and COP* under different air flow rates.

    图 7  (a)流量为8.91 L/min温度测试和计算; (b)保温层加厚前后的温度云图; (c)不同工况下加厚保温层前后的温度对比; (d)不同工况下加厚保温层前后的COP*对比.

    Fig. 7.  (a) Temperature test and calculation with a flow rate of 8.91 L/min; (b) temperature cloud diagram before and after thickening of the thermal insulation layer; (c) comparison of temperatures before and after thickening the thermal insulation layer under different working conditions; (d) comparison of COP* before and after thickening the thermal insulation layer under different working conditions.

    图 8  散热量计算 (a)不同工作级数的影响(其他因素是流速0.1 m/s, 电压1.0 V, 保温层厚度1.5 cm); (b)不同电压的影响(其他因素是10级工作, 流速0.1 m/s, 保温层厚度1.5 cm); (c)不同保温厚度的影响(其他因素是10级工作, 流速0.1 m/s); (d)不同流速的影响(其他因素是10级工作, 电压1.0 V, 保温层厚度1.5 cm)

    Fig. 8.  Heat dissipation calculation: (a) Influence of different working stages (other factors are flow velocity 0.1 m/s, voltage 1.0 V, insulation layer thickness 1.5 cm); (b) influence of different voltages (other factors are 10-stage operation, flow velocity 0.1 m/s), the thickness of the insulation layer is 1.5 cm); (c) the influence of different insulation thickness (other factors are 10-level work, the flow rate is 0.1 m/s); (d) the influence of different flow rates (the other factors are 10-level work, the voltage is 1.0 V, The thickness of the insulation layer is 1.5 cm).

    图 9  绝热边界与实际比较 (a)耗功比较; (b)换热量和COP*比较

    Fig. 9.  Comparison of adiabatic boundaries with reality: (a) Comparison of power consumption; (b) comparison of heat exchange and COP*.

    表 1  仿真模型材料物性

    Table 1.  Material properties of the simulation model.

    材料及
    部件
    热导率/
    (W·(m·K)–1)
    密度/
    (kg·m–3)
    比热/
    (J·(kg·K)–1)
    表面发射率
    半导体制冷片1.577001540.9
    铝换热片20127109130.038
    XPS保温泡沫0.03252376.20.1
    流体空气0.02611.16141006.5
    下载: 导出CSV
  • [1]

    Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N F, Soropogui B, Sow M S, Keïta S, De Clerck H 2014 N. Engl. J. Med. 371 1418Google Scholar

    [2]

    Feldmann H, Geisbert T W 2011 The Lancet 377 849Google Scholar

    [3]

    Chidlow G, Harnett G, Williams S, Levy A, Speers D, Smith D W 2010 J. Clin. Microbiol. 48 862Google Scholar

    [4]

    Hurt A C, Ernest J, Deng Y M, Iannello P, Besselaar T G, Birch C, Buchy P, Chittaganpitch M, Chiu S C, Dwyer D 2009 Antiviral Res. 83 90Google Scholar

    [5]

    Ferguson N M, Keeling M J, John Edmunds W, Gani R, Grenfell B T, Anderson R M, Leach S 2003 Nature 425 681Google Scholar

    [6]

    Gani R, Leach S 2001 Nature 414 748Google Scholar

    [7]

    Control C F D 2011 MMWR Morb. Mortal. Wkly. Rep. 60 1618

    [8]

    Douek D C, Brenchley J M, Betts M R, Ambrozak D R, Hill B J, Okamoto Y, Casazza J P, Kuruppu J, Kunstman K, Wolinsky S 2002 Nature 417 95Google Scholar

    [9]

    Stadler K, Masignani V, Eickmann M, Becker S, Abrignani S, Klenk H-D, Rappuoli R 2003 Nat. Rev. Microbiol. 1 209Google Scholar

    [10]

    Fouchier R A, Kuiken T, Schutten M, et al. 2003 Nature 423 240Google Scholar

    [11]

    Prather K A, Wang C C, Schooley R T 2020 Science 368 1422Google Scholar

    [12]

    Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y 2020 The Lancet 395 507Google Scholar

    [13]

    World Health Organization. Coronavirus disease (COVID-19)https://www.who.int/emergencies/diseases/novel-coronavirus-2019 [2022-02-20]

    [14]

    疫情监测 https://coronavirus.app [2022-02-20]

    https://coronavirus.app [2022-02-20]

    [15]

    刘洋, 谢珊珊, 杨凯, 曹巧玲, 田葆萍, 王木根 2017 职业与健康 33 1422

    Liu Y, Xie S S, Yang K, Cao Q L, Tian B P, Wang M G 2017 Occupat. Health 33 1422

    [16]

    Boo Y C 2020 Antioxidants 9 637Google Scholar

    [17]

    Narayanan D L, Saladi R N, Fox J L 2010 Int. J. Dermatol. 49 978Google Scholar

    [18]

    Yap T F, Liu Z, Shveda R A, Preston D J 2020 Appl. Phys. Lett. 117 060601Google Scholar

    [19]

    Burton J, Love H, Richards K, Burton C, Summers S, Pitman J, Easterbrook L, Davies K, Spencer P, Killip M 2021 J. Virol. Methods 290 114087Google Scholar

    [20]

    Wang T T, Lien C Z, Liu S, Selvaraj P 2020 MedRxiv 10.1101/2020.04. 29.20085498 [Physics]

    [21]

    Pastorino B, Touret F, Gilles M, de Lamballerie X, Charrel R N 2020 BioRxiv 10.3390/v12060624 [physics]

    [22]

    Chin A W, Chu J T, Perera M R, Hui K P, Yen H-L, Chan M C, Peiris M, Poon L L 2020 The Lancet Microbe 1 e10Google Scholar

    [23]

    Pratelli A 2008 Vet. J. 177 71Google Scholar

    [24]

    Darnell M E, Subbarao K, Feinstone S M, Taylor D R 2004 J. Virol. Methods 121 85Google Scholar

    [25]

    Charm S E, Landau S, Williams B, Horowitz B, Prince A M, Pascual D 1992 Vox Sang. 62 12Google Scholar

    [26]

    Trancossi M, Carli C, Cannistraro G, Pascoa J, Sharma S 2021 Int. J. Heat Mass Transf. 170 120983Google Scholar

    [27]

    Yu L, Peel G K, Cheema F H, Lawrence W S, Bukreyeva N, Jinks C W, Peel J E, Peterson J W, Paessler S, Hourani M 2020 Mater. Today Phys. 15 100249Google Scholar

    [28]

    Correia G, Rodrigues L, Da Silva M G, Gonçalves T 2020 Med. Hypotheses 141 109781Google Scholar

    [29]

    Rezaei N, Jafari M, Nazari A, Salehi S, Talati F, Torab R, Nejad-Rahim R 2020 AIP Adv. 10 085308Google Scholar

    [30]

    Shan X, Zhang H, Liu C, Yu L, Di Y, Zhang X, Dong L, Gan Z 2020 ACS Appl. Mater. Interfaces 12 56579Google Scholar

    [31]

    Ji R, Pan T, Peng G, Ma J, Yang N, Hao Q 2021 Mater. Today Phys. 19 100430Google Scholar

    [32]

    Simons R, Ellsworth M, Chu R 2005 J. Heat Transfer 127 76Google Scholar

    [33]

    Han J, Park J S, Lei C 1985 J. Eng. Gas Turbines Power 107 628Google Scholar

    [34]

    Han J, Park J S 1988 Int. J. Heat Mass Transf. 31 183Google Scholar

    [35]

    Yang N, Hao Q, Ji R C 2021 Chinese Patent CN 214 746 278 U(in Chinese)[杨诺, 郝馨, 季仁才 2021 中国专利 CN 214 746 278 U]

    [36]

    Yang N, Hao Q, Ji R C Wang Y P Li Z W 2021 Chinese Patent CN 119 211 14 B(in Chinese)[杨诺, 郝磬, 季仁才, 王云鹏, 李忠炜 2021 Patent CN111921114 B]

    [37]

    杨诺, 郝磬, 季仁才, 定志东 2021 Patent CN112089882 B

    Yang N, Hao Q, Ji R C Ding Z D 2021 Chinese Patent CN 112 089 882 B (in Chinese)

  • [1] 曹文静, 刘小菲, 韩卓, 冯鑫, 张琳, 刘肖凡, 许小可, 吴晔. 新型冠状病毒肺炎疫情确诊病例的统计分析及自回归建模. 物理学报, 2020, 69(9): 090203. doi: 10.7498/aps.69.20200503
    [2] 李盈科, 赵时, 楼一均, 高道舟, 杨琳, 何岱海. 新型冠状病毒肺炎的流行病学参数与模型. 物理学报, 2020, 69(9): 090202. doi: 10.7498/aps.69.20200389
    [3] 李冀鹏, 洪峰, 白薇, 廖敬仪, 张彦如, 周涛. 评估新型冠状病毒地区防控效果的一种近似方法. 物理学报, 2020, 69(10): 100201. doi: 10.7498/aps.69.20200441
    [4] 鲍美美, 杨恺, 元冰. 流感病毒和冠状病毒的细胞表面结合与内化. 物理学报, 2020, 69(20): 208701. doi: 10.7498/aps.69.20201161
    [5] 王聪, 严洁, 王旭, 李敏. 新型冠状病毒肺炎早期时空传播特征分析. 物理学报, 2020, 69(8): 080701. doi: 10.7498/aps.69.20200285
    [6] 王鸿翔, 应鹏展, 杨江锋, 陈少平, 崔教林. Mn掺杂后三元黄铜矿结构半导体CuInTe2的缺陷特征与热电性能. 物理学报, 2016, 65(6): 067201. doi: 10.7498/aps.65.067201
    [7] 吴芳, 王伟. 高压烧结法制备Bi2Te3纳米晶块体热电性能的研究. 物理学报, 2015, 64(4): 047201. doi: 10.7498/aps.64.047201
    [8] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性. 物理学报, 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [9] 王早, 张国峰, 李斌, 陈瑞云, 秦成兵, 肖连团, 贾锁堂. 利用N型半导体纳米材料抑制单量子点的荧光闪烁特性. 物理学报, 2015, 64(24): 247803. doi: 10.7498/aps.64.247803
    [10] 梁君生, 武媛, 王安帮, 王云才. 利用频谱仪提取双反馈混沌半导体激光器的外腔长度密钥. 物理学报, 2012, 61(3): 034211. doi: 10.7498/aps.61.034211
    [11] 葛振华, 张波萍, 于昭新, 刘勇, 李敬锋. 机械合金化过程对硫化铋块体热电性能的影响机理. 物理学报, 2012, 61(4): 048401. doi: 10.7498/aps.61.048401
    [12] 江天, 程湘爱, 江厚满, 陆启生. 光伏半导体器件对能量小于禁带宽度光子的响应机理研究. 物理学报, 2011, 60(10): 107305. doi: 10.7498/aps.60.107305
    [13] 冯野, 杨毅彪, 王安帮, 王云才. 利用半导体激光器环产生27 GHz的平坦宽带混沌激光. 物理学报, 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [14] 孙 博, 姚建铨, 王 卓, 王 鹏. 利用各向同性半导体晶体差频产生可调谐THz辐射的理论研究. 物理学报, 2007, 56(3): 1390-1396. doi: 10.7498/aps.56.1390
    [15] 王 飞, 黄群星, 李 宁, 严建华, 池 涌, 岑可法. 利用可调谐半导体激光光谱技术对含尘气体中NH3的测量. 物理学报, 2007, 56(7): 3867-3872. doi: 10.7498/aps.56.3867
    [16] 吴加贵, 吴正茂, 夏光琼. 利用射线追踪法研究超短外腔半导体激光器的输出特性. 物理学报, 2007, 56(11): 6457-6462. doi: 10.7498/aps.56.6457
    [17] 夏光琼, 吴正茂, 林恭如. 利用较完善模型研究半导体光放大器对皮秒光脉冲的放大. 物理学报, 2004, 53(2): 490-493. doi: 10.7498/aps.53.490
    [18] 杨瑞青, 陆晓佳, 蔡建华. 半导体超晶格的介电函数倒数与快速电子能量损失谱. 物理学报, 1989, 38(3): 492-496. doi: 10.7498/aps.38.492
    [19] 半导体中浅杂质的傅里叶变换光热电离光谱. 物理学报, 1989, 38(11): 1869-1873. doi: 10.7498/aps.38.1869
    [20] 张恩虬. 关于热电子发射理论的评述(Ⅰ)——对氧化物阴极的半导体模型的批判. 物理学报, 1974, 23(5): 43-52. doi: 10.7498/aps.23.43
计量
  • 文章访问数:  3668
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-20
  • 修回日期:  2022-06-19
  • 上网日期:  2022-08-10
  • 刊出日期:  2022-08-20

/

返回文章
返回