搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实验观测非厄米系统奇异点的手性翻转现象

祝可嘉 郭志伟 陈鸿

引用本文:
Citation:

实验观测非厄米系统奇异点的手性翻转现象

祝可嘉, 郭志伟, 陈鸿

Experimental observation of chiral inversion at exceptional points of non-Hermitian systems

Zhu Ke-Jia, Guo Zhi-Wei, Chen Hong
PDF
HTML
导出引用
  • 在非厄米系统参数空间的黎曼曲面上存在简并点, 此时本征值和相应的本征矢量同时合并, 这些非厄米简并点也被称为奇异点. 作为非厄米物理系统的相变临界态, 奇异点会引起诸多违反直觉的现象, 如损耗诱导透明、单向隐身以及非对称的模式转换. 特别有趣的是, 奇异点的本征矢量是自正交的, 并且由于维度的缺失, 特定非厄米系统的奇异点具有固有的手性. 本文基于开口谐振环这种特殊的超构材料谐振子构造了耦合系数符号可以灵活调控的非厄米系统, 并在实验上观测了非厄米系统奇异点的手性翻转现象. 利用耦合系数符号的改变来实现非厄米系统奇异点的手性态调控, 不仅为研究开放系统中的基本非厄米物理开辟了一条新的途径, 而且在设计高效手性模式转换以及手性天线等光子器件方面具有一定的应用价值.
    Based on the quantum mechanics, the physical observables are represented by Hermitian linear operators. Derived from the conservation of energy, these Hermitian operators exhibit real eigenvalues. However, when a closed system described by an effective Hamiltonian is coupled with the surrounding environment, the dynamics of the system itself becomes non-Hermitian dynamic. In general, the eigenvalues of an open optical non-Hermitian system are complex. Parity-time symmetric structure is the system composed of complex potentials, which is neither parity symmetric nor time reversal symmetric alone but is symmetric after operations of parity inversion and time reversal have been combined. The eigenvalue of the parity-time symmetric Hamiltonian can be found to be real, despite the non-Hermitian nature of the system. One of the most attractive properties of non-Hermitian system is the exceptional point, which is degenerate at which two or more eigenvalues and eigenstates of a non-Hermitian physical system coalesce. The unique topological features of EPs, forming a self-intersecting Riemann surface, have given rise to several exotic physical properties. As a kind of phase singularity in a physical system, exceptional point of non-Hermitian system gives rise to a plethora of counterintuitive phenomenon, such as the loss-induced transmission enhancement, unidirectional reflection and asymmetric state transfer. Especially, the eigenvectors of exceptional point are self-orthogonal and an inherent chirality can be determined because of the missing dimension. Chirality lies at the heart of the most fascinating and fundamental phenomena in modern physics, and how to impose a strong chirality and a switchable direction of light propagation in an optical system by steering it to an exceptional point is an interesting research topic. In this work, a non-Hermitian system is constructed based on the special metamaterial resonator of split-ring resonator, in which the sign of coupling coefficient can be flexibly controlled. Especially, the chiral inversion at an exceptional point of non-Hermitian system is observed experimentally. This sign of coupling coefficient controlled exceptional point not only paves a new way for studying the fundamental non-Hermitian physics in an open system, but also holds great potential in the applied photonic devices such as the efficient chiral mode converter and chiral antennas.
      通信作者: 郭志伟, 2014guozhiwei@tongji.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFA1400602)、国家自然科学基金 (批准号: 12004284, 61621001)、中央高校基本科研业务费(批准号: 22120210579)和上海市晨光计划(批准号: 21CGA22)资助的课题.
      Corresponding author: Guo Zhi-Wei, 2014guozhiwei@tongji.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFA1400602), the National Natural Science Foundation of China (Grant Nos. 12004284, 61621001), the Fundamental Research Fund for the Central Universities, China (Grant No. 22120210579), and the Shanghai Chenguang Plan, China (Grant No. 21CGA22).
    [1]

    Berry M V 2004 Czech. J. Phys. 54 1039Google Scholar

    [2]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2018 Nat. Phys. 14 11Google Scholar

    [3]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [4]

    Heiss W D 2012 J. Phys. A:Math. Theor. 45 444016Google Scholar

    [5]

    Zeng C, Guo Z, Zhu K, Fan C, Li G, Jiang J, Li Y, Jiang H, Yang Y, Sun Y, Chen H 2022 Chin. Phys. B 31 010307Google Scholar

    [6]

    Guo A, Salamo G J, Duchesne D, et al. 2009 Phys. Rev. Lett. 103 093902Google Scholar

    [7]

    Feng L, El-Ganainy R, Ge L 2017 Nat. Photonics 11 752Google Scholar

    [8]

    Özdemir K, Rotter S, Nori F, Yang L 2019 Nat. Mater. 18 783Google Scholar

    [9]

    Miri M, Alù A 2019 Science 363 eaar7709Google Scholar

    [10]

    Shi C, Dubois M, Chen Y, Cheng L, Ramezani H, Wang Y, Zhang X 2016 Nat. Commun. 7 11110Google Scholar

    [11]

    Ding K, Ma G, Xiao M, Zhang Z Q, Chan C T 2016 Phys. Rev. X 6 021007

    [12]

    Tang W, Jiang X, Ding K, Xiao Y X, Zhang Z Q, Chan C T, Ma G 2020 Science 370 1077Google Scholar

    [13]

    Assawaworrarit S, Yu X, Fan S 2017 Nature 546 387Google Scholar

    [14]

    Choi Y, Hahn C, Yoon J W, Song S H 2018 Nat. Commun. 9 2182Google Scholar

    [15]

    Xiao Z, Li H, Kottos T, Alù A 2019 Phys. Rev. Lett. 123 213901Google Scholar

    [16]

    Peng B, Özdemir K, Rotterh S, Yilmaz H, Liertzer M, Monifi F, Bender C, Nori F, Yang L 2014 Science 346 328Google Scholar

    [17]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [18]

    Song J, Yang F, Guo Z, Wu X, Zhu K, Jiang J, Sun Y, Li Y, Jiang H, Chen H 2021 Phys. Rev. Appl. 15 014009Google Scholar

    [19]

    Shu X, Li A, Hu G, Wang J, Alù A, Chen L 2022 Nat. Commun. 13 2123Google Scholar

    [20]

    Schumer A, Liu Y, Leshin J, Ding L, et al. 2022 Science 375 884Google Scholar

    [21]

    Hodaei H, Hassan A U, Wittek S, et al. 2017 Nature 548 187Google Scholar

    [22]

    Chen W J, Özdemir K, Zhao G M, Wiersig J, Yang L 2017 Nature 548 192Google Scholar

    [23]

    Guo Z, Zhang T, Song J, Jiang H, Chen H 2021 Photonics Res. 9 574Google Scholar

    [24]

    Guo Z, Jiang J, Jiang H, et al. 2021 Phys. Rev. Res. 3 013122Google Scholar

    [25]

    Doppler J, Mailybaev A, Böhm J, et al. 2016 Nature 537 76Google Scholar

    [26]

    Liu Q, Li S, Wang B, Ke S, Qin C, Wang K, Liu W, Gao D, Berini P, Lu P 2020 Phys. Rev. Lett. 124 153903Google Scholar

    [27]

    Song Q H, Odeh M, Zúñiga-Pérez J, Kanté B, and Genevet P 2021 Science 373 1133Google Scholar

    [28]

    Dembowski C, Dietz B, Gräf H D, Harney H L, Heine A, Heiss W D, Richter A 2003 Phys. Rev. Lett. 90 034101Google Scholar

    [29]

    Cao Q T, Wang H M, Dong C H, Jing H, Liu R S, Chen X, Ge L, Gong Q H, Xiao Y F 2017 Phys. Rev. Lett. 118 033901Google Scholar

    [30]

    Chen H, Liu T, Luan H, et al. 2020 Nat. Phys. 16 571Google Scholar

    [31]

    Wang C Q, Sweeney W R, Stone A D, Yang L 2021 Science 373 1261Google Scholar

    [32]

    Keil R, Poli C, Heinrich M, Arkinstall J, Weihs G, Schomerus H, Szameit A 2016 Phys. Rev. Lett. 116 213901Google Scholar

    [33]

    Fu N, Fu Z, Zhang H, Liao Q, Zhao D, Ke S 2020 Opt. Quantum Electron. 52 61Google Scholar

    [34]

    Ke S, Wang B, Qin C, Long H, Wang K, Lu P 2016 J. Lightwave Technol. 34 5258Google Scholar

    [35]

    Guo Z, Jiang H, Chen H 2022 J. Phys. D:Appl. Phys. 55 083001Google Scholar

    [36]

    梁浩, 李剑生, 郭云胜 2014 物理学报 63 144101

    Liang H, Li J S, Guo Y S 2014 Acta Phys. Sin. 63 144101

    [37]

    张萌徕, 覃赵福, 陈卓 2021 物理学报 70 054206Google Scholar

    Zhang M L, Qin Z F, Chen Z 2021 Acta Phys. Sin. 70 054206Google Scholar

    [38]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075Google Scholar

    [39]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar

    [40]

    Shamonina E 2008 Phys. Status Solidi B 245 1471Google Scholar

    [41]

    Jiang J, Guo Z, Ding Y, Sun Y, Li Y, Jiang H, Chen H 2018 Opt. Express 26 12891Google Scholar

    [42]

    Guo Z, Jiang H, Sun Y, Li Y, Chen H 2018 Opt. Lett. 43 5142Google Scholar

    [43]

    Jiang J, Ren J, Guo Z, Zhu W, Long Y, Jiang H, Chen H 2020 Phys. Rev. B 101 165427Google Scholar

    [44]

    Liu H, Genov D A, Wu D M, Liu Y M, Liu Z W, Sun C, Zhu S N, Zhang X 2007 Phys. Rev. B 76 073101Google Scholar

    [45]

    Grbic A, Eleftheriades G V 2004 Phys. Rev. Lett. 92 117403Google Scholar

    [46]

    Guo Z, Jiang H, Zhu K, Sun Y, Li Y, Chen H 2018 Phys. Rev. Appl. 10 064048Google Scholar

    [47]

    Guo Z, Long Y, Jiang H, et al. 2021 Adv. Photonics 3 036001

    [48]

    Guo Z, Jiang H, Li Y, et al. 2018 Opt. Express 26 627Google Scholar

    [49]

    Li Y, Sun Y, Zhu W, et al. 2018 Nat. Commun. 9 4598Google Scholar

    [50]

    Hadad Y, Soric J C, Khanikaev A B, Alù A 2018 Nat. Electron. 1 178Google Scholar

  • 图 1  两个共振原子近场耦合组成的二阶非厄米系统

    Fig. 1.  A second-order non-Hermitian system composed of two coupled resonant atoms with near-field coupling.

    图 2  在耦合系数$ \kappa $和本征损耗因子${\varGamma _2}$构成的参数空间内, 非厄米系统本征频率 (a)实部和(b)虚部的黎曼表面

    Fig. 2.  The Riemannian surface of the (a) real part and (b)imaginary part of the eigenfrequency of the non-Hermitian system in the parameter space composed of the coupling coefficient $ \kappa $ and the intrinsic loss factor ${\varGamma _2}$

    图 3  开口谐振环不同相对转角下的耦合情况 (a)开口谐振环相对夹角为$ \theta ={180}^{\circ} $时的负耦合; (b)开口谐振环相对夹角为$ \theta = {0^\circ} $的正耦合

    Fig. 3.  The coupling of the split-ring resonator under different relative rotation angles: (a) The negative coupling when the relative rotation angle of the split-ring resonators is $ \theta = {180^\circ} $; (b) the positive coupling when the relative rotation angle of the split-ring resonators is $ \theta = {0^\circ} $.

    图 4  开口谐振环相对夹角为 (a)$\theta = {180^\circ}$和(b)$ \theta = {0^\circ} $时构造的非厄米系统实验样品图; (c)$ \theta = {180^\circ} $和(d)$ \theta = {0^\circ} $对应的非厄米系统中, 调节集总电阻的阻值$ {R_2} $时测得的透射谱

    Fig. 4.  Sample photos of the non-Hermitian system with relative rotation angle between split-ring resonators is (a)$ \theta = {180^\circ} $ and (b) $ \theta = {0^\circ} $; The corresponding transmittance spectrum of the non-Hermitian system with (c) $ \theta = {180^\circ} $and (d) $ \theta = {0^\circ} $as a function of lumped resistance $ {R_2} $.

    图 5  实验观测当${\varGamma _2}$变化时, 开口谐振环相对夹角为 (a)$\theta = {180^\circ}$和(b)$\theta = {0^\circ}$构成的非厄米系统的本征频率实部(上图)和虚部(下图)

    Fig. 5.  Experimental measured the eigenfrequeies of the non-Hermitian system as a function of ${\varGamma _2}$ when the relative rotation angle between split-ring resonators is (a) $\theta = {180^\circ}$and(b) $\theta = {0^\circ}$. The upper and lower rows denote the real part and imaginary part, respectively.

    图 6  实验测得开口谐振环相对夹角为$ \theta = {180^\circ} $(上图)和$ \theta = {0^\circ} $(下图)构成的非厄米系统中, 不同的本征损耗因子$ {\varGamma _2} $两个振子的相位差$ \Delta \varphi = {\varphi _1} - {\varphi _2} $

    Fig. 6.  Measured phase difference between two resonant atoms $ \Delta \varphi = {\varphi _1} - {\varphi _2} $ for different intrinsic loss factor $ {\varGamma _2} $ in the non-Hermitian systems exhibiting the intrinsic chirality of EP. The upper and lower figures denote the relative rotation angle between split-ring resonators is $ \theta = {180^\circ} $ and $ \theta = {0^\circ} $, respectively.

    图 7  全场数值仿真得到的开口谐振环相对夹角为 (a)$\theta = $$ {180^\circ}$和(b)$\theta = {0^\circ}$构成的非厄米系统中, EP位置手性态的场分布仿真演化图

    Fig. 7.  Full-wave numerical simulated evolution of field distribution for the non-Hermitian system with the relative rotation angle between split-ring resonators is (a)$\theta = {180^\circ}$ and (b)$\theta = {0^\circ}$

  • [1]

    Berry M V 2004 Czech. J. Phys. 54 1039Google Scholar

    [2]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2018 Nat. Phys. 14 11Google Scholar

    [3]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [4]

    Heiss W D 2012 J. Phys. A:Math. Theor. 45 444016Google Scholar

    [5]

    Zeng C, Guo Z, Zhu K, Fan C, Li G, Jiang J, Li Y, Jiang H, Yang Y, Sun Y, Chen H 2022 Chin. Phys. B 31 010307Google Scholar

    [6]

    Guo A, Salamo G J, Duchesne D, et al. 2009 Phys. Rev. Lett. 103 093902Google Scholar

    [7]

    Feng L, El-Ganainy R, Ge L 2017 Nat. Photonics 11 752Google Scholar

    [8]

    Özdemir K, Rotter S, Nori F, Yang L 2019 Nat. Mater. 18 783Google Scholar

    [9]

    Miri M, Alù A 2019 Science 363 eaar7709Google Scholar

    [10]

    Shi C, Dubois M, Chen Y, Cheng L, Ramezani H, Wang Y, Zhang X 2016 Nat. Commun. 7 11110Google Scholar

    [11]

    Ding K, Ma G, Xiao M, Zhang Z Q, Chan C T 2016 Phys. Rev. X 6 021007

    [12]

    Tang W, Jiang X, Ding K, Xiao Y X, Zhang Z Q, Chan C T, Ma G 2020 Science 370 1077Google Scholar

    [13]

    Assawaworrarit S, Yu X, Fan S 2017 Nature 546 387Google Scholar

    [14]

    Choi Y, Hahn C, Yoon J W, Song S H 2018 Nat. Commun. 9 2182Google Scholar

    [15]

    Xiao Z, Li H, Kottos T, Alù A 2019 Phys. Rev. Lett. 123 213901Google Scholar

    [16]

    Peng B, Özdemir K, Rotterh S, Yilmaz H, Liertzer M, Monifi F, Bender C, Nori F, Yang L 2014 Science 346 328Google Scholar

    [17]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [18]

    Song J, Yang F, Guo Z, Wu X, Zhu K, Jiang J, Sun Y, Li Y, Jiang H, Chen H 2021 Phys. Rev. Appl. 15 014009Google Scholar

    [19]

    Shu X, Li A, Hu G, Wang J, Alù A, Chen L 2022 Nat. Commun. 13 2123Google Scholar

    [20]

    Schumer A, Liu Y, Leshin J, Ding L, et al. 2022 Science 375 884Google Scholar

    [21]

    Hodaei H, Hassan A U, Wittek S, et al. 2017 Nature 548 187Google Scholar

    [22]

    Chen W J, Özdemir K, Zhao G M, Wiersig J, Yang L 2017 Nature 548 192Google Scholar

    [23]

    Guo Z, Zhang T, Song J, Jiang H, Chen H 2021 Photonics Res. 9 574Google Scholar

    [24]

    Guo Z, Jiang J, Jiang H, et al. 2021 Phys. Rev. Res. 3 013122Google Scholar

    [25]

    Doppler J, Mailybaev A, Böhm J, et al. 2016 Nature 537 76Google Scholar

    [26]

    Liu Q, Li S, Wang B, Ke S, Qin C, Wang K, Liu W, Gao D, Berini P, Lu P 2020 Phys. Rev. Lett. 124 153903Google Scholar

    [27]

    Song Q H, Odeh M, Zúñiga-Pérez J, Kanté B, and Genevet P 2021 Science 373 1133Google Scholar

    [28]

    Dembowski C, Dietz B, Gräf H D, Harney H L, Heine A, Heiss W D, Richter A 2003 Phys. Rev. Lett. 90 034101Google Scholar

    [29]

    Cao Q T, Wang H M, Dong C H, Jing H, Liu R S, Chen X, Ge L, Gong Q H, Xiao Y F 2017 Phys. Rev. Lett. 118 033901Google Scholar

    [30]

    Chen H, Liu T, Luan H, et al. 2020 Nat. Phys. 16 571Google Scholar

    [31]

    Wang C Q, Sweeney W R, Stone A D, Yang L 2021 Science 373 1261Google Scholar

    [32]

    Keil R, Poli C, Heinrich M, Arkinstall J, Weihs G, Schomerus H, Szameit A 2016 Phys. Rev. Lett. 116 213901Google Scholar

    [33]

    Fu N, Fu Z, Zhang H, Liao Q, Zhao D, Ke S 2020 Opt. Quantum Electron. 52 61Google Scholar

    [34]

    Ke S, Wang B, Qin C, Long H, Wang K, Lu P 2016 J. Lightwave Technol. 34 5258Google Scholar

    [35]

    Guo Z, Jiang H, Chen H 2022 J. Phys. D:Appl. Phys. 55 083001Google Scholar

    [36]

    梁浩, 李剑生, 郭云胜 2014 物理学报 63 144101

    Liang H, Li J S, Guo Y S 2014 Acta Phys. Sin. 63 144101

    [37]

    张萌徕, 覃赵福, 陈卓 2021 物理学报 70 054206Google Scholar

    Zhang M L, Qin Z F, Chen Z 2021 Acta Phys. Sin. 70 054206Google Scholar

    [38]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075Google Scholar

    [39]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966Google Scholar

    [40]

    Shamonina E 2008 Phys. Status Solidi B 245 1471Google Scholar

    [41]

    Jiang J, Guo Z, Ding Y, Sun Y, Li Y, Jiang H, Chen H 2018 Opt. Express 26 12891Google Scholar

    [42]

    Guo Z, Jiang H, Sun Y, Li Y, Chen H 2018 Opt. Lett. 43 5142Google Scholar

    [43]

    Jiang J, Ren J, Guo Z, Zhu W, Long Y, Jiang H, Chen H 2020 Phys. Rev. B 101 165427Google Scholar

    [44]

    Liu H, Genov D A, Wu D M, Liu Y M, Liu Z W, Sun C, Zhu S N, Zhang X 2007 Phys. Rev. B 76 073101Google Scholar

    [45]

    Grbic A, Eleftheriades G V 2004 Phys. Rev. Lett. 92 117403Google Scholar

    [46]

    Guo Z, Jiang H, Zhu K, Sun Y, Li Y, Chen H 2018 Phys. Rev. Appl. 10 064048Google Scholar

    [47]

    Guo Z, Long Y, Jiang H, et al. 2021 Adv. Photonics 3 036001

    [48]

    Guo Z, Jiang H, Li Y, et al. 2018 Opt. Express 26 627Google Scholar

    [49]

    Li Y, Sun Y, Zhu W, et al. 2018 Nat. Commun. 9 4598Google Scholar

    [50]

    Hadad Y, Soric J C, Khanikaev A B, Alù A 2018 Nat. Electron. 1 178Google Scholar

  • [1] 吴海滨, 刘迎娣, 刘彦军, 李金花, 刘建军. 量子点耦合强度对手性Majorana费米子共振交换的调制. 物理学报, 2024, 73(13): 130502. doi: 10.7498/aps.73.20240739
    [2] 刘辉, 陆展鹏, 徐志浩. 一维非厄米十字晶格中的退局域-局域转变. 物理学报, 2024, 73(13): 137201. doi: 10.7498/aps.73.20240510
    [3] 李竞, 丁海涛, 张丹伟. 非厄米哈密顿量中的量子Fisher信息与参数估计. 物理学报, 2023, 72(20): 200601. doi: 10.7498/aps.72.20230862
    [4] 邓天舒. 畴壁系统中的非厄米趋肤效应. 物理学报, 2022, 71(17): 170306. doi: 10.7498/aps.71.20221087
    [5] 唐原江, 梁超, 刘永椿. 宇称-时间对称与反对称研究进展. 物理学报, 2022, 71(17): 171101. doi: 10.7498/aps.71.20221323
    [6] 孙思彤, 丁应星, 刘伍明. 基于线性与非线性干涉仪的量子精密测量研究进展. 物理学报, 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [7] 张禧征, 王鹏, 张坤亮, 杨学敏, 宋智. 非厄米临界动力学及其在量子多体系统中的应用. 物理学报, 2022, 71(17): 174501. doi: 10.7498/aps.71.20220914
    [8] 侯博, 曾琦波. 非厄米镶嵌型二聚化晶格. 物理学报, 2022, 71(13): 130302. doi: 10.7498/aps.71.20220890
    [9] 高雪儿, 李代莉, 刘志航, 郑超. 非厄米系统的量子模拟新进展. 物理学报, 2022, 71(24): 240303. doi: 10.7498/aps.71.20221825
    [10] 范辉颖, 罗杰. 非厄密电磁超表面研究进展. 物理学报, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [11] 施婷婷, 张露丹, 张帅宁, 张威. 两量子比特系统中相互作用对高阶奇异点的影响. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220716
    [12] 施婷婷, 张露丹, 张帅宁, 张威. 两量子比特系统中相互作用对高阶奇异点的影响. 物理学报, 2022, 71(13): 130303. doi: 10.7498/aps.70.20220716
    [13] 张翔宇, 刘会刚, 康明, 刘波, 刘海涛. 金属-介质-金属多层结构可调谐Fabry-Perot共振及高灵敏折射率传感. 物理学报, 2021, 70(14): 140702. doi: 10.7498/aps.70.20202058
    [14] 邱克鹏, 骆越, 张卫红. 新型手性电磁超材料非对称传输性能设计分析. 物理学报, 2020, 69(21): 214101. doi: 10.7498/aps.69.20200728
    [15] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究. 物理学报, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [16] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输. 物理学报, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [17] 廖庆洪, 邓伟灿, 文健, 周南润, 刘念华. 纳米机械谐振器耦合量子比特非厄米哈密顿量诱导的声子阻塞. 物理学报, 2019, 68(11): 114203. doi: 10.7498/aps.68.20182263
    [18] 俞杭, 徐锡方, 牛谦, 张力发. 声子角动量与手性声子. 物理学报, 2018, 67(7): 076302. doi: 10.7498/aps.67.20172407
    [19] 彭永进, 张慧鹏, 金庆华, 王玉芳, 李宝会, 丁大同. 单壁手性碳纳米管Γ点E1和E2振动模式. 物理学报, 2006, 55(6): 2860-2864. doi: 10.7498/aps.55.2860
    [20] 陶卫东, 夏海平, 白贵儒, 董建峰, 聂秋华. 固体手性材料的研制及其特性测试. 物理学报, 2002, 51(3): 685-689. doi: 10.7498/aps.51.685
计量
  • 文章访问数:  6951
  • PDF下载量:  486
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 修回日期:  2022-05-28
  • 上网日期:  2022-06-27
  • 刊出日期:  2022-07-05

/

返回文章
返回