搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于粒子群算法的超振荡超分辨聚焦声场设计

李鑫鹏 曹睿杰 李铭 郭各朴 李禹志 马青玉

引用本文:
Citation:

基于粒子群算法的超振荡超分辨聚焦声场设计

李鑫鹏, 曹睿杰, 李铭, 郭各朴, 李禹志, 马青玉

Super-resolution acoustic focusing based on the particle swarm optimization of super-oscillation

Li Xin-Peng, Cao Rui-Jie, Li Ming, Guo Ge-Pu, Li Yu-Zhi, Ma Qing-Yu
PDF
HTML
导出引用
  • 针对传统声束的衍射极限问题, 如何构建具有更高分辨率的聚焦声场, 是实现超分辨声成像和声操控领域的重大挑战之一. 本文在考虑成像分辨率同时兼顾声场可控制性, 提出了一种基于粒子群优化算法的多频超振荡超分辨聚焦声场设计方法. 基于常规换能器声场的衍射效应, 利用半波带法设计中心频率菲涅耳透镜, 并以中心频率为基准在换能器带宽范围内设置多频信号来构建超振荡声场, 进一步通过粒子群算法对多频声束的振幅和相位进行优化, 在远场构建了焦域半径能够小于中心频率半波长的超振荡声场, 还发现其尺寸小于最高频率声场的所形成焦域半径, 进一步证明其焦域半径随着中心频率和超振荡频率数的增大而减小. 研究结果为可控超分辨声聚焦提供了一种简便易行的方法.
    The spatial resolution of conventional waves is restricted by the diffraction limit of half wavelength. Hence, how to construct super-resolution acoustic beams with a smaller focal radius is one of the major challenges in recent studies. In the present paper, the super-resolution acoustic focusing method is proposed based on the superposition of multi-frequency super-oscillation beams and the Particle Swarm Optimization (PSO), which can improve the spatial resolution concurrently with good controllability. Based on the diffraction effect of traditional ultrasound fields, the acoustic lens of Fresnel zone plane (FZP) at the center frequency is designed by the half-wave zone method. Multiple acoustic beams at several preset frequencies within the transducer bandwidth are sent out to build the super-oscillation focal area by the pressure superposition. The radius of the super-resolution focal spot constructed by the PSO algorithm with optimized amplitudes and phases is less than the half wavelength at the center frequency, which is even smaller than the focal radius at the highest frequency. Furthermore, the focal radius is also proved to decrease with the increase of the number of multiple frequencies and the center frequency. The favorable results demonstrate the feasibility of super-resolution acoustic focusing based on the PSO of super-oscillation, and provide an applicable strategy for the high-resolution acoustic imaging and manipulation.
      通信作者: 马青玉, maqingyu@njnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11934009, 11974187, 12174198)资助的课题.
      Corresponding author: Ma Qing-Yu, maqingyu@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11934009, 11974187, 12174198).
    [1]

    Gettle L M, Revzin M V 2020 Radiol. Clin. North. Am. 58 653Google Scholar

    [2]

    Chen Q Y, Song H J, Yu J, Kim K 2021 Sensors (Basel). 21 2417Google Scholar

    [3]

    Liu Y L, L Liu J H, Ai K, Yuan Q H, Lu L H 2014 Contrast Media Mol. Imaging 9 26Google Scholar

    [4]

    Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M 2002 Neuroimage. 15 273Google Scholar

    [5]

    Boellaard R, O’Doherty M J, Chiti A 2010 Eur. J. Nucl. Med. Mol. Imaging 37 181Google Scholar

    [6]

    Kim K, Chen Q Y, Yu J 2019 J. Acoust. Soc. Am. 145 1703Google Scholar

    [7]

    Lin F L, Tsuruta J K, Rojas J D, Dayton P A 2017 Ultrasound Med. Biol. 43 2488Google Scholar

    [8]

    Soulioti D E, Espindola D, Dayton P A, Pinton G F 2020 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 25Google Scholar

    [9]

    丁昌林, 董仪宝, 赵晓鹏 2018 物理学报 67 194301Google Scholar

    Ding C L, Dong Y B, Zhao X P 2018 Acta. Phys. Sin. 67 194301Google Scholar

    [10]

    Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [11]

    Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X, Garcia-Vidal F J 2011 Nat. Phys. 7 52Google Scholar

    [12]

    Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Appl. Phys. 105 124909Google Scholar

    [13]

    Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M 2015 Nature 527 499Google Scholar

    [14]

    Yuan B G, Liu J Y, Liu C, Cheng Y, Liu X J 2021 Appl. Acoust. 178 107993Google Scholar

    [15]

    董永康, 王培峰, 郁高坤 2018 声学技术 37 146

    Dong Y K, Wang P F, Yu G K 2018 Tech. Acoust. 37 146

    [16]

    Berry M V, Popescu S 2006 J. Phys. A: Math. Gen. 39 6965Google Scholar

    [17]

    Shen Y X, Peng Y G, Cai F Y, Huang K, Zhao D G, Qiu C W, Zheng H R, Zhu X F 2019 Nat. Commun. 10 3411Google Scholar

    [18]

    Hashimoto H, Tanaka S, Sato K 1991 TRANSDUCERS '91 International Conference on Solid-State Sensors and Actuators San Francisco CA, USA, June 24–27, 1991 p853

    [19]

    Ellens N P K, Lucht B B C, Gunaseelan S T, Hudson J M, Hynynen K H 2015 Phys. Med. Biol. 60 2195Google Scholar

    [20]

    Yamada K, Shimizu H 1985 IEEE 1985 Ultrasonics Symposium San Francisco, USA, Oct 16–18, 1985 p745

    [21]

    Zhao J J, Ye H P, Huang K, Chen Z N, Li B, Qiu C W 2014 Sci. Rep. 4 6257Google Scholar

    [22]

    Huang F M, Chen Y F, de Abajo F J G, Zheludev N I 2007 J. Opt. A:Pure. Appl. Opt. 9 S285Google Scholar

    [23]

    Dennis M R, Hamilton A C, Courtial J 2008 Opt. Lett. 33 2976Google Scholar

    [24]

    Venkatesh S S, Mishra D 2021 Int. J. Intell. Syst. 30 142Google Scholar

    [25]

    Sabat S L, Ali L, Udgata S K 2011 Appl. Soft. Comput. 11 574Google Scholar

    [26]

    Xu G, Liu B B, Song J, Xiao S J, Wu A J 2019 Nat. Comput. 18 313Google Scholar

    [27]

    Li C X, Wang J J, Ma Z H, Li B, Kang K, Wei L, Zhang W 2020 World J. Surg. Oncol. 18 103Google Scholar

    [28]

    Zhang J B, Li N, Dong F H, Liang S Y, Wang D, An J, Long Y F, Wang Y X, Luo Y K, Zhang J 2020 J. Ultrasound Med. 39 1507Google Scholar

  • 图 1  基于菲涅耳声透镜的声场聚焦示意图

    Fig. 1.  Sketch map of the acoustic focusing based on the acoustic lens of Fresnel zone plane.

    图 2  基于多频超振荡的超分辨声场焦域的径向声压分布示意图

    Fig. 2.  Schematic diagram of the radial pressure distributions in the focal plane for the super-resolution acoustic focusing based on the multi-frequency super-oscillation.

    图 3  粒子群算法流程图

    Fig. 3.  Flow chart of the Particle Swarm Optimization algorithm.

    图 4  中心频率1.0 MHz的菲涅耳透镜所形成聚焦声场的归一化焦域半径($ r/\lambda $)和焦距(F )的关系

    Fig. 4.  Relationship between the normalized focal radius ($ r/\lambda $) and the focal length (F ) for the Fresnel lens at the center frequency of 1.0 MHz.

    图 5  频率0.6—1.4 MHz多频声束经过F = 50 mm的菲涅耳透镜形成聚焦声场的轴向声压剖面分布

    Fig. 5.  Axial pressure profiles focused by the Fresnel lens (F = 50 mm) for acoustic beams at the frequencies of 0.6–1.4 MHz.

    图 6  频率0.6—1.4 MHz多频声束经过F = 40 mm的菲涅耳透镜所形成聚焦声场的轴向声压剖面分布

    Fig. 6.  Axial pressure profiles focused by the Fresnel lens (F = 40 mm) for acoustic beams at the frequencies of 0.6–1.4 MHz.

    图 7  频率0.6—1.4 MHz多频声束经过F = 30 mm的菲涅耳透镜所形成聚焦声场的轴向声压剖面分布

    Fig. 7.  Axial pressure profiles focused by the Fresnel lens (F = 30 mm) for acoustic beams at the frequencies of 0.6–1.4 MHz.

    图 8  (a1)—(a3) 多频声束经过F = 50, 40, 30 mm的三种菲涅耳透镜所构建超振荡聚焦声场的轴向剖面声压分布(b1)—(b3)相应的粒子群算法的迭代优化过程

    Fig. 8.  (a1)–(a3) Axial pressure profiles of super-oscillation super-resolution acoustic fields; (b1)–(b3) the corresponding iteration processes of the PSO for three kinds of Fresnel lenses with F = 50, 40 and 30 mm.

    图 9  超振荡声场的焦域半径与(a)多频声束频率数和(b)中心频率的关系, 以及(c)三种聚焦声场焦平面内的径向声压分布

    Fig. 9.  Distributions of the focal radius of the super-oscillation acoustic field with respect to (a) the number of multiple frequencies and (b) the center frequency, and (c) the radial pressure distributions in the focal plane for three acoustic fields.

    图 10  中心频率1.0 MHz, 相对带宽分别为 (a) 20%, (b) 40%, (c) 60% 和 (d) 80%的多频声束经F = 50 mm的菲涅耳透镜所构建超振荡声场的轴向声压分布

    Fig. 10.  Axial pressure profiles of super-oscillation acoustic fields formed by the Fresnel lens with F = 50 mm for multi-frequency beams with the relative bandwidths of (a) 20%, (b) 40%, (c) 60%, and (d) 80% at the center frequency of 1.0 MHz.

    表 1  粒子群算法优化后所得的参数

    Table 1.  Parameters optimized by the PSO algorithm.

    频率 菲涅耳透镜的焦距
    f/MHz50 mm40 mm30 mm
    0.6$\rm 2.68{e^{ - j0.958}} $$\rm 2.86{e^{j0.834}} $$\rm 9.38{e^{j{\text{0.396}}}} $
    0.7$\rm 2.48{e^{ - j2.122}} $$\rm 1.25{e^{ - j1.45}} $$\rm 9.13{e^{j{\text{0.706}}}} $
    0.8$\rm 5.26{e^{ - j2.646}} $$\rm 1.93{e^{j1.470}} $$\rm 4.91{e^{j{\text{0.274}}}} $
    0.9$\rm 6.34{e^{j1.448}} $$\rm3.54{e^{j0.020}} $$\rm7.49{e^{j1.366}} $
    1.0$\rm 5.25{e^{ - j2.652}} $$\rm 3.27{e^{ - j0.685}} $$\rm 8.52{e^{ - j{\text{0.465}}}} $
    1.1$\rm 1.95{e^{ - j0.082}} $$\rm2.10{e^{ - j1.221}} $$\rm5.89{e^{j{\text{0.879}}}} $
    1.2$\rm 4.11{e^{j0.725}} $$\rm 1.59{e^{ - j1.905}} $$\rm 0.57{e^{j{\text{0.493}}}} $
    1.3$\rm 4.82{e^{j2.031}} $$\rm 2.43{e^{j1.160}} $$\rm 4.16{e^{j{\text{0.684}}}} $
    1.4$\rm 5.34{e^{ - j2.808}} $$\rm 1.67{e^{j1.022}} $$\rm 6.56{e^{ - j{\text{0.299}}}} $
    下载: 导出CSV

    表 2  不同频率声束和超振荡声场的焦域半径和实际焦距

    Table 2.  Focal radii and focal lengths for the focused beams at different frequencies and the super-oscillation field.

    频率菲涅耳透镜焦距
    f/MHz 50 mm40 mm30 mm
    r/$ \lambda $F/mm r/$ \lambda $F/mm r/$ \lambda $F/mm
    0.60.9122.6 0.8719.50.8212.2
    0.7 0.8228.70.7921.40.7516.9
    0.80.7333.90.5622.50.6920.8
    0.90.7241.30.6733.20.5824.1
    1.00.7150.00.6540.00.5830.0
    1.10.6856.90.6346.80.5635.8
    1.20.6765.20.6353.30.5541.3
    1.30.6572.60.6059.60.5150.5
    1.40.6578.90.5865.90.5055.9
    超振荡0.4949.50.4740.00.4430.0
    下载: 导出CSV

    表 3  多频声束经不同焦距的菲涅耳透镜后所形成的声场的焦域半径

    Table 3.  Focal radii for Fresnel lenses with different focal lengths.

    菲涅耳透镜焦距焦平面内的最小焦域半径
    F /mmr / λ
    200.40
    300.44
    400.47
    500.49
    600.51
    700.54
    下载: 导出CSV
  • [1]

    Gettle L M, Revzin M V 2020 Radiol. Clin. North. Am. 58 653Google Scholar

    [2]

    Chen Q Y, Song H J, Yu J, Kim K 2021 Sensors (Basel). 21 2417Google Scholar

    [3]

    Liu Y L, L Liu J H, Ai K, Yuan Q H, Lu L H 2014 Contrast Media Mol. Imaging 9 26Google Scholar

    [4]

    Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M 2002 Neuroimage. 15 273Google Scholar

    [5]

    Boellaard R, O’Doherty M J, Chiti A 2010 Eur. J. Nucl. Med. Mol. Imaging 37 181Google Scholar

    [6]

    Kim K, Chen Q Y, Yu J 2019 J. Acoust. Soc. Am. 145 1703Google Scholar

    [7]

    Lin F L, Tsuruta J K, Rojas J D, Dayton P A 2017 Ultrasound Med. Biol. 43 2488Google Scholar

    [8]

    Soulioti D E, Espindola D, Dayton P A, Pinton G F 2020 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 25Google Scholar

    [9]

    丁昌林, 董仪宝, 赵晓鹏 2018 物理学报 67 194301Google Scholar

    Ding C L, Dong Y B, Zhao X P 2018 Acta. Phys. Sin. 67 194301Google Scholar

    [10]

    Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [11]

    Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X, Garcia-Vidal F J 2011 Nat. Phys. 7 52Google Scholar

    [12]

    Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Appl. Phys. 105 124909Google Scholar

    [13]

    Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M 2015 Nature 527 499Google Scholar

    [14]

    Yuan B G, Liu J Y, Liu C, Cheng Y, Liu X J 2021 Appl. Acoust. 178 107993Google Scholar

    [15]

    董永康, 王培峰, 郁高坤 2018 声学技术 37 146

    Dong Y K, Wang P F, Yu G K 2018 Tech. Acoust. 37 146

    [16]

    Berry M V, Popescu S 2006 J. Phys. A: Math. Gen. 39 6965Google Scholar

    [17]

    Shen Y X, Peng Y G, Cai F Y, Huang K, Zhao D G, Qiu C W, Zheng H R, Zhu X F 2019 Nat. Commun. 10 3411Google Scholar

    [18]

    Hashimoto H, Tanaka S, Sato K 1991 TRANSDUCERS '91 International Conference on Solid-State Sensors and Actuators San Francisco CA, USA, June 24–27, 1991 p853

    [19]

    Ellens N P K, Lucht B B C, Gunaseelan S T, Hudson J M, Hynynen K H 2015 Phys. Med. Biol. 60 2195Google Scholar

    [20]

    Yamada K, Shimizu H 1985 IEEE 1985 Ultrasonics Symposium San Francisco, USA, Oct 16–18, 1985 p745

    [21]

    Zhao J J, Ye H P, Huang K, Chen Z N, Li B, Qiu C W 2014 Sci. Rep. 4 6257Google Scholar

    [22]

    Huang F M, Chen Y F, de Abajo F J G, Zheludev N I 2007 J. Opt. A:Pure. Appl. Opt. 9 S285Google Scholar

    [23]

    Dennis M R, Hamilton A C, Courtial J 2008 Opt. Lett. 33 2976Google Scholar

    [24]

    Venkatesh S S, Mishra D 2021 Int. J. Intell. Syst. 30 142Google Scholar

    [25]

    Sabat S L, Ali L, Udgata S K 2011 Appl. Soft. Comput. 11 574Google Scholar

    [26]

    Xu G, Liu B B, Song J, Xiao S J, Wu A J 2019 Nat. Comput. 18 313Google Scholar

    [27]

    Li C X, Wang J J, Ma Z H, Li B, Kang K, Wei L, Zhang W 2020 World J. Surg. Oncol. 18 103Google Scholar

    [28]

    Zhang J B, Li N, Dong F H, Liang S Y, Wang D, An J, Long Y F, Wang Y X, Luo Y K, Zhang J 2020 J. Ultrasound Med. 39 1507Google Scholar

  • [1] 周江平, 周媛媛, 周学军. 改进的测量设备无关协议参数优化方法. 物理学报, 2023, 72(12): 120303. doi: 10.7498/aps.72.20230179
    [2] 王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛. 基于石墨烯的太赫兹漫反射表面快速设计方法. 物理学报, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [3] 李明飞, 袁梓豪, 刘院省, 邓意成, 王学锋. 光纤相控阵稀疏排布优化算法对比. 物理学报, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [4] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明. 激光照明条件对超振荡平面透镜聚焦性能的影响. 物理学报, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [5] 潮兴兵, 潘鲁平, 王子圣, 杨锋涛, 丁剑平. 图像传感器像素化效应对菲涅耳非相干关联全息分辨率的影响. 物理学报, 2019, 68(6): 064203. doi: 10.7498/aps.68.20181844
    [6] 陈刚, 温中泉, 武志翔. 光学超振荡与超振荡光学器件. 物理学报, 2017, 66(14): 144205. doi: 10.7498/aps.66.144205
    [7] 路文龙, 谢军伟, 王和明, 盛川. 基于多项式调频Fourier变换的信号分量提取方法. 物理学报, 2016, 65(8): 080202. doi: 10.7498/aps.65.080202
    [8] 连榕海, 梁齐兵, 舒碧芬, 范畴, 吴小龙, 郭银, 汪婧, 杨晴川. 高倍聚光光伏模组中三结太阳电池沿光轴方向光电性能与优化. 物理学报, 2016, 65(14): 148801. doi: 10.7498/aps.65.148801
    [9] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [10] 行鸿彦, 张强, 徐伟. 混沌海杂波背景下的微弱信号检测混合算法. 物理学报, 2015, 64(4): 040506. doi: 10.7498/aps.64.040506
    [11] 陈颖, 王文跃, 于娜. 粒子群算法优化异质结构光子晶体环形腔滤波特性. 物理学报, 2014, 63(3): 034205. doi: 10.7498/aps.63.034205
    [12] 刘瑞兰, 王徐亮, 唐超. 基于粒子群算法的有机半导体NPB传输特性辨识. 物理学报, 2014, 63(2): 028105. doi: 10.7498/aps.63.028105
    [13] 刘暾东, 陈俊仁, 洪武鹏, 邵桂芳, 王婷娜, 郑骥文, 文玉华. 基于粒子群算法的Pt-Pd合金纳米粒子的稳定结构研究. 物理学报, 2013, 62(19): 193601. doi: 10.7498/aps.62.193601
    [14] 郑仕链, 杨小牛. 绿色认知无线电自适应参数调整. 物理学报, 2012, 61(14): 148402. doi: 10.7498/aps.61.148402
    [15] 王晓方, 王晶宇. 菲涅耳波带板应用于聚变靶的高分辨X射线成像分析. 物理学报, 2011, 60(2): 025212. doi: 10.7498/aps.60.025212
    [16] 龙文, 焦建军, 龙祖强. 基于PSO优化LSSVM的未知模型混沌系统控制. 物理学报, 2011, 60(11): 110506. doi: 10.7498/aps.60.110506
    [17] 赵知劲, 徐世宇, 郑仕链, 杨小牛. 基于二进制粒子群算法的认知无线电决策引擎. 物理学报, 2009, 58(7): 5118-5125. doi: 10.7498/aps.58.5118
    [18] 王校锋, 薛红军, 司守奎, 姚跃亭. 基于粒子群算法和OGY方法的混沌系统混合控制. 物理学报, 2009, 58(6): 3729-3733. doi: 10.7498/aps.58.3729
    [19] 董建军, 曹磊峰, 陈 铭, 谢常青, 杜华冰. 微聚焦菲涅耳波带板聚焦特性研究. 物理学报, 2008, 57(5): 3044-3047. doi: 10.7498/aps.57.3044
    [20] 吴进远, 汪承灏, 何启光. 菲涅耳阵在固体中所产生的声束聚焦和扫描特性. 物理学报, 1988, 37(10): 1575-1584. doi: 10.7498/aps.37.1575
计量
  • 文章访问数:  4286
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07
  • 修回日期:  2022-06-10
  • 上网日期:  2022-10-14
  • 刊出日期:  2022-10-20

/

返回文章
返回