搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PNZST:AlN复合陶瓷局域应力场增强热释电性能机理

李玲 潘天择 马家骏 张善涛 汪尧进

引用本文:
Citation:

PNZST:AlN复合陶瓷局域应力场增强热释电性能机理

李玲, 潘天择, 马家骏, 张善涛, 汪尧进

Mechanism of local stress field enhanced pyroelectric performance of PNZST:AlN composite ceramics

Li Ling, Pan Tian-Ze, Ma Jia-Jun, Zhang Shan-Tao, Wang Yao-Jin
PDF
HTML
导出引用
  • 通过两步固相反应烧结法制备了(1–x) Pb0.99Nb0.02[(Zr0.57Sn0.43)0.94Ti0.06]0.98O3:xAlN ((1–x)PNZST:xAlN, x = 0, 0.1, 0.2, 0.3, 0.4))复合陶瓷, 系统研究了复合陶瓷晶体结构、微观形貌、畴结构演变以及铁电、介电和热释电性能等. 实验结果表明: 基于两相之间热膨胀系数失配产生的局域应力场有效调控了畴结构组态和相结构演变, 在室温附近构建了铁电/反铁电相界, 继而在温度场作用下表现出优异的热释电性能; 当x = 0.1时, 在近人体温度37 ℃时其热释电系数p达到最大值3.30×10–3 C/(m2⋅K), 电流响应优值Fi = 3.16 × 10–9 m/V, 电压响应优值Fv = 0.613 m2/C, 探测率优值Fd = 4.40×10–4 Pa–1/2, 且其半峰宽为16.3 ℃, 在室温宽温域内表现出优异的热释电性能; 随着AlN含量的增多, 该复合陶瓷的热释电峰值温度在37—73 ℃宽温域内可调, 表现出良好的温度稳定性.
    In this work, composite ceramics (1–x)Pb0.99Nb0.02[(Zr0.57Sn0.43)0.94Ti0.06]0.98O3:xAlN (abbreviated (1–x)PNZST:xAlN, x = 0, 0.1, 0.2, 0.3 and 0.4) are prepared by a two-step solid phase synthesis method. The crystal structures, micromorphologies, domain structure evolutions, ferroelectric, dielectric and pyroelectric properties of those composite ceramics are systematically investigated. The results show that the difference in thermal expansion coefficient between PNZST and AlN creates compressive stresses in the PNZST matrix when cooling down from the sintering temperature, then a metastable ferroelectric (FE) phase is induced in the anti-FE matrix by the AlN component-induced internal stress, and in turn ferroelectric/antiferroelectric phase boundary is constructed near room temperature. As the temperature increases, the ferroelectric-to-antiferroelectric phase transition causes a larger pyroelectric current peak. In particular, the composition with x = 0.1 exhibits a high pyroelectric coefficient p = 3.3×10–3 C⋅m–2⋅K–1 and figure-of-merit with current responsivity Fi = 3.16×10–9 m⋅V–1, voltage responsivity Fv = 0.613 m2⋅C–1, and detectivity Fd = 4.4×10–4 Pa–1/2 around human body temperature. Moreover, the enhanced pyroelectric coefficient exists in a broad operation temperature range with a large full width at half maximums of 16.3 ℃ at 37 ℃. With the increase of AlN content, the pyroelectric peak temperature of the composite ceramic is adjustable in a wide temperature range of 37–73 ℃, showing good temperature stability.
      通信作者: 张善涛, stzhang@nju.edu.cn ; 汪尧进, yjwang@njust.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 11874032, 52072178, 52202139)、中央高校基本科研业务费(批准号: 30920041119, 30922010402)、中国博士后科学基金(批准号: 2021M701716)和江苏省“卓博计划”(批准号: 2022ZB248)资助的课题.
      Corresponding author: Zhang Shan-Tao, stzhang@nju.edu.cn ; Wang Yao-Jin, yjwang@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874032, 52072178, 52202139), the Fundamental Research Funds for the Central Universities (Grant Nos. 30920041119, 30922010402), the China Postdoctoral Science Foundation (Grant No. 2021M701716), and the Jiangsu Funding Program for Excellent Postdoctoral Talent (Grant No. 2022ZB248).
    [1]

    Liu Z, Lu T, Dong X, Wang G, Liu Y 2021 IEEE Trans. Ultrason. Ferr. 68 242Google Scholar

    [2]

    Jia J, Guo S, Yan S, Cao F, Yao C, Dong X, Wang G 2019 Appl. Phys. Lett. 114 032902Google Scholar

    [3]

    Whatmore R W 1986 Rep. Prog. Phys. 49 1135Google Scholar

    [4]

    Wang Y, Yuan G, Luo H, Li J, Viehland D 2017 Phys. Rev. Appl. 8 034032Google Scholar

    [5]

    Domingo N, Bagués N, Santiso J, Catalan G 2015 Phys. Rev. B 91 094111Google Scholar

    [6]

    Pandya S, Wilbur J, Kim J, Gao R, Dasgupta A, Dames C, Martin L W 2018 Nat. Mater. 17 432Google Scholar

    [7]

    Yang M M, Luo Z D, Mi Z, Zhao J, Sharel P E, Alexe M 2020 Nature 584 377Google Scholar

    [8]

    郭少波, 闫世光, 曹菲, 姚春华, 王根水, 董显林 2020 物理学报 69 127708Google Scholar

    Guo S B, Yan S G, Cao F, Yao C H, Wang G S, Dong X L 2020 Acta Phys. Sin. 69 127708Google Scholar

    [9]

    Xu Y Q, Wu N J, Ignatiev A 2000 J. Appl. Phys. 88 1004Google Scholar

    [10]

    Zhang S, Lebrun L, Jeong D Y, Randall C A, Zhang Q, Shrout T R 2003 J. Appl. Phys. 93 9257Google Scholar

    [11]

    Huang X, Tang Y, Wang F, Ming Leung C, Zhao X, Qin X, Wang T, Duan Z, Wu Y, Wang J, Shi W 2022 J. Am. Ceram. Soc. 105 327Google Scholar

    [12]

    He H, Lu X, Hanc E, Chen C, Zhang H, Lu L 2020 J. Mater. Chem. C 8 1494Google Scholar

    [13]

    Song K, Ma N, Mishra Y K, Adelung R, Yang Y 2019 Adv. Electron. Mater. 5 1800413Google Scholar

    [14]

    Srikanth K S, Singh V P, Vaish R 2017 J. Eur. Ceram. Soc. 37 3943Google Scholar

    [15]

    Patel S, Weyland F, Tan X, Novak N 2018 Energy Technology 6 865Google Scholar

    [16]

    Li L, Liu H, Wang R X, Zhang H, Huang H, Lu M H, Zhang S T, Jiang S, Wu D, Chen Y F 2020 J. Mater. Chem. C 8 7820Google Scholar

    [17]

    Liu B, Li L, Zhang S T, Zhou L, Tan X 2022 J. Am. Ceram. Soc. 105 794Google Scholar

    [18]

    Riemer L M, Lalitha K V, Jiang X, Liu N, Dietz C, Stark R W, Groszewicz P B, Buntkowsky G, Chen J, Zhang S T, Rodel J, Koruza J 2017 Act. Mater. 136 271Google Scholar

    [19]

    Yin J, Wang Y, Zhang Y, Wu B, Wu J 2018 Act. Mater. 158 269Google Scholar

    [20]

    Tabary P, Servant C, Alary J A 2000 J. Eur. Ceram. Soc. 20 913Google Scholar

    [21]

    田野, 靳立, 冯玉军, 庄永勇, 徐卓, 魏晓勇 2017 物理学进展 37 155

    Tian Y, Jin L, Feng Y J, Zhuang Y Y, Xu Z, Wei X 2017 Prog. Phys. 37 155

    [22]

    Wang H, Jiang B, Thomas R S, Cao W 2004 IEEE Trans. Ultrason. Ferr. 51 908Google Scholar

    [23]

    Lee H J, Zhang S, Luo J, Li F, Shrout T R 2010 Adv. Funct. Mater. 20 3154Google Scholar

    [24]

    Shen M, Hu Z, Qiu Y, Qiu S, Li M Y, Zhang G, Zhang S, Yang Z, Kagawa F, Jiang S 2019 J. Eur. Ceram. Soc. 39 5243Google Scholar

    [25]

    You D, Tan H, Yan Z, Gao H, Chen S, Ma W, Fan P, Tran N M, Liu Y, Salamon D, Zhang H 2022 ACS Appl. Mater. Inter. 14 17652Google Scholar

    [26]

    Tan X, Frederick J, Ma C, Aulbach E, Marsilius M, Hong W, Granzow T, Jo W, Rödel J 2010 Phys. Rev. B 81 014103Google Scholar

    [27]

    Tan X, Jo W, Granzow T, Frederick J, Aulbach E, Rödel J 2009 Appl. Phys. Lett. 94 042909Google Scholar

    [28]

    Frederick J, Tan X, Jo W 2011 J. Am. Ceram. Soc. 94 1149Google Scholar

    [29]

    He H, Tan X 2007 J. Phys. Condens. Matter. 19 136003Google Scholar

    [30]

    Tan X, Frederick J, Ma C, Jo W, Rodel J 2010 Phys. Rev. Lett. 105 255702Google Scholar

    [31]

    Yang X, Zhuo F, Wang C, Liu Y, Wang Z, He C, Long X 2020 Act. Mater. 186 523Google Scholar

    [32]

    Li S, Nie H, Wang G, Liu N, Zhou M, Cao F, Dong X 2019 J. Mater. Chem. C 7 4403Google Scholar

    [33]

    Zhou M, Liang R, Zhou Z, Dong X 2019 J. Am. Ceram. Soc. 103 193Google Scholar

    [34]

    Thakre A, Maurya D, Kim D Y, Kim Y, Sriboriboon P, Yoo I R, Priya S, Cho K H, Song H C, Ryu J 2021 J. Eur. Ceram. Soc. 41 2524Google Scholar

    [35]

    Whatmore R W 2021 Encyclopedia Mater. Tech. Ceram. Glasses 3 139

    [36]

    Qiao P, Zhang Y, Chen X, Zhou M, Wang G, Dong X 2019 Ceram. Int. 45 7114Google Scholar

    [37]

    Jiang X P, Chen Y, Lam K H, Choy S H, Wang J 2010 J. Alloys Compd. 506 323Google Scholar

    [38]

    Liu Z, Ren W, Peng P, Guo S, Lu T, Liu Y, Dong X, Wang G 2018 Appl. Phys. Lett. 112 142903Google Scholar

    [39]

    Srikanth K S, Patel S, Steiner S, Vaish R 2018 Scr. Mater. 146 146Google Scholar

    [40]

    Chen H, Guo S, Dong X, Cao F, Mao C, Wang G 2017 J. Alloys Compd. 695 2723Google Scholar

  • 图 1  不同组分的(1–x)PNZST:xAlN (x = 0.1, 0.2, 0.3, 0.4)复合陶瓷的XRD谱和(111)与(200)衍射峰的放大图谱

    Fig. 1.  XRD patterns of (1–x)PNZST:xAlN (x = 0.1, 0.2, 0.3, 0.4) ceramics, enlarged (111) and (200) diffraction peaks.

    图 2  (1–x)PNZST:xAlN (x = 0, 0.1, 0.2, 0.3和0.4)陶瓷的(a)—(e) SEM图像和(f)晶粒尺寸分布 (a) x = 0; (b) x = 0.1; (c) x = 0.2; (d) x = 0.3; (e) x = 0.4; (f)平均晶粒尺寸随AlN含量变化的关系

    Fig. 2.  The SEM images (a)–(e) and grain size distribution (f) of (1–x)PNZST:xAlN: (a) x = 0; (b) x = 0.1; (c) x = 0.2; (d) x = 0.3; (e) x = 0.4; (f) the composition dependence of average grain size.

    图 3  0.9PNZST:0.1ZnO的(a) SEM图像; (b)—(h) Pb, Nb, Zr, Ti, O, Al和N元素分布(比例尺: 2.5 µm)

    Fig. 3.  Typical SEM micrograph (a) and element distribution of Pb, Nb, Zr, Ti, O, Al and N (b)–(h) for 0.9PNZST:0.1ZnO (scale bar: 2.5 µm).

    图 4  (1–x)PNZST:xAlN陶瓷在直流电压为0, 10, 20, 30和40 V极化后的室温振幅图和相位图 (a) x = 0; (b) x = 0.1

    Fig. 4.  Room temperature out-of-plane amplitude and phase images of (1–x)PNZST:xAlN ceramics after poling with the DC voltage of 0, 10, 20, 30 and 40 V: (a) x = 0; (b) x = 0.1.

    图 5  (a)—(e)不同组分(1–x)PNZST:xAlN (x = 0, 0.1, 0.2, 0.3, 0.4)陶瓷样品极化后的介电温谱和(f)铁电-反铁电相转变温度TFE-AFE

    Fig. 5.  Temperature-dependent dielectric properties (a)–(e) and the composition dependent TFE-AFE (f) of (1–x)PNZST:xAlN (x = 0, 0.1, 0.2, 0.3, 0.4) composite.

    图 6  不同组分(1–x)PNZST:xAlN陶瓷样品在室温不同电场下的P-E (a)—(e)和J-E (f)—(j)曲线 (a), (f) x = 0; (b), (g) x = 0.1; (c), (h) x = 0.2; (d), (i) x = 0.3; (e), (j) x = 0.4

    Fig. 6.  Electric field-dependent P-E loops (a)–(e) and J-E (f)–(j) curves of (1–x)PNZST:xAlN composite at room temperature: (a), (f) x = 0; (b), (g) x = 0.1; (c), (h) x = 0.2; (d), (i) x = 0.3; (e), (j) x = 0.4.

    图 7  不同组分(1–x)PNZST:xAlN陶瓷样品在不同电场下的P-E (a)—(d)和J-E (e)—(h)曲线 (a), (e) x = 0.1; (b), (f) x = 0.2; (c), (g) x = 0.3; (d), (h) x = 0.4

    Fig. 7.  Temperature-dependent P-E loops (a)–(d) and J-E curves (e)–(h) of (1–x)PNZST:xAlN composite at room temperature: (a), (e) x = 0.1; (b), (f) x = 0.2; (c), (g) x = 0.3; (d), (h) x = 0.4.

    图 8  不同组分(1–x)PNZST:xAlN(x = 0, 0.1, 0.2, 0.3, 0.4)陶瓷样品随温度变化的热释电系数值

    Fig. 8.  Temperature-dependent pyroelectric coefficient of (1–x)PNZST:xAlN (x = 0, 0.1, 0.2, 0.3 and 0.4) composite.

    表 1  PNZST:AlN复合陶瓷与其他已报道的无铅材料和PZT基材料的热释电性能参数比较

    Table 1.  Comparison of the pyroelectric parameters of PNZST:AlN ceramics, other reported lead-free materials and PZT-based materials.

    材料组成介电常数εr介电损耗tanδ热释电系数p/
    (10–4 C·m–2·K–1)
    电流优值因子Fi/
    (10–10 m·V–1)
    电压优值因子Fv/
    (10–2 m2·C–1)
    探测率优值因子Fd/
    (10–5 Pa–1/2)
    文献
    TGS550.0255.52.12436.1[1]
    LiTaO3 crystal470.00052.30.721715.7[1]
    PVDF110.020.30.1313.40.9[35]
    BNT-BT4030.0112.422.681.53[2]
    BNT-BT-ST12780.1095.72.081.80.589[2]
    PLZT5110.0144.01.663.62.07[36]
    KNN-BKT9800.0352.180.9941.140.57[37]
    BNT-BA-KNN5140.0293.71.322.891.15[38]
    BCT-BST35000.0252.0510.320.41[39]
    CSBN3280.0331.240.62.030.61[40]
    PZT-based2900.00273.86.05.8[2]
    KBT-BT-NBT6600.232.580.921.50.53[34]
    PIMNT film28240.0048.53.401.41.03[11]
    x = 0.1583.60.0133.031.661.344.0本工作
    下载: 导出CSV
  • [1]

    Liu Z, Lu T, Dong X, Wang G, Liu Y 2021 IEEE Trans. Ultrason. Ferr. 68 242Google Scholar

    [2]

    Jia J, Guo S, Yan S, Cao F, Yao C, Dong X, Wang G 2019 Appl. Phys. Lett. 114 032902Google Scholar

    [3]

    Whatmore R W 1986 Rep. Prog. Phys. 49 1135Google Scholar

    [4]

    Wang Y, Yuan G, Luo H, Li J, Viehland D 2017 Phys. Rev. Appl. 8 034032Google Scholar

    [5]

    Domingo N, Bagués N, Santiso J, Catalan G 2015 Phys. Rev. B 91 094111Google Scholar

    [6]

    Pandya S, Wilbur J, Kim J, Gao R, Dasgupta A, Dames C, Martin L W 2018 Nat. Mater. 17 432Google Scholar

    [7]

    Yang M M, Luo Z D, Mi Z, Zhao J, Sharel P E, Alexe M 2020 Nature 584 377Google Scholar

    [8]

    郭少波, 闫世光, 曹菲, 姚春华, 王根水, 董显林 2020 物理学报 69 127708Google Scholar

    Guo S B, Yan S G, Cao F, Yao C H, Wang G S, Dong X L 2020 Acta Phys. Sin. 69 127708Google Scholar

    [9]

    Xu Y Q, Wu N J, Ignatiev A 2000 J. Appl. Phys. 88 1004Google Scholar

    [10]

    Zhang S, Lebrun L, Jeong D Y, Randall C A, Zhang Q, Shrout T R 2003 J. Appl. Phys. 93 9257Google Scholar

    [11]

    Huang X, Tang Y, Wang F, Ming Leung C, Zhao X, Qin X, Wang T, Duan Z, Wu Y, Wang J, Shi W 2022 J. Am. Ceram. Soc. 105 327Google Scholar

    [12]

    He H, Lu X, Hanc E, Chen C, Zhang H, Lu L 2020 J. Mater. Chem. C 8 1494Google Scholar

    [13]

    Song K, Ma N, Mishra Y K, Adelung R, Yang Y 2019 Adv. Electron. Mater. 5 1800413Google Scholar

    [14]

    Srikanth K S, Singh V P, Vaish R 2017 J. Eur. Ceram. Soc. 37 3943Google Scholar

    [15]

    Patel S, Weyland F, Tan X, Novak N 2018 Energy Technology 6 865Google Scholar

    [16]

    Li L, Liu H, Wang R X, Zhang H, Huang H, Lu M H, Zhang S T, Jiang S, Wu D, Chen Y F 2020 J. Mater. Chem. C 8 7820Google Scholar

    [17]

    Liu B, Li L, Zhang S T, Zhou L, Tan X 2022 J. Am. Ceram. Soc. 105 794Google Scholar

    [18]

    Riemer L M, Lalitha K V, Jiang X, Liu N, Dietz C, Stark R W, Groszewicz P B, Buntkowsky G, Chen J, Zhang S T, Rodel J, Koruza J 2017 Act. Mater. 136 271Google Scholar

    [19]

    Yin J, Wang Y, Zhang Y, Wu B, Wu J 2018 Act. Mater. 158 269Google Scholar

    [20]

    Tabary P, Servant C, Alary J A 2000 J. Eur. Ceram. Soc. 20 913Google Scholar

    [21]

    田野, 靳立, 冯玉军, 庄永勇, 徐卓, 魏晓勇 2017 物理学进展 37 155

    Tian Y, Jin L, Feng Y J, Zhuang Y Y, Xu Z, Wei X 2017 Prog. Phys. 37 155

    [22]

    Wang H, Jiang B, Thomas R S, Cao W 2004 IEEE Trans. Ultrason. Ferr. 51 908Google Scholar

    [23]

    Lee H J, Zhang S, Luo J, Li F, Shrout T R 2010 Adv. Funct. Mater. 20 3154Google Scholar

    [24]

    Shen M, Hu Z, Qiu Y, Qiu S, Li M Y, Zhang G, Zhang S, Yang Z, Kagawa F, Jiang S 2019 J. Eur. Ceram. Soc. 39 5243Google Scholar

    [25]

    You D, Tan H, Yan Z, Gao H, Chen S, Ma W, Fan P, Tran N M, Liu Y, Salamon D, Zhang H 2022 ACS Appl. Mater. Inter. 14 17652Google Scholar

    [26]

    Tan X, Frederick J, Ma C, Aulbach E, Marsilius M, Hong W, Granzow T, Jo W, Rödel J 2010 Phys. Rev. B 81 014103Google Scholar

    [27]

    Tan X, Jo W, Granzow T, Frederick J, Aulbach E, Rödel J 2009 Appl. Phys. Lett. 94 042909Google Scholar

    [28]

    Frederick J, Tan X, Jo W 2011 J. Am. Ceram. Soc. 94 1149Google Scholar

    [29]

    He H, Tan X 2007 J. Phys. Condens. Matter. 19 136003Google Scholar

    [30]

    Tan X, Frederick J, Ma C, Jo W, Rodel J 2010 Phys. Rev. Lett. 105 255702Google Scholar

    [31]

    Yang X, Zhuo F, Wang C, Liu Y, Wang Z, He C, Long X 2020 Act. Mater. 186 523Google Scholar

    [32]

    Li S, Nie H, Wang G, Liu N, Zhou M, Cao F, Dong X 2019 J. Mater. Chem. C 7 4403Google Scholar

    [33]

    Zhou M, Liang R, Zhou Z, Dong X 2019 J. Am. Ceram. Soc. 103 193Google Scholar

    [34]

    Thakre A, Maurya D, Kim D Y, Kim Y, Sriboriboon P, Yoo I R, Priya S, Cho K H, Song H C, Ryu J 2021 J. Eur. Ceram. Soc. 41 2524Google Scholar

    [35]

    Whatmore R W 2021 Encyclopedia Mater. Tech. Ceram. Glasses 3 139

    [36]

    Qiao P, Zhang Y, Chen X, Zhou M, Wang G, Dong X 2019 Ceram. Int. 45 7114Google Scholar

    [37]

    Jiang X P, Chen Y, Lam K H, Choy S H, Wang J 2010 J. Alloys Compd. 506 323Google Scholar

    [38]

    Liu Z, Ren W, Peng P, Guo S, Lu T, Liu Y, Dong X, Wang G 2018 Appl. Phys. Lett. 112 142903Google Scholar

    [39]

    Srikanth K S, Patel S, Steiner S, Vaish R 2018 Scr. Mater. 146 146Google Scholar

    [40]

    Chen H, Guo S, Dong X, Cao F, Mao C, Wang G 2017 J. Alloys Compd. 695 2723Google Scholar

  • [1] 田国, 樊贞, 陈德杨, 侯志鹏, 刘俊明, 高兴森. “针尖下的实验室”—扫描探针探测与调控铁电畴及其微观物性. 物理学报, 2023, 72(20): 207501. doi: 10.7498/aps.72.20230954
    [2] 郭少波, 闫世光, 曹菲, 姚春华, 王根水, 董显林. 红外探测用无铅铁电陶瓷的热释电特性研究进展. 物理学报, 2020, 69(12): 127708. doi: 10.7498/aps.69.20200303
    [3] 刘迪, 王静, 王俊升, 黄厚兵. 相场模拟应变调控PbZr(1–x)TixO3薄膜微观畴结构和宏观铁电性能. 物理学报, 2020, 69(12): 127801. doi: 10.7498/aps.69.20200310
    [4] 杨文达, 陈洪英, 陈䶮, 田国, 高兴森. 铁电纳米结构中奇异极化拓扑畴的研究新进展. 物理学报, 2020, 69(21): 217501. doi: 10.7498/aps.69.20201063
    [5] 谭丛兵, 钟向丽, 王金斌. 铁电材料中的极性拓扑结构. 物理学报, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [6] 蒋招绣, 王永刚, 聂恒昌, 刘雨生. 极化状态与方向对单轴压缩下Pb(Zr0.95Ti0.05)O3铁电陶瓷畴变与相变行为的影响. 物理学报, 2017, 66(2): 024601. doi: 10.7498/aps.66.024601
    [7] 张润兰, 邢辉, 陈长乐, 段萌萌, 罗炳成, 金克新. YMnO3薄膜的铁电行为及其纳米尺度铁电畴的研究. 物理学报, 2014, 63(18): 187701. doi: 10.7498/aps.63.187701
    [8] 周波, 陈云琳, 刘刚, 詹鹤. 铁电体中新畴成核经典模型的改进. 物理学报, 2009, 58(4): 2762-2767. doi: 10.7498/aps.58.2762
    [9] 王龙海, 于 军, 刘 锋, 郑朝丹, 李 佳, 王耘波, 高峻雄, 王志红, 曾慧中, 赵素玲. PT/PZT/PT铁电薄膜的铁电畴和畴壁. 物理学报, 2006, 55(5): 2590-2595. doi: 10.7498/aps.55.2590
    [10] 刘 洪, 蒲朝辉, 龚小刚, 王志红, 黄惠东, 李言荣, 肖定全, 朱建国. (111)取向(Pb,La)TiO3铁电薄膜中90°纳米带状畴与热释电性能的研究. 物理学报, 2006, 55(11): 6123-6128. doi: 10.7498/aps.55.6123
    [11] 曾华荣, 余寒峰, 初瑞清, 李国荣, 殷庆瑞, 唐新桂. PZT铁电薄膜纳米尺度铁电畴的场致位移特性. 物理学报, 2005, 54(3): 1437-1441. doi: 10.7498/aps.54.1437
    [12] 张丽娜, 赵苏串, 郑嘹赢, 李国荣, 殷庆瑞. 复合层状Bi7Ti4NbO21铁电陶瓷的结构与介电和压电性能研究. 物理学报, 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [13] 朱 俊, 张兴元, 陆红波. 退火与极化温度对尼龙11薄膜驻极体内陷阱能级分布的影响. 物理学报, 2005, 54(7): 3414-3417. doi: 10.7498/aps.54.3414
    [14] 马世红, 严 媚, 李淑红, 陆兴泽, 王根水, 诸君浩, 王文澄. 有序组装超薄膜热释电性能的优化研究. 物理学报, 2003, 52(1): 197-201. doi: 10.7498/aps.52.197
    [15] 羊新胜, 陈 敏, 王 豫. Tb4O7掺杂的WO3陶瓷的高温热电现象. 物理学报, 2003, 52(6): 1545-1548. doi: 10.7498/aps.52.1545
    [16] 刘鹏, 边小兵, 张良莹, 姚熹. (PbBa)(Zr,Sn,Ti)O_3反铁电/弛豫型铁电相界陶瓷的相变与介电、热释电性质. 物理学报, 2002, 51(7): 1628-1633. doi: 10.7498/aps.51.1628
    [17] 冯玉军, 姚 熹, 徐 卓. 改性锆钛酸铅温度诱导相变的热释电性. 物理学报, 2000, 49(8): 1606-1610. doi: 10.7498/aps.49.1606
    [18] 严 媚, 马世红, 刘丽英, 王文澄, 陈张海, 刘普霖. 半花菁有序超薄膜热释电效应的产生机理. 物理学报, 1998, 47(11): 1917-1922. doi: 10.7498/aps.47.1917
    [19] 佘卫龙, 余振新, 雷德铭. 热释电效应对光折变全息光栅读出的影响. 物理学报, 1996, 45(10): 1655-1659. doi: 10.7498/aps.45.1655
    [20] 王春雷, 钟维烈, 张沛霖. 有电畴的铁电薄膜中的相变. 物理学报, 1993, 42(10): 1703-1706. doi: 10.7498/aps.42.1703
计量
  • 文章访问数:  4730
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-26
  • 修回日期:  2022-07-18
  • 上网日期:  2022-10-27
  • 刊出日期:  2022-11-05

/

返回文章
返回