搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁悬浮系统中多芯复合Nb3Sn超导线磁通跳跃的可调性研究

董石泉 何安 刘伟 薛存

引用本文:
Citation:

磁悬浮系统中多芯复合Nb3Sn超导线磁通跳跃的可调性研究

董石泉, 何安, 刘伟, 薛存

Tunable flux-jump characteristic of multifilamentary composite Nb3Sn superconducting wires in maglev systems

Dong Shi-Quan, He An, Liu Wei, Xue Cun
PDF
HTML
导出引用
  • 超导磁悬浮列车在加速启动的过程中, 载有恒定大电流的超导线圈处在变化的磁场中, 这会导致超导线圈发生磁通跳跃, 从而降低线圈的载流能力. 并且磁通跳跃会产生大量热量而使超导线圈温度急剧升高, 严重时会导致超导线圈失超, 所以对磁通跳跃的研究具有非常重要的科学意义. Nb3Sn超导线是由多根微米级的超导芯丝、铜和环氧树脂形成的复合结构. 本文通过约束每根芯丝的静电流为零的二维模型来分析三维绞扭效应, 研究了超导线在交变磁场和恒定电流下的磁热不稳定性行为. 通过分析交变磁场的幅值和频率对Nb3Sn超导线磁通跳跃的影响, 发现当磁场幅值不变时, 初次发生磁通跳跃的磁场阈值Bth随频率非单调变化. 而当频率一定时, 初次发生磁通跳跃的磁场阈值Bth随交变磁场幅值单调变化. 此外, 随着幅值的减小, 发生磁通跳跃的频率区间先变大后变小, 直到某个临界频率后超导线不再发生磁通跳跃. 本文的研究结果能够为调控超导线的磁热不稳定性行为提供理论依据.
    The superconducting solenoid with constant large current is exposed to an alternating magnetic field during the acceleration of the superconducting maglev train, which will cause flux jump of the superconducting solenoid. It can reduce the current-carrying capacity of the solenoid, and generate a lot of heat and make the temperature of the superconducting solenoid rise sharply, which will make the whole superconducting coils quenched. Thus the research of flux jump has very important scientific significance. Nb3Sn superconducting wire is a composite structure composed of multiple superconducting filaments、copper and epoxy resin. In this paper, the magneto-thermal instability behavior of a three-dimensional superconducting wires under alternating magnetic fields and constant current is studied by using a two-dimensional model in which the net current of each filament is constrained to zero. By analyzing the effect of amplitude and frequency of alternating magnetic field on flux jump of a Nb3Sn superconducting wire, we find that when the magnetic field amplitude keeps unchanged, the magnetic field threshold of the initial flux jump changes non-monotonically with the frequency. While the frequency keeps unchanged, the threshold of the initial flux jump changes monotonously with the amplitude of the alternating magnetic field. In addition, with the decreasing applied field, the frequency range for flux jump first increases then decreases to certain critical frequency when the superconducting wire does not have flux jumps. The results of this paper can provide a theoretical basis for regulating the magneto-thermal instability of superconducting wires.
      通信作者: 何安, hean@chd.edu.cn ; 薛存, xuecun@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11972298)、陕西省自然科学基础研究计划 (批准号: 2022JM-025, 007234930030)、中央高校基本科研业务费专项资金(批准号: 300102121201)和陕西省重点研发计划(批准号: 0105679005)资助的课题
      Corresponding author: He An, hean@chd.edu.cn ; Xue Cun, xuecun@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11972298), the Natural Science Basic Research plan of Shaanxi Province, China (Grant Nos. 2022JM-025, 007234930030), the Fundamental Research Fund for the Central Universities, China (Grant No. 300102121201), and the Key R&D Program of Shaanxi Province, China (Grant No. 0105679005)
    [1]

    杨晶, 朴明伟, 高文斌, 傅凯, 高辉 2019 计算机集成制造系统 25 1908Google Scholar

    Yang J, Piao M W, Gao W B, Fu K, Gao H 2019 Comput. Integr. Manuf. Syst. 25 1908Google Scholar

    [2]

    熊嘉阳, 邓自刚 2021 交通运输工程学报 21 177Google Scholar

    Xiong J Y, Deng Z G 2021 J. Traffic Transp. Eng. 21 177Google Scholar

    [3]

    Saijo T, Koike S, Tadakuma S 1981 IEEE Trans. Ind. Appl. 17 533Google Scholar

    [4]

    Kyotani Y 1988 IEEE Trans. Magn. 24 804Google Scholar

    [5]

    Meins J, Miller L, Mayer W 1988 IEEE Trans. Magn. 24 808Google Scholar

    [6]

    Schultz L, de Haas O, Verges P, Beyer C, Rohlig S, Olsen H, Kuhn L, Berger D, Noteboom U, Funk U 2005 IEEE Trans. Appl. Supercond. 15 2301Google Scholar

    [7]

    Okano M, Iwamoto T, Furuse M, Fuchino S, Ishii I 2006 J. Phys.: Conf. Ser. 43 999Google Scholar

    [8]

    Kusada S, Igarashi M, Nemoto K, Okutomi T, Hirano S, Kuwano K, Tominaga T, Terai M, Kuriyama T, Tasaki K 2007 IEEE Trans. Appl. Supercond. 17 2111Google Scholar

    [9]

    Wang J, Wang S, Zeng Y, Huang H, Luo F, Xu Z, Tang Q, Lin G, Zhang C, Ren Z 2002 Physica C 378 809Google Scholar

    [10]

    Stumberger G, Aydemir M T, Zarko D, Lipo T A 2004 IEEE Trans. Appl. Supercond. 14 54Google Scholar

    [11]

    胡赣娟 2005 硕士 (浙江: 浙江大学)

    Hu G J 2005 M. S. Thesis (Zhejiang: Zhejiang University) (in Chinese)

    [12]

    Turman B, Marder B, Rohwein G, Aeschliman D, KelIey J, Cowan M, Zimmerman R 1995 Sandia National Laboratories, the United States Department of Energy

    [13]

    闻海虎 2021 物理学报 70 143Google Scholar

    Wen H H 2021 Acta Phys. Sin. 70 143Google Scholar

    [14]

    Mints R 1996 Phys. Rev. B 53 12311Google Scholar

    [15]

    Kim Y, Hempstead C, Strnad A 1963 Phys. Rev. 129 528Google Scholar

    [16]

    Neuringer L, Shapira Y 1966 Phys. Rev. 148 231Google Scholar

    [17]

    Wertheimer M R, Gilchrist J le G 1967 J. Phys. Chem. Solids 28 2509Google Scholar

    [18]

    Mints R, Rakhmanov A 1981 Rev. Mod. Phys. 53 551Google Scholar

    [19]

    Wipf S L 1991 Cryog. 31 936Google Scholar

    [20]

    Nabialek A, Niewczas M, Dabkowska H, Dabkowski A, Castellan J, Gaulin B 2003 Phys. Rev. B 67 024518Google Scholar

    [21]

    Hirano T, Fujishiro H, Naito T, Ainslie M D 2020 Supercond. Sci. Technol. 33 044003Google Scholar

    [22]

    Zhou Y H, Yang X B 2006 Phys. Rev. B 74 054507Google Scholar

    [23]

    Yang X B, Zhou Y H, Tu S D 2010 Physica C 470 109Google Scholar

    [24]

    Swartz P, Bean C 1968 J. Appl. Phys. 39 4991Google Scholar

    [25]

    Bean C P 1962 Phys. Rev. Lett. 8 250Google Scholar

    [26]

    Müller K H, Andrikidis C 1994 Phys. Rev. B 49 1294Google Scholar

    [27]

    Gou X F, Zheng X J, Zhou Y H 2007 IEEE Trans. Appl. Supercond. 17 3795Google Scholar

    [28]

    Kashikhin V V, Zlobin A V 2005 IEEE Trans. Appl. Supercond. 15 1621Google Scholar

    [29]

    Zhang W W, Xia J, Yong H D, Zhou Y H 2020 AIP Adv. 10 025021Google Scholar

    [30]

    Zhao Y F, Xia T D, He T H, Feng W J 2010 J. Low Temp. Phys. 160 201Google Scholar

    [31]

    Wang Q Y, Xue C, Chen Y Q, Ou X J, Wu W, Liu W, Ma P, Sun L T, Zhao H W, Zhou Y H 2022 Physica C 593 1354002Google Scholar

    [32]

    Lahtinen V, Stenvall A 2013 IEEE Trans. Appl. Supercond. 24 1Google Scholar

    [33]

    Barzi E, Limon P J, Yamada R, Zlobin A V 2001 IEEE Trans. Appl. Supercond. 11 3595Google Scholar

  • 图 1  (a)单根$ {\text{Nb}}_3{\text{Sn}} $超导线横截面几何形状及相关尺寸(单位: mm)示意图, 选取了超导线横截面中间的线段$ A-A $来展示超导线的电流密度和磁通密度分布. 超导线置于沿着y方向的垂直交变磁场中, 交变磁场形式如图(b)所示

    Fig. 1.  (a) Schematic diagram of the section cross of single $ {\text{Nb}}_3{\text{Sn}} $ superconducting wire (unit: mm). We select a line $ A-A $ in the middle of the cross section to show the current density and flux density distribution of the superconducting wire. The superconducting wire is exposed to a perpendicular magnetic field along y axis. The form of the alternating magnetic field is shown in panel (b)

    图 2  完全耦合和完全不耦合情况的发热功率随时间变化曲线, 插图展示在曲线图$P \text-t$上某时刻的电流密度图

    Fig. 2.  Developments of thermal power versus time between fully coupled and uncoupled cases, the insets show the contour of current density at time indicated in the $P\text-t$ curves

    图 3  为了验证本文采用的H法的准确性, 分别使用H法和$H\text-\varphi$法模拟三根超导芯丝在$ 2.5 $$ 5\; {\text{s}} $时的(a)电流密度$ J_z $、(b)磁通密度$ B_y $, 以及(c)三根芯丝的发热功率随时间的变化

    Fig. 3.  In order to verify the H formula adopted by this paper, (a) the current density $ J_z $, (b) flux density $ B_y $ at $ 2.5 $ and $5\; {\rm{s}}$, and (c) the variations of total thermal power of the three filaments versus time were conducted both by H and $H \text-\varphi$ formulas

    图 4  由本文使用的H法计算得到的归一化磁化曲线, 与参考文献[33]中的实验结果符合较好

    Fig. 4.  The normalized magnetization curve calculated by the H method used in this paper is matched with the experimental results in Ref. [33]

    图 5  超导线发生跳跃时的(a)平均电场$ \bar{E_z} $和(b)平均温度T随时间的变化曲线; (c)和(d)分别展示了上升阶段$\bar{E_z}\text-t$或者$T\text-t$曲线对应时刻超导线中心$ A-A $线的电流密度$ J_z $和磁通密度$ B_y $分布; (e)和(d)分别展示了下降段电流密度$ J_z $和磁通密度$ B_y $分布, 插图①—④分别展示了在$T\text-t$曲线上对应时刻单根芯丝的电流密度和磁通密度图

    Fig. 5.  The variations of (a) average electric field $ \bar{E_z} $ and (b) average temperature T as a function of time when flux jump occurs in the superconducting wire. (c) and (d) show the distributions of current density $ J_z $ and flux density $ B_y $ at the center of superconducting wire in ascending branch at oscillating times indicated in $\bar{E_z}\text-t$ or $T\text-t$ curve. (e) and (d) show the current density $ J_z $ and flux density $ B_y $ distributions in the descending branch. The insets ①–④ show the contours of current density and flux density of a single filament at times indicated in the $T\text-t$ curve

    图 6  超导线发生跳跃时的(a)平均电场$ \bar{E_z} $和(b)平均温度T随时间的变化曲线, (c)和(d)分别展示了上升段阶段$\bar{E_z}\text-t$或者$T\text-t$曲线上未震荡和发生震荡对应时刻电流密度$ J_z $和磁通密度$ B_y $分布; (e)和(d)分别展示了下降段未震荡和发生震荡时的电流密度$ J_z $和磁通密度$ B_y $分布, 插图①—④分别展示了在$T\text-t$曲线上对应时刻整根超导线的电流密度和磁通密度图

    Fig. 6.  The variations of (a) average electric field $ \bar{E_z} $ and (b) average temperature T as a function of time when flux jump occurs in the superconducting wire. (c) and (d) show the distributions of current density $ J_z $ and flux density $ B_y $ at the center of superconducting wire in ascending branch at no oscillating and oscillating times in $\bar{E_z}\text-t$ or $T\text-t$ curve. (e) and (d) show the current density $ J_z $ and flux density $ B_y $ distributions in the descending branch. The insets ①–④ show the contours of current density and flux density of the whole superconducting wire at times indicated in the $T\text-t$ curve.

    图 7  $ T_0 = 4.2\ {\text{K}} $和幅值为$ 0.7\ {\text{T}} $时不同频率下超导线的平均温度随时间的变化

    Fig. 7.  the variations of average temperature of a superconducting wire with time for different frequencies at the amplitude of 0.7 T and $ T_0 = 4.2\ {\text{K}} $.

    图 8  $ T_0 = 4.2\ {\text{K}} $下, 不同幅值下超导线发生初次磁通跳跃的磁场阈值$B_{{\rm{th}}}$随频率f的变化(图中双斜线表示不发生磁通跳跃的临界点)

    Fig. 8.  The variations of magnetic field threshold of the initial flux jump $B_{{\rm{th}}}$ versus frequency f at different amplitudes at $ T_0 = 4.2\ {\text{K}} $ (The double slash lines in the figure indicate critical points where flux jump does not occur)

    图 9  $ T_0 = 4.2\ {\text{K}} $和频率为$ 0.3\ {\text{Hz}} $时, 不同幅值下超导线的平均温度随时间的变化, 插图①—④分别展示了在$T\text-t/t_{0}$曲线上对应时刻整根超导线的电流密度图

    Fig. 9.  The developments of average temperature of a superconducting wire as a function of time for different amplitudes at the frequency of 0.3 Hz and $ T_0 = 4.2\ {\text{K}} $.The insets ①–④ show the contours of current density of the whole superconducting wire at times indicated in the $T\text-t/t_{0}$ curve

    图 10  $ T_0 = 4.2\ {\text{K}} $下, 不同频率时初次发生磁通跳跃的磁场阈值$B_{{\rm{th}}}$随幅值$B_{{\rm{a}}1}$的变化(图中双斜线表示不发生磁通跳跃的临界点)

    Fig. 10.  At $ T_0 = 4.2\ {\text{K}} $, the variations of magnetic field threshold of the initial flux jump $B_{{\rm{th}}}$ with the amplitude $B_{{\rm{a}}1}$ at different frequencies (The double slash lines in the figure indicate critical points where flux jumping does not occur)

    图 11  (a)在$ T_0 = 4.2\ {\text{K}} $时超导线发生磁通跳跃的频率和幅值的临界阈值曲线, 其中黑色实线所包围的蓝色区域为超导线发生磁通跳跃的区域, 其余灰色区域为磁通平稳穿透的区域. (b)—(g)分别展示了图(a)中6个点对应情况下超导线的平均电场和平均温度随时间的变化, 插图$ a_1 $$ c_2 $表示$ \bar{E_z}-t $曲线的最高点(黑色实心圆点)对应时刻超导线的电流密度

    Fig. 11.  At $ T_0 = 4.2\ {\text{K}} $, (a)the critical threshold of frequency and amplitude(black curve)when flux jump will happen in a superconducting wire. The blue region is the region where flux jump occurs, and the rest gray region is the region where smooth penetration occurs; (b)–(g) show the variations of the average electric field and temperature of the superconducting wire with time under the corresponding conditions of the 6 points in (a); Panels $ a_1 $$ c_2 $ show the current density of the superconducting wire at times (black solid dots) corresponding to the highest points of the $ \bar{E_z}-t $ curves

    图 12  幅值为$ 0.7\; {\rm{T}} $, 频率为$ 0.3\; {\rm{Hz}} $情况下, 不同背景温度时超导线的平均温度随时间的变化

    Fig. 12.  At the amplitude of 0.7 T and the frequency of 0.3 Hz, the variations of average temperature of the superconducting wire with time for different background temperatures

    图 13  不同频率和幅值下初次发生磁通跳跃的磁场阈值$ B_{{\rm{th}}} $随背景温度$ T_0 $的变化(图中双斜线表示不发生磁通跳跃的临界点)

    Fig. 13.  The variations of magnetic field threshold of the initial flux jump $ B_{{\rm{th}}} $ with the background temperature $ T_0 $ at different frequencies and amplitudes (The double slash lines in the figure indicate critical points where flux jump does not occur)

  • [1]

    杨晶, 朴明伟, 高文斌, 傅凯, 高辉 2019 计算机集成制造系统 25 1908Google Scholar

    Yang J, Piao M W, Gao W B, Fu K, Gao H 2019 Comput. Integr. Manuf. Syst. 25 1908Google Scholar

    [2]

    熊嘉阳, 邓自刚 2021 交通运输工程学报 21 177Google Scholar

    Xiong J Y, Deng Z G 2021 J. Traffic Transp. Eng. 21 177Google Scholar

    [3]

    Saijo T, Koike S, Tadakuma S 1981 IEEE Trans. Ind. Appl. 17 533Google Scholar

    [4]

    Kyotani Y 1988 IEEE Trans. Magn. 24 804Google Scholar

    [5]

    Meins J, Miller L, Mayer W 1988 IEEE Trans. Magn. 24 808Google Scholar

    [6]

    Schultz L, de Haas O, Verges P, Beyer C, Rohlig S, Olsen H, Kuhn L, Berger D, Noteboom U, Funk U 2005 IEEE Trans. Appl. Supercond. 15 2301Google Scholar

    [7]

    Okano M, Iwamoto T, Furuse M, Fuchino S, Ishii I 2006 J. Phys.: Conf. Ser. 43 999Google Scholar

    [8]

    Kusada S, Igarashi M, Nemoto K, Okutomi T, Hirano S, Kuwano K, Tominaga T, Terai M, Kuriyama T, Tasaki K 2007 IEEE Trans. Appl. Supercond. 17 2111Google Scholar

    [9]

    Wang J, Wang S, Zeng Y, Huang H, Luo F, Xu Z, Tang Q, Lin G, Zhang C, Ren Z 2002 Physica C 378 809Google Scholar

    [10]

    Stumberger G, Aydemir M T, Zarko D, Lipo T A 2004 IEEE Trans. Appl. Supercond. 14 54Google Scholar

    [11]

    胡赣娟 2005 硕士 (浙江: 浙江大学)

    Hu G J 2005 M. S. Thesis (Zhejiang: Zhejiang University) (in Chinese)

    [12]

    Turman B, Marder B, Rohwein G, Aeschliman D, KelIey J, Cowan M, Zimmerman R 1995 Sandia National Laboratories, the United States Department of Energy

    [13]

    闻海虎 2021 物理学报 70 143Google Scholar

    Wen H H 2021 Acta Phys. Sin. 70 143Google Scholar

    [14]

    Mints R 1996 Phys. Rev. B 53 12311Google Scholar

    [15]

    Kim Y, Hempstead C, Strnad A 1963 Phys. Rev. 129 528Google Scholar

    [16]

    Neuringer L, Shapira Y 1966 Phys. Rev. 148 231Google Scholar

    [17]

    Wertheimer M R, Gilchrist J le G 1967 J. Phys. Chem. Solids 28 2509Google Scholar

    [18]

    Mints R, Rakhmanov A 1981 Rev. Mod. Phys. 53 551Google Scholar

    [19]

    Wipf S L 1991 Cryog. 31 936Google Scholar

    [20]

    Nabialek A, Niewczas M, Dabkowska H, Dabkowski A, Castellan J, Gaulin B 2003 Phys. Rev. B 67 024518Google Scholar

    [21]

    Hirano T, Fujishiro H, Naito T, Ainslie M D 2020 Supercond. Sci. Technol. 33 044003Google Scholar

    [22]

    Zhou Y H, Yang X B 2006 Phys. Rev. B 74 054507Google Scholar

    [23]

    Yang X B, Zhou Y H, Tu S D 2010 Physica C 470 109Google Scholar

    [24]

    Swartz P, Bean C 1968 J. Appl. Phys. 39 4991Google Scholar

    [25]

    Bean C P 1962 Phys. Rev. Lett. 8 250Google Scholar

    [26]

    Müller K H, Andrikidis C 1994 Phys. Rev. B 49 1294Google Scholar

    [27]

    Gou X F, Zheng X J, Zhou Y H 2007 IEEE Trans. Appl. Supercond. 17 3795Google Scholar

    [28]

    Kashikhin V V, Zlobin A V 2005 IEEE Trans. Appl. Supercond. 15 1621Google Scholar

    [29]

    Zhang W W, Xia J, Yong H D, Zhou Y H 2020 AIP Adv. 10 025021Google Scholar

    [30]

    Zhao Y F, Xia T D, He T H, Feng W J 2010 J. Low Temp. Phys. 160 201Google Scholar

    [31]

    Wang Q Y, Xue C, Chen Y Q, Ou X J, Wu W, Liu W, Ma P, Sun L T, Zhao H W, Zhou Y H 2022 Physica C 593 1354002Google Scholar

    [32]

    Lahtinen V, Stenvall A 2013 IEEE Trans. Appl. Supercond. 24 1Google Scholar

    [33]

    Barzi E, Limon P J, Yamada R, Zlobin A V 2001 IEEE Trans. Appl. Supercond. 11 3595Google Scholar

  • [1] 张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良. 超导转子磁悬浮结构磁耦合特性及承载能力分析. 物理学报, 2023, 72(12): 128401. doi: 10.7498/aps.72.20230328
    [2] 闻海虎. 高温超导体磁通钉扎和磁通动力学研究简介. 物理学报, 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [3] 马俊, 陈章龙, 县涛, 魏学刚, 杨万民, 陈森林, 李佳伟. 空心圆柱形永磁体内径对单畴GdBCO超导块材磁悬浮力的影响. 物理学报, 2018, 67(7): 077401. doi: 10.7498/aps.67.20172418
    [4] 温涛, 何剑, 张增星, 田竹梅, 穆继亮, 韩建强, 丑修建, 薛晨阳. 磁悬浮式电磁-摩擦复合生物机械能量采集器. 物理学报, 2017, 66(22): 228401. doi: 10.7498/aps.66.228401
    [5] 崔春艳, 胡新宁, 程军胜, 王晖, 王秋良. 超导磁悬浮支承系统干扰力矩及漂移误差分析. 物理学报, 2015, 64(1): 018403. doi: 10.7498/aps.64.018403
    [6] 宋其晖, 石万元. 横向静磁场对电磁悬浮液滴稳定性的影响. 物理学报, 2014, 63(24): 248504. doi: 10.7498/aps.63.248504
    [7] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭. 辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响. 物理学报, 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [8] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响. 物理学报, 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [9] 马俊, 杨万民. 条状永磁体的组合形式及间距对单畴GdBCO超导体磁悬浮力的影响. 物理学报, 2011, 60(7): 077401. doi: 10.7498/aps.60.077401
    [10] 马俊, 杨万民, 李国政, 程晓芳, 郭晓丹. 永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究. 物理学报, 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [11] 池长昀, 张金仓, 李领伟, 刘 芬, 黎文峰, 敬 超, 曹世勋, Miryala Muralidhar, 姚 忻. 熔融织构(Nd-Eu-Gd)-Ba-Cu-O超导体的各向异性磁通跳跃及其不稳定性研究. 物理学报, 2005, 54(5): 2307-2312. doi: 10.7498/aps.54.2307
    [12] 刘旭东, 王进, 刘楣, 邢定钰. 磁通密度对第Ⅱ类超导体磁通动力学的影响. 物理学报, 2002, 51(5): 1122-1127. doi: 10.7498/aps.51.1122
    [13] 马伟增, 季诚昌, 李建国. 直流磁场控制电磁悬浮熔炼旋转稳定性的理论分析. 物理学报, 2002, 51(10): 2233-2238. doi: 10.7498/aps.51.2233
    [14] 吴自勤, 高巧君, 唐先德. Nb3Sn复合超导体晶粒生长机制. 物理学报, 1981, 30(3): 428-432. doi: 10.7498/aps.30.428
    [15] 吴自勤, 高巧君, 李永洪, 唐先德. Nb/Nb3Sn复合超导材料的高压电子显微镜观察. 物理学报, 1980, 29(9): 1226-1230. doi: 10.7498/aps.29.1226
    [16] 超导材料组. 多股Nb3Sn超导小磁体的研制. 物理学报, 1976, 25(3): 268-269. doi: 10.7498/aps.25.268
    [17] 郑国光, 刘体汉, 管惟炎. Nb3Sn正常-超导转变时的比热反常. 物理学报, 1965, 21(4): 817-823. doi: 10.7498/aps.21.817
    [18] 管惟炎, 刘体汉, 郑国光. Nb3Sn超导电磁铁. 物理学报, 1965, 21(7): 1345-1354. doi: 10.7498/aps.21.1345
    [19] 王鼎盛, 陈冠冕, 金朝鼎. 难向交变场频率对磁膜畴壁蠕移的影响. 物理学报, 1965, 21(12): 2030-2032. doi: 10.7498/aps.21.2030
    [20] 卡列尔·密歇克. 镍在交变磁场中的一个磁内耗峰. 物理学报, 1955, 11(2): 179-190. doi: 10.7498/aps.11.179
计量
  • 文章访问数:  3499
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-27
  • 修回日期:  2022-08-28
  • 上网日期:  2022-10-29
  • 刊出日期:  2023-01-05

/

返回文章
返回