搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二元氧化物Yb3TaO7的非晶状热传导机理

王学智 汤雨婷 车军伟 令狐佳珺 侯兆阳

引用本文:
Citation:

二元氧化物Yb3TaO7的非晶状热传导机理

王学智, 汤雨婷, 车军伟, 令狐佳珺, 侯兆阳

Mechanism of amorphous-like thermal conductivity in binary oxide Yb3TaO7

Wang Xue-Zhi, Tang Yu-Ting, Che Jun-Wei, Linghu Jia-Jun, Hou Zhao-Yang
PDF
HTML
导出引用
  • 具有非晶状热导率的固体材料在热能转换和热管理应用中备受青睐. 因此, 揭示晶体材料的非晶状热传导机理对于开发和设计低热导率材料至关重要. 本文运用原子模拟方法揭示了萤石结构二元简单晶体Yb3TaO7的非晶状低热导率的物理机理. 研究发现, 萤石Yb3TaO7的低热导率主要是由O-Yb和O-Ta之间的原子间结合力相差较大引起的. 这种相差较大的原子键可以极大地软化声子模式, 从而抑制声子输运. 振动模式分解显示, 萤石Yb3TaO7中的大多数声子模式位于Ioffe-Regel极限以下, 表现出强烈的扩散特征. 萤石Yb3TaO7中绝大部分(> 90%)的热流是通过扩散模式而不是传播模式传输. 因此, 萤石Yb3TaO7中的热传导表现出独特的类非晶特性. 同时发现, 萤石Yb3TaO7中的光学声子模式在热传导中发挥着重要的作用. 本文对于原子间结合力与低热导率之间关系的认识, 以及开发和设计低热导率材料提供了新思路.
    The materials with low thermal conductivity (κ) are both fundamentally interesting and technologically important in applications relevant to thermal energy conversion and thermal management, such as thermoelectric conversion devices, thermal barrier coatings, and thermal storage. Therefore, understanding the physical mechanisms of glass-like heat conduction in crystalline materials is essential for the development and design of low-κ materials. In this work, the microscopic phonon mechanism of glass-like low κ in binary simple crystal Yb3TaO7 with fluorite structure is investigated by using the equilibrium molecular dynamics, phonon spectral energy density, and lattice dynamics. Meanwhile, the weberite-structured Yb3TaO7 is also mentioned for comparison. The calculated κ indicates that fluorite Yb3TaO7 has a glass-like low κ while weberite Yb3TaO7 has a crystal κ. Such a low κ in fluorite Yb3TaO7 is mainly due to the large difference in interatomic force between O-Yb and O-Ta. This different atomic bonding can significantly soften the phonon mode and thus limit phonon transport. To further describe the microscopic phonon thermal conduction, the single-channel model based on the phonon gas model is first used to calculate the total κ. However, the single-channel model significantly underestimates the κ, suggesting the presence of non-normal phonons in Yb3TaO7. Based on this, vibrational mode decomposition is conducted throughout the entire phonon spectrum of fluorite- and weberite-type Yb3TaO7. It is found that most modes in fluorite Yb3TaO7 fall in the Ioffe–Regel regime and exhibit a strongly diffusive nature. Such diffusive modes cannot be described by the phonon gas model. Based on the decomposed phonon modes, the dual-channel model involving diffusive mode and propagating mode is used to describe the phonon thermal conduction, by which the obtained results accord well with the experimental values. The vast majority (> 90%) of heat in fluorite Yb3TaO7 is found to be transported by diffusive modes rather than propagating modes. Consequently, the κ of fluorite Yb3TaO7 increases with temperature rising, exhibiting a unique glass-like nature. In particular, contrary to conventional wisdom, the optical phonon mode in fluorite Yb3TaO7 plays a significant or even decisive role in thermal conduction, which could serve as a new physical factor to adjust κ in solid materials. Overall, the new understanding of the link between chemical bonding and glass-like κ can contribute to the development and design of low-κ materials.
      通信作者: 王学智, xzh_wang@chd.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12204063)、中央高校基本科研业务费专项资金 (批准号: 300102122112)和陕西省自然科学基础研究计划(批准号: 2020JQ-339)资助的课题.
      Corresponding author: Wang Xue-Zhi, xzh_wang@chd.edu.cn
    • Funds: Projected supported by the National Natural Science Foundation of China (Grant No. 12204063), the Fundamental Research Funds for the Central Universities of China (Grant No. 300102122112), and the Natural Science Basic Research Plan of Shaanxi Province, China (Grant No. 2020JQ-339).
    [1]

    Padture N P, Gell M, Jordan E H 2002 Science 296 280Google Scholar

    [2]

    Wu J, Wei X, Padture N P, Klemens P G, Gell M, Garcia E, Miranzo P, Osendi M I 2003 Chem. Inform. 34 3031

    [3]

    Schelling P K, Phillpot S R 2001 J. Am. Ceram. Soc. 84 2997Google Scholar

    [4]

    Zhu J, Meng X, Zhang P, Li Z, Xu J, Reece M J, Gao F 2021 J. Eur. Ceram. Soc. 41 2861Google Scholar

    [5]

    Chevalier J, Gremillard L, Virkar A V, Clarke D R 2009 J. Am. Ceram. Soc. 92 1901Google Scholar

    [6]

    Anupam A, Kottada R S, Kashyap S, Meghwal A, Murty B S, Berndt C C, Ang A S M 2020 Appl. Surf. Sci. 505 144117Google Scholar

    [7]

    李世彬, 吴志明, 袁凯, 廖乃镘, 李伟, 蒋亚东 2008 物理学报 57 3126Google Scholar

    Li S B, Wu Z M, Yuan K, Liao N M, Li W, Jiang Y D 2008 Acta Phys. Sin. 57 3126Google Scholar

    [8]

    King G, Thompson C M, Greedanb J E, Llobet A 2013 J. Mater. Chem. A. 1 10487Google Scholar

    [9]

    Chen L, Hu M, Wu F, Song P, Feng J 2019 J. Alloys Compd. 788 1231Google Scholar

    [10]

    Schlichting K W, Padture N P, Klemens P G 2001 J. Mater. Sci. 36 3003Google Scholar

    [11]

    Zarichnyak Y P, Ramazanova A E, Emirov S N 2013 Phys. Solid State 55 2436Google Scholar

    [12]

    Stanek C R, Minervini L, Grimes R W 2002 J. Am. Ceram. Soc. 85 2792Google Scholar

    [13]

    Tealdi C, Islam M S, Malavasi L, Flor G 2004 J. Solid State Chem. 177 4359Google Scholar

    [14]

    张智奇, 钱胜, 王瑞金, 朱泽飞 2019 物理学报 68 054401Google Scholar

    Zhang Z Q, Qian S, W R J, Zhu Z F 2019 Acta Phys. Sin. 68 054401Google Scholar

    [15]

    Thomas J A, Turney J E, Iutzi R M, Amon C H, McGaughey A J 2010 Phys. Rev. B 81 081411Google Scholar

    [16]

    Turney J E, Landry E S, McGaughey A J H, Amon C H 2009 Phys. Rev. B 79 064301Google Scholar

    [17]

    Su R, Yuan Z, Wang J, Zhang Z 2015 Phys. Rev. E 91 012136Google Scholar

    [18]

    Su R X, Yuan Z Q, Wang J, Zheng Z G 2016 Front. Phys. 11 114401Google Scholar

    [19]

    郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔 2022 物理学报 71 056101Google Scholar

    Zheng C H, Yang J, Xie G F, Zhou W X, Ouyang T 2022 Acta Phys. Sin. 71 056101Google Scholar

    [20]

    Lee C H, Gan C K 2017 Phys. Rev. B 96 035105Google Scholar

    [21]

    Lü W, Henry A 2016 Sci. Rep. 6 35720Google Scholar

    [22]

    Yang B, Chen G 2003 Phys. Rev. B 67 195311Google Scholar

    [23]

    Dechaumphai E, Chen R 2012 J. Appl. Phys. 111 073508Google Scholar

    [24]

    Luo Y X, Yang X L, Feng T L, Wang J Y, Ruan X L 2020 Nat. Commun. 11 1Google Scholar

    [25]

    Kumar G, Vangessel F G, Elton D C, Chung P W 2019 MRS Adv. 4 2191Google Scholar

    [26]

    Seyf H R, Henry A 2016 J. Appl. Phys. 120 25101Google Scholar

    [27]

    Beltukov Y M, Kozub V I, Parshin D A 2013 Phys. Rev. B 87 134203Google Scholar

    [28]

    Allen P B, Feldman J L 1993 Phys. Rev. B 48 12581Google Scholar

    [29]

    Clarke D R 2003 Surf. Coat. Technol. 163 67

    [30]

    Cahill D G, Watson S K, Pohl R O 1992 Phys. Rev. B 46 6131Google Scholar

    [31]

    Morelli D T, Heremans J P, Slack G A 2002 Phys. Rev. B 66 195304Google Scholar

    [32]

    Slack G A 1973 J. Phys. Chem. Solids 34 321Google Scholar

  • 图 1  Yb3TaO7 (a) 萤石结构; (b)冰镁石结构

    Fig. 1.  Yb3TaO7: (a) Fluorite-type; (b) weberite-type.

    图 2  1500 K温度下的热导率计算结果 (a) 归一化热流关联函数随关联时间的变化关系; (b) 热导率随关联时间的变化关系; (c) 不同超胞的热导率; (d) 热导率随温度的变化关系

    Fig. 2.  Calculated thermal conductivity at 1500 K: (a) Normalized HCACF versus correlation time; (2) thermal conductivity versus correlation time; (c) calculated thermal conductivity with different supercell; (d) temperature dependence of thermal conductivity.

    图 3  在300 K温度下, 萤石Yb3TaO7的热输运性质 (a) 模式比热容; (b) 声子寿命; (c)声子群速度

    Fig. 3.  Thermal transport properties of F-Yb3TaO7 at 300 K: (a) Mode capacity; (b) phonon lifetime; (c) phonon group velocity.

    图 4  Yb3TaO7的SED计算结果 (a) 萤石; (b) 冰镁石

    Fig. 4.  Calculated SED plots of Yb3TaO7: (a) F-type; (b) W-type.

    图 5  (a) 原子间相互作用力; (b) 一维双原子链的声子色散关系

    Fig. 5.  (a) Calculated interatomic bonding force; (b) phonon dispersion relationship of for a one-dimensional diatomic chain.

    图 6  Yb3TaO7在不同频率区间内的声子极化 (a) 萤石; (b) 冰镁石

    Fig. 6.  Phonon polarization of Yb3TaO7 in different frequency domains: (a) F-type; (b) W-type.

    图 7  (a) 萤石Yb3TaO7和(b) 冰镁石Yb3TaO7的总参与率; (c) 萤石Yb3TaO7和(d) 冰镁石Yb3TaO7中各元素的参与率

    Fig. 7.  Total phonon participation ratio of (a) F-Yb3TaO7 and (b) W-Yb3TaO7; atomic phonon participation ratio of (c) F-Yb3TaO7 and (d) W-Yb3TaO7.

    图 8  Yb3TaO7的声子平均自由程 (a) 萤石, (b)冰镁石; Yb3TaO7中传播子和扩散子的热导率 (c) 萤石, (d) 冰镁石

    Fig. 8.  Phonon mean free paths of (a) F-Yb3TaO7 and (b) F-Yb3TaO7; thermal conductivity of propagons and diffusons in (c) F-Yb3TaO7 and (d) F-Yb3TaO7.

    表 1  Yb3TaO7的力场参数[12,13]

    Table 1.  Force field parameters for Yb3TaO7[12,13].

    原子间作用A/eVρC/(eV·Å6)
    O—O9547.960.219232.00
    O—Ta1315.570.36900
    O—Yb1649.800.338616.57
    下载: 导出CSV

    表 2  计算的La2Zr2O7和Yb3TaO7的晶格常数、格林艾森常数和弹性模量

    Table 2.  Calculated lattice constants, Grüneisen constants, and elastic modulus for La2Zr2O7 and Yb3TaO7.

    材料晶格常数/Å格林艾森常数弹性模量/GPa
    计算值实验值计算值实验值计算值实验值
    F-Yb3TaO75.195 5.1955.1955.1865.1865.186 [9]1.641.55[9]176 209[9]
    W-Yb3TaO710.4117.4017.40010.3807.330 7.330 [8]1.51191
    下载: 导出CSV
  • [1]

    Padture N P, Gell M, Jordan E H 2002 Science 296 280Google Scholar

    [2]

    Wu J, Wei X, Padture N P, Klemens P G, Gell M, Garcia E, Miranzo P, Osendi M I 2003 Chem. Inform. 34 3031

    [3]

    Schelling P K, Phillpot S R 2001 J. Am. Ceram. Soc. 84 2997Google Scholar

    [4]

    Zhu J, Meng X, Zhang P, Li Z, Xu J, Reece M J, Gao F 2021 J. Eur. Ceram. Soc. 41 2861Google Scholar

    [5]

    Chevalier J, Gremillard L, Virkar A V, Clarke D R 2009 J. Am. Ceram. Soc. 92 1901Google Scholar

    [6]

    Anupam A, Kottada R S, Kashyap S, Meghwal A, Murty B S, Berndt C C, Ang A S M 2020 Appl. Surf. Sci. 505 144117Google Scholar

    [7]

    李世彬, 吴志明, 袁凯, 廖乃镘, 李伟, 蒋亚东 2008 物理学报 57 3126Google Scholar

    Li S B, Wu Z M, Yuan K, Liao N M, Li W, Jiang Y D 2008 Acta Phys. Sin. 57 3126Google Scholar

    [8]

    King G, Thompson C M, Greedanb J E, Llobet A 2013 J. Mater. Chem. A. 1 10487Google Scholar

    [9]

    Chen L, Hu M, Wu F, Song P, Feng J 2019 J. Alloys Compd. 788 1231Google Scholar

    [10]

    Schlichting K W, Padture N P, Klemens P G 2001 J. Mater. Sci. 36 3003Google Scholar

    [11]

    Zarichnyak Y P, Ramazanova A E, Emirov S N 2013 Phys. Solid State 55 2436Google Scholar

    [12]

    Stanek C R, Minervini L, Grimes R W 2002 J. Am. Ceram. Soc. 85 2792Google Scholar

    [13]

    Tealdi C, Islam M S, Malavasi L, Flor G 2004 J. Solid State Chem. 177 4359Google Scholar

    [14]

    张智奇, 钱胜, 王瑞金, 朱泽飞 2019 物理学报 68 054401Google Scholar

    Zhang Z Q, Qian S, W R J, Zhu Z F 2019 Acta Phys. Sin. 68 054401Google Scholar

    [15]

    Thomas J A, Turney J E, Iutzi R M, Amon C H, McGaughey A J 2010 Phys. Rev. B 81 081411Google Scholar

    [16]

    Turney J E, Landry E S, McGaughey A J H, Amon C H 2009 Phys. Rev. B 79 064301Google Scholar

    [17]

    Su R, Yuan Z, Wang J, Zhang Z 2015 Phys. Rev. E 91 012136Google Scholar

    [18]

    Su R X, Yuan Z Q, Wang J, Zheng Z G 2016 Front. Phys. 11 114401Google Scholar

    [19]

    郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔 2022 物理学报 71 056101Google Scholar

    Zheng C H, Yang J, Xie G F, Zhou W X, Ouyang T 2022 Acta Phys. Sin. 71 056101Google Scholar

    [20]

    Lee C H, Gan C K 2017 Phys. Rev. B 96 035105Google Scholar

    [21]

    Lü W, Henry A 2016 Sci. Rep. 6 35720Google Scholar

    [22]

    Yang B, Chen G 2003 Phys. Rev. B 67 195311Google Scholar

    [23]

    Dechaumphai E, Chen R 2012 J. Appl. Phys. 111 073508Google Scholar

    [24]

    Luo Y X, Yang X L, Feng T L, Wang J Y, Ruan X L 2020 Nat. Commun. 11 1Google Scholar

    [25]

    Kumar G, Vangessel F G, Elton D C, Chung P W 2019 MRS Adv. 4 2191Google Scholar

    [26]

    Seyf H R, Henry A 2016 J. Appl. Phys. 120 25101Google Scholar

    [27]

    Beltukov Y M, Kozub V I, Parshin D A 2013 Phys. Rev. B 87 134203Google Scholar

    [28]

    Allen P B, Feldman J L 1993 Phys. Rev. B 48 12581Google Scholar

    [29]

    Clarke D R 2003 Surf. Coat. Technol. 163 67

    [30]

    Cahill D G, Watson S K, Pohl R O 1992 Phys. Rev. B 46 6131Google Scholar

    [31]

    Morelli D T, Heremans J P, Slack G A 2002 Phys. Rev. B 66 195304Google Scholar

    [32]

    Slack G A 1973 J. Phys. Chem. Solids 34 321Google Scholar

  • [1] 王权杰, 邓宇戈, 王仁宗, 刘向军. 界面工程调控GaN基异质结界面热传导性能研究. 物理学报, 2023, 72(22): 226301. doi: 10.7498/aps.72.20230791
    [2] 任国梁, 申开波, 刘永佳, 刘英光. 类石墨烯氮化碳结构(C3N)热传导机理研究. 物理学报, 2023, 72(1): 013102. doi: 10.7498/aps.72.20221441
    [3] 高冠华, 徐郁, 廖国福, 卢方军. 超导转变边沿探测器梁架尺寸估算方法. 物理学报, 2022, 71(15): 158502. doi: 10.7498/aps.71.20220335
    [4] 潘东楷, 宗志成, 杨诺. 纳米尺度热物理中的声子弱耦合问题. 物理学报, 2022, 71(8): 086302. doi: 10.7498/aps.71.20220036
    [5] 俞杭, 徐锡方, 牛谦, 张力发. 声子角动量与手性声子. 物理学报, 2018, 67(7): 076302. doi: 10.7498/aps.67.20172407
    [6] 邢玉恒, 徐锡方, 张力发. 拓扑声子与声子霍尔效应. 物理学报, 2017, 66(22): 226601. doi: 10.7498/aps.66.226601
    [7] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟. 物理学报, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [8] 华钰超, 曹炳阳. 多约束纳米结构的声子热导率模型研究. 物理学报, 2015, 64(14): 146501. doi: 10.7498/aps.64.146501
    [9] 彭小芳, 王新军, 龚志强, 陈丽群. 量子点调制的一维量子波导中声学声子输运和热导. 物理学报, 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [10] 叶伏秋, 李科敏, 彭小芳. 低温下多通道量子结构中的弹性声子输运和热导. 物理学报, 2011, 60(3): 036806. doi: 10.7498/aps.60.036806
    [11] 金蔚, 惠宁菊, 屈世显. 螺旋纳米带中的声子输运. 物理学报, 2011, 60(1): 016301. doi: 10.7498/aps.60.016301
    [12] 贺梦冬, 龚志强. 多层异质结构中的声学声子输运. 物理学报, 2007, 56(3): 1415-1421. doi: 10.7498/aps.56.1415
    [13] 唐黎明, 王 艳, 王 丹, 王玲玲. 边界条件对介电量子波导中声子输运性质的影响. 物理学报, 2007, 56(1): 437-442. doi: 10.7498/aps.56.437
    [14] 黄秀清, 刘有延, 邹南之, 马鹏辉. 二维准晶的声子及其熔化性质. 物理学报, 1993, 42(7): 1086-1094. doi: 10.7498/aps.42.1086
    [15] 黄秀清;刘有延;邹南之;马鹏辉. 二维准晶的声子及其熔化性质. 物理学报, 1991, 40(7): 1086-1094. doi: 10.7498/aps.40.1086
    [16] 庞根弟, 蔡建华. 非均匀无序系统的声子局域化. 物理学报, 1988, 37(4): 688-690. doi: 10.7498/aps.37.688
    [17] 傅英, 徐文兰. Ge1-xSix混晶声子谱. 物理学报, 1988, 37(1): 162-166. doi: 10.7498/aps.37.162
    [18] 卫崇德, 赵士平, 薛立新. 声子注入下超导锡膜的非均匀态. 物理学报, 1985, 34(10): 1368-1372. doi: 10.7498/aps.34.1368
    [19] 阎守胜, 高利明, 万君佐, 彭正伟, 应志强. FeMnAl合金低温声子热导率的反常行为. 物理学报, 1985, 34(6): 809-812. doi: 10.7498/aps.34.809
    [20] 沈学础, 褚君浩. CdxHg1-xTe混晶声子谱的远红外光谱研究. 物理学报, 1984, 33(6): 729-737. doi: 10.7498/aps.33.729
计量
  • 文章访问数:  3474
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-06
  • 修回日期:  2022-12-12
  • 上网日期:  2023-01-05
  • 刊出日期:  2023-03-05

/

返回文章
返回