搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子温度各向异性对螺旋波等离子体中电磁模式的传播及功率沉积特性的影响

李文秋 唐彦娜 刘雅琳 王刚

引用本文:
Citation:

电子温度各向异性对螺旋波等离子体中电磁模式的传播及功率沉积特性的影响

李文秋, 唐彦娜, 刘雅琳, 王刚

Influence of electron temperature anisotropy on wave mode propagation and power deposition characteristics in helicon plasma

Li Wen-Qiu, Tang Yan-Na, Liu Ya-Lin, Wang Gang
PDF
HTML
导出引用
  • 采用考虑粒子温度各向异性热等离子体介电张量模型, 借助磁化、均匀密度分布等离子体中电磁波的一般色散关系, 在低磁场、低气压螺旋波等离子体典型参量条件下, 理论分析了电子温度各向异性对电磁模式传播特性和角向对称模功率沉积的影响. 研究结果表明: 对于给定的纵向静磁场B0 (或波频率ω), 存在一个临界波频率ωcr (或纵向静磁场B0,cr), 当ω > ωcr (或B0 < B0,cr)时, 电子回旋谐波遭受的阻尼开始显著增大; 相比粒子温度各向同性情形, 粒子温度各向异性彻底改变了波的传播特性, 即相位常数和衰减常数均出现峰值现象; 在考虑电子有限拉莫尔半径效应和电子温度各向异性情形下, Trivelpiece-Gould (TG)波碰撞阻尼在整个电磁波功率沉积中占据主导地位, 电子纵向温度Te,// 存在某一临界值, 在此临界值处TG波功率沉积出现峰值Pabs,TG, 且随着Te,⊥/Te,// 的减小, 此功率沉积峰值 Pabs,TG 逐渐增强.
    As the core issue in helicon discharge, the physical mechanism behind the high ionization rate phenomenon is still not fully understood. Based on the warm plasma dielectric tensor model which contains both the particle drift velocity and temperature anisotropy effect, by employing the general dispersion relation of electromagnetic waves propagating in magnetized and uniform plasma with typical helicon discharge parameter conditions, wave mode propagation characteristic and collisional, cyclotron and Landua damping induced wave power deposition properties of azimuthally symmetric mode are theoretically investigated. Systematic analysis shows the following findings. 1) Under typical helicon plasma parameter conditions, i.e. wave frequency ω/(2π)=13.56 MHz, ion temperature is one tenth of the electron temperature, and for a given magnetic field B0 (or wave frequency ω), there exists a critical wave frequency ωcr (or magnetic field B0,cr), above which (or below B0,cr) the damping of the n = 1, 2, 3 cyclotron harmonics begins to increase sharply. 2) For the electron temperature isotropic case, the attenuation constants of different harmonics start to increase significantly and monotonically at different thresholds of magnetic field, while the phase constant abruptly increases monotonically from the beginning of the parameter interval. On the other hand, for the electron temperature anisotropic case, both the phase constant and attenuation constant have peaking phenomenon, i.e. the attenuation constant begins to increase sharply at a certain value of B0 and meanwhile the phase constant presents a maximum value near the same value of magnetic field, thus the phase constant starts to keep constant at a certain value of B0 and meanwhile the attenuation constant has a maximum value near this same value of magnetic field. 3) For the wave power deposition properties, under electron temperature anisotropy conditions, power deposition due to collisional damping of Trivelpiece-Gould (TG) wave plays a dominant role in a low field (B0 = 48 Gs) (1 Gs = 10–4 T); by considering the electron finite Larmor radius (FLR) effect, the power deposition of TG wave presents a maximum value at a certain point of parallel electron temperature Te,//; with the decrease of Te,⊥/Te,//, the maximum value of power deposition increases gradually. All these findings are very important in further revealing the physical mechanism behind the high ionization rate in helicon plasma.
      通信作者: 李文秋, beiste@163.com
    • 基金项目: 中国科学院空天信息创新研究院高功率微波源与技术重点实验室(批准号: Y9D0260H93)资助的课题.
      Corresponding author: Li Wen-Qiu, beiste@163.com
    • Funds: Project supported by the Key Laboratory of Science and Technology on High Power Microwave Sources and Technologies, Aerospace Information Research Institude , Chinese Academy of Sciences (Grant No. Y9D0260H93).
    [1]

    Varughese G, Kumari J, Pandey RS, et al. 2018 J. Mod. Appl. Phys. 2 13

    [2]

    Omura Y, Summers D 2006 J. Geophys. Res. Space Phys. 111 A09222

    [3]

    倪彬彬, 赵正予, 顾旭东, 汪枫 2008 物理学报 57 7937Google Scholar

    Ni B B, Zhao Z Y, Gu X D, Wang F 2008 Acta Phys. Sin. 57 7937Google Scholar

    [4]

    傅绥燕, 徐寄遥, 魏勇, 刘立波, 熊明, 曹晋滨, 宗秋刚, 王赤, 冯学尚, 史全岐, 师立勤, 任丽文 2019 中国科学: 地球科学 49 1641

    Fu S Y, Xu J Y, Wei Y, Liu L B, Xiong M, Cao J B, Zong Q G, Wang C, Feng X S, Shi Q Q, Shi L Q, Ren L W 2019 Sci. Sin. Terrae 49 1641

    [5]

    Caneses J F, Blackwell B D 2016 Plasma Sources Sci. Technol. 25 055027Google Scholar

    [6]

    Isayama S, Shinohara S, Hada T 2018 Plasma Fusion Res. 13 1101014Google Scholar

    [7]

    Shinohara S 2018 Adv. Phys. X 3 1420424

    [8]

    Shinohara S, Hada T, Motomura T, et al. 2009 Phys. Plasmas 16 057104Google Scholar

    [9]

    Chen F F, Boswell R W 1997 IEEE Trans. Plasma Sci. 25 1245Google Scholar

    [10]

    Squire J P, Chang-Diaz F R, Jacobson V T, et al. 2003 AIP Conference Proceedings for the 15th Topical Conference on Radio Frequency Power in Plasmas Moran, May 19–21, 2003 p423

    [11]

    Squire J P, Chang-Díaz F R, Glover T W, et al. 2006 Thin Solid Films 506 579

    [12]

    Boswell R W, Sutherland O, Charles C, et al. 2004 Phys. Plasmas 11 5125Google Scholar

    [13]

    Bathgate S N, Bilek M M M, Mckenzie D R 2017 Plasma Sci. Technol. 19 083001Google Scholar

    [14]

    Furukawa T, Kuwahara D, Shinohara S 2020 AIAA Propulsion and Energy Forum New Orleans, August 24–26, 2020 p3630

    [15]

    Liu X, Sun X, Guo N, et al. 2022 IEEE Trans. Plasma Sci. 7 2138

    [16]

    Polzin K, Martin A, Little J, et al. 2020 Aerospace 7 105Google Scholar

    [17]

    Perry A J, Vender D, Boswell R W 1991 J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 9 310Google Scholar

    [18]

    Takahashi K, Motomura T, Ando A, et al. 2014 J. Phys. D Appl. Phys. 47 425201Google Scholar

    [19]

    Smyrnakis A, Dimitrakis P, Gogolides E 2018 J. Phys. D Appl. Phys. 51 455101Google Scholar

    [20]

    Goulding R H, Caughman J B O, Rapp J, et al. 2017 Fusion Sci. Technol. 72 588Google Scholar

    [21]

    Ivanov A A, Davydenko V I, Kotelnikov I A, et al. 2013 Fusion Sci. Technol. 63 217Google Scholar

    [22]

    Goulding R H, Biewer T M, Caughman J B O, et al. 2011 AIP Conference Proceedings for the 19th Topical Conference on Radio Frequency Power in Plasmas Rhode Island, June 1–3, 2011 p535

    [23]

    Goulding R H, Chen G, Meitner S, et al. 2009 AIP Conference Proceedings for the 18th Topical Conference on Radio Frequency Power in Plasmas Belgium, June 24–26, 2009 p667

    [24]

    Isayama S, Shinohara S, Hada T, et al. 2019 Phys. Plasmas 26 023517Google Scholar

    [25]

    Shinohara S 2002 J. Plasma Fusion Res. 78 5Google Scholar

    [26]

    Chen F F, Torreblanca H 2007 Plasma Sources Sci. Technol. 16 593Google Scholar

    [27]

    Tarey R D, Sahu B B, Ganguli A 2012 Phys. Plasmas 19 073520Google Scholar

    [28]

    Chen F F 1991 Plasma Phys. Controlled Fusion 33 339Google Scholar

    [29]

    Chen F F, Blackwell D D 1999 Phys. Rev. Lett. 82 2677Google Scholar

    [30]

    Blackwell D D, Chen F F 2001 Plasma Sources Sci. Technol. 10 226Google Scholar

    [31]

    Kline J L, Scime E E, Boivin R F, et al. 2002 Phys. Rev. Lett. 88 195002Google Scholar

    [32]

    Eom G S, Kim J, Choe W 2006 Phys. Plasmas 13 073505Google Scholar

    [33]

    Cho S 2020 Plasma Sources Sci. Technol. 29 095023Google Scholar

    [34]

    赵高, 熊玉卿, 马超, 刘忠伟, 陈强 2014 物理学报 63 235202Google Scholar

    Zhao G, Xiong Y Q, Ma C, Liu Z W, Chen Q 2014 Acta Phys. Sin. 63 235202Google Scholar

    [35]

    平兰兰, 张新军, 杨桦, 徐国盛, 苌磊, 吴东升, 吕虹, 郑长勇, 彭金花, 金海红, 何超, 甘桂华 2019 物理学报 68 205201Google Scholar

    Ping L L, Zhang X J, Yang H, Xu G S, Chang L, Wu D S, Lü H, Zheng C Y, Peng J H, Jin H H, He C, Gan G H 2019 Acta Phys. Sin. 68 205201Google Scholar

    [36]

    Guo X M, Scharer J, Mouzouris Y, et al. 1999 Phys. Plasmas 6 3400Google Scholar

    [37]

    Correyero Plaza S, Navarro J, Ahedo E 2016 52nd AIAA/SAE/ASEE Joint Propulsion Conference Salt Lake City, July 25–27, 2016 p5035

    [38]

    Swanson D G 1989 Plasma Waves (New York: Academic Press) p155

    [39]

    Huba J D 2016 NRL Plasma Formulary (Washington: Naval Research Laboratory) p34

    [40]

    Mouzouris Y, Scharer J E 1998 Phys. Plasmas 5 4253Google Scholar

    [41]

    Fried B D, Conte S D 2015 The Plasma Dispersion Function: The Hilbert Transform of the Gaussian (New York: Academic Press) p1

    [42]

    Sakawa Y, Kunimatsu H, Kikuchi H, et al. 2003 Phys. Rev. Lett. 90 105001Google Scholar

    [43]

    Shamrai K P, Taranov V B 1996 Plasma Sources Sci. Technol. 5 474Google Scholar

    [44]

    Chen F F, Arnush D 1997 Phys. Plasmas 4 3411Google Scholar

  • 图 1  螺旋波等离子体柱示意图

    Fig. 1.  Cross section of helicon plasma column.

    图 2  Whistler波色散特性

    Fig. 2.  Dispersion characteristic of whistler wave.

    图 3  电子温度各向异性对Whistler波n = 1次回旋谐波传播常数的影响 (实线代表相位常数, 虚线代表衰减常数)

    Fig. 3.  Effect of electron temperature anisotropy on the propagation characteristic of the n = 1 electron cyclotron harmonic (the solid lines represent the phase constant, and the dashed lines represent the attenuation constant).

    图 4  电子温度各向同性情形下n=1, 2, 3 次回旋谐波传播常数对纵向静磁场的依赖关系 (实线代表相位常数, 虚线代表衰减常数)

    Fig. 4.  Dependence of propagation characteristic of the n=1, 2, 3 electron cyclotron harmonics on magnetic field in the case of electron temperature isotropy (the solid lines represent the phase constant, and the dashed lines represent the attenuation constant).

    图 5  电子温度各向异性情形下n = 1, 2, 3次回旋谐波传播常数对纵向静磁场的依赖关系 (实线代表相位常数, 虚线代表衰减常数)

    Fig. 5.  Dependence of propagation characteristic of the n = 1, 2, 3 electron cyclotron harmonics on magnetic field in the case of electron temperature anisotropy (The solid lines represent the phase constant, and the dashed lines represent the attenuation constant).

    图 6  n = 1, 2, 3次回旋谐波衰减常数随 (a) 电子温度各向异性和 (b) 电子纵向漂移速度的依赖关系

    Fig. 6.  Dependence of attenuation constant of the n = 1, 2, 3 electron cyclotron harmonics on (a) the electron temperature anisotropy and (b) electron parallel drift velocity.

    图 7  螺旋波与TG波有限拉莫尔半径效应因子随归一化静磁场的变化关系

    Fig. 7.  Dependence of the FLR effect parameter of helicon and TG waves on the normalized static magnetic field.

    图 8  波功率沉积随纵向电子温度的变化

    Fig. 8.  Wave power deposition versus parallel electron temperature.

    图 9  螺旋波碰撞阻尼产生的功率沉积径向分布 (a) Te,⊥/Te, // = 0.1; (b) Te,/Te,// = 1; (c) Te,/Te,// = 10

    Fig. 9.  Collisional damping induced radial power deposition distribution of the helicon wave: (a) Te, ⊥/Te, // = 0.1; (b) Te,/Te,// = 1; (c) Te,/ Te,// = 10.

    图 10  TG波碰撞阻尼产生的功率沉积径向分布 (a) Te,⊥/Te, // = 0.1; (b) Te,/Te,// = 1; (c) Te,/Te,// = 10

    Fig. 10.  Collisional damping induced radial power deposition distribution of the TG wave: (a) Te,⊥/Te,// = 0.1; (b) Te,/Te, // = 1; (c) Te,/Te, // = 10.

    图 11  TG 波功率沉积在$({T_{{\text{e}}, //}}, {\text{ }}{T_{{\text{e}}, \bot }}/{T_{{\text{e}}, //}})$空间的分布 (a) 三维分布; (b) 二维分布

    Fig. 11.  $({T_{{\text{e}}, //}}, {\text{ }}{T_{{\text{e}}, \bot }}/{T_{{\text{e}}, //}})$ space power deposition distribution of TG wave: (a) 3D; (b) 2D.

    表 1  色散关系元素

    Table 1.  Elements of dispersion relation.

    ${\varPi _{su} }$u = 1u = 2u = 3
    s = 1$ {{\text{J}}_m}({k_{ \bot m, {\text{H}}}}a) $$ {{\text{J}}_m}({k_{ \bot m, {\text{TG}}}}a) $$ - {\text{j}}{k_{ \bot m, v}}{\text{H}}_m^{(1)}({k_{ \bot m, v}}a) $
    s = 2$\begin{gathered} k_{ \bot m, {\text{TG} } }^2\left[ {m{k_{//, m} }{ {\text{J} }_m}({k_{ \bot m, {\text{H} } } }a) } \right. \\ \left. +{ {k_{\text{H} } }{k_{ \bot m, {\text{H} } } }a{ {\text{J} }_m'} ({k_{ \bot m, {\text{H} } } }a)} \right] \\ \end{gathered}$$\begin{gathered} k_{ \bot m, {\text{H} } }^2\left[ {m{k_{//, m} }{ {\text{J} }_m}({k_{ \bot m, {\text{TG} } } }a) } \right. \\ \left. +{ {k_{\text{H} } }{k_{ \bot m, {\text{TG} } } }a{ {\text{J} }_m'} ({k_{ \bot m, {\text{TG} } } }a)} \right] \\ \end{gathered}$$ {\text{j}}k_{ \bot m, {\text{H}}}^2 k_{ \bot m, {\text{TG}}}^2 m{\text{H}}_m^{(1)}({k_{ \bot m, v}}a) $
    s = 3$\begin{gathered} k_{ \bot m, {\text{TG} } }^2\left[ {m{k_{\text{H} } }{ {\text{J} }_m}({k_{ \bot m, {\text{H} } } }a) } \right. \\ \left. +{ {k_{//, m} }{k_{ \bot m, {\text{H} } } }a{ {\text{J} }_m'} ({k_{ \bot m, {\text{H} } } }a)} \right] \\ \end{gathered}$$\begin{gathered} k_{ \bot m, {\text{H} } }^2\left[ {m{k_{ {\text{TG} } } }{ {\text{J} }_m}({k_{ \bot m, {\text{TG} } } }a) } \right. \\ \left. +{ {k_{//, m} }{k_{ \bot m, {\text{TG} } } }a{ {\text{J} }_m'} ({k_{ \bot m, {\text{TG} } } }a)} \right] \\ \end{gathered}$${\text{j} }k_{ \bot {m}, {\text{H} } }^2 k_{ \bot {m}, {\text{TG} } }^2 {k_{ \bot {m}, v} }a{\text{H}_m^{(1)' }}({k_{ \bot {m}, v} }a)$
    下载: 导出CSV
  • [1]

    Varughese G, Kumari J, Pandey RS, et al. 2018 J. Mod. Appl. Phys. 2 13

    [2]

    Omura Y, Summers D 2006 J. Geophys. Res. Space Phys. 111 A09222

    [3]

    倪彬彬, 赵正予, 顾旭东, 汪枫 2008 物理学报 57 7937Google Scholar

    Ni B B, Zhao Z Y, Gu X D, Wang F 2008 Acta Phys. Sin. 57 7937Google Scholar

    [4]

    傅绥燕, 徐寄遥, 魏勇, 刘立波, 熊明, 曹晋滨, 宗秋刚, 王赤, 冯学尚, 史全岐, 师立勤, 任丽文 2019 中国科学: 地球科学 49 1641

    Fu S Y, Xu J Y, Wei Y, Liu L B, Xiong M, Cao J B, Zong Q G, Wang C, Feng X S, Shi Q Q, Shi L Q, Ren L W 2019 Sci. Sin. Terrae 49 1641

    [5]

    Caneses J F, Blackwell B D 2016 Plasma Sources Sci. Technol. 25 055027Google Scholar

    [6]

    Isayama S, Shinohara S, Hada T 2018 Plasma Fusion Res. 13 1101014Google Scholar

    [7]

    Shinohara S 2018 Adv. Phys. X 3 1420424

    [8]

    Shinohara S, Hada T, Motomura T, et al. 2009 Phys. Plasmas 16 057104Google Scholar

    [9]

    Chen F F, Boswell R W 1997 IEEE Trans. Plasma Sci. 25 1245Google Scholar

    [10]

    Squire J P, Chang-Diaz F R, Jacobson V T, et al. 2003 AIP Conference Proceedings for the 15th Topical Conference on Radio Frequency Power in Plasmas Moran, May 19–21, 2003 p423

    [11]

    Squire J P, Chang-Díaz F R, Glover T W, et al. 2006 Thin Solid Films 506 579

    [12]

    Boswell R W, Sutherland O, Charles C, et al. 2004 Phys. Plasmas 11 5125Google Scholar

    [13]

    Bathgate S N, Bilek M M M, Mckenzie D R 2017 Plasma Sci. Technol. 19 083001Google Scholar

    [14]

    Furukawa T, Kuwahara D, Shinohara S 2020 AIAA Propulsion and Energy Forum New Orleans, August 24–26, 2020 p3630

    [15]

    Liu X, Sun X, Guo N, et al. 2022 IEEE Trans. Plasma Sci. 7 2138

    [16]

    Polzin K, Martin A, Little J, et al. 2020 Aerospace 7 105Google Scholar

    [17]

    Perry A J, Vender D, Boswell R W 1991 J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 9 310Google Scholar

    [18]

    Takahashi K, Motomura T, Ando A, et al. 2014 J. Phys. D Appl. Phys. 47 425201Google Scholar

    [19]

    Smyrnakis A, Dimitrakis P, Gogolides E 2018 J. Phys. D Appl. Phys. 51 455101Google Scholar

    [20]

    Goulding R H, Caughman J B O, Rapp J, et al. 2017 Fusion Sci. Technol. 72 588Google Scholar

    [21]

    Ivanov A A, Davydenko V I, Kotelnikov I A, et al. 2013 Fusion Sci. Technol. 63 217Google Scholar

    [22]

    Goulding R H, Biewer T M, Caughman J B O, et al. 2011 AIP Conference Proceedings for the 19th Topical Conference on Radio Frequency Power in Plasmas Rhode Island, June 1–3, 2011 p535

    [23]

    Goulding R H, Chen G, Meitner S, et al. 2009 AIP Conference Proceedings for the 18th Topical Conference on Radio Frequency Power in Plasmas Belgium, June 24–26, 2009 p667

    [24]

    Isayama S, Shinohara S, Hada T, et al. 2019 Phys. Plasmas 26 023517Google Scholar

    [25]

    Shinohara S 2002 J. Plasma Fusion Res. 78 5Google Scholar

    [26]

    Chen F F, Torreblanca H 2007 Plasma Sources Sci. Technol. 16 593Google Scholar

    [27]

    Tarey R D, Sahu B B, Ganguli A 2012 Phys. Plasmas 19 073520Google Scholar

    [28]

    Chen F F 1991 Plasma Phys. Controlled Fusion 33 339Google Scholar

    [29]

    Chen F F, Blackwell D D 1999 Phys. Rev. Lett. 82 2677Google Scholar

    [30]

    Blackwell D D, Chen F F 2001 Plasma Sources Sci. Technol. 10 226Google Scholar

    [31]

    Kline J L, Scime E E, Boivin R F, et al. 2002 Phys. Rev. Lett. 88 195002Google Scholar

    [32]

    Eom G S, Kim J, Choe W 2006 Phys. Plasmas 13 073505Google Scholar

    [33]

    Cho S 2020 Plasma Sources Sci. Technol. 29 095023Google Scholar

    [34]

    赵高, 熊玉卿, 马超, 刘忠伟, 陈强 2014 物理学报 63 235202Google Scholar

    Zhao G, Xiong Y Q, Ma C, Liu Z W, Chen Q 2014 Acta Phys. Sin. 63 235202Google Scholar

    [35]

    平兰兰, 张新军, 杨桦, 徐国盛, 苌磊, 吴东升, 吕虹, 郑长勇, 彭金花, 金海红, 何超, 甘桂华 2019 物理学报 68 205201Google Scholar

    Ping L L, Zhang X J, Yang H, Xu G S, Chang L, Wu D S, Lü H, Zheng C Y, Peng J H, Jin H H, He C, Gan G H 2019 Acta Phys. Sin. 68 205201Google Scholar

    [36]

    Guo X M, Scharer J, Mouzouris Y, et al. 1999 Phys. Plasmas 6 3400Google Scholar

    [37]

    Correyero Plaza S, Navarro J, Ahedo E 2016 52nd AIAA/SAE/ASEE Joint Propulsion Conference Salt Lake City, July 25–27, 2016 p5035

    [38]

    Swanson D G 1989 Plasma Waves (New York: Academic Press) p155

    [39]

    Huba J D 2016 NRL Plasma Formulary (Washington: Naval Research Laboratory) p34

    [40]

    Mouzouris Y, Scharer J E 1998 Phys. Plasmas 5 4253Google Scholar

    [41]

    Fried B D, Conte S D 2015 The Plasma Dispersion Function: The Hilbert Transform of the Gaussian (New York: Academic Press) p1

    [42]

    Sakawa Y, Kunimatsu H, Kikuchi H, et al. 2003 Phys. Rev. Lett. 90 105001Google Scholar

    [43]

    Shamrai K P, Taranov V B 1996 Plasma Sources Sci. Technol. 5 474Google Scholar

    [44]

    Chen F F, Arnush D 1997 Phys. Plasmas 4 3411Google Scholar

  • [1] 李文秋, 唐彦娜, 刘雅琳, 王刚. 电子温度各向异性对螺旋波m = 1角向模功率沉积特性的影响. 物理学报, 2024, 73(7): 075202. doi: 10.7498/aps.73.20231759
    [2] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性. 物理学报, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [3] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究. 物理学报, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [4] 李文秋, 赵斌, 王刚, 相东. 螺旋波等离子体中螺旋波与Trivelpiece-Gould波模式耦合及线性能量沉积特性参量分析. 物理学报, 2020, 69(11): 115201. doi: 10.7498/aps.69.20200062
    [5] 李文秋, 赵斌, 王刚. 电子温度对螺旋波等离子体中电磁模式能量沉积特性的影响. 物理学报, 2020, 69(21): 215201. doi: 10.7498/aps.69.20201018
    [6] 平兰兰, 张新军, 杨桦, 徐国盛, 苌磊, 吴东升, 吕虹, 郑长勇, 彭金花, 金海红, 何超, 甘桂华. 螺旋波等离子体原型实验装置中天线的优化设计与功率沉积. 物理学报, 2019, 68(20): 205201. doi: 10.7498/aps.68.20182107
    [7] 孙梅, 周士弘, 李整林. 基于矢量水听器的深海直达波区域声传播特性及其应用. 物理学报, 2016, 65(9): 094302. doi: 10.7498/aps.65.094302
    [8] 王丁, 张美根. 各向异性渗流条件下弹性波的传播特征. 物理学报, 2014, 63(6): 069101. doi: 10.7498/aps.63.069101
    [9] 万进, 田煜, 周铭, 张向军, 孟永钢. 载荷对壁虎刚毛束的摩擦各向异性特性影响的实验研究. 物理学报, 2012, 61(1): 016202. doi: 10.7498/aps.61.016202
    [10] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [11] 侯小娟, 云国宏, 白宇浩, 白那日苏, 周文平. 量子自旋波本征值及易轴型各向异性对其的影响. 物理学报, 2011, 60(5): 056805. doi: 10.7498/aps.60.056805
    [12] 孟繁义, 吴 群, 傅佳辉, 杨国辉. 各向异性超常媒质矩形波导的导波特性研究. 物理学报, 2008, 57(9): 5476-5484. doi: 10.7498/aps.57.5476
    [13] 孟繁义, 吴 群, 傅佳辉, 顾学迈, 李乐伟. 三维各向异性超常媒质交错结构的亚波长谐振特性研究. 物理学报, 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [14] 蔡 力, 韩小云, 温熙森. 长波条件下二维声子晶体中的弹性波传播及各向异性. 物理学报, 2008, 57(3): 1746-1752. doi: 10.7498/aps.57.1746
    [15] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究. 物理学报, 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [16] 翁紫梅, 陈 浩. 单离子各向异性影响下的一维铁磁链中的孤子. 物理学报, 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [17] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法. 物理学报, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [18] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁化等离子体JEC-FDTD算法. 物理学报, 2004, 53(3): 783-787. doi: 10.7498/aps.53.783
    [19] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁等离子体的辅助方程FDTD算法. 物理学报, 2004, 53(7): 2233-2236. doi: 10.7498/aps.53.2233
    [20] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜. 物理学报, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
计量
  • 文章访问数:  3492
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-26
  • 修回日期:  2022-12-23
  • 上网日期:  2022-12-29
  • 刊出日期:  2023-03-05

/

返回文章
返回