搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超宽带等离子体相对论微波噪声放大器的物理分析和数值模拟

杨温渊 董烨 孙会芳 杨郁林 董志伟

引用本文:
Citation:

超宽带等离子体相对论微波噪声放大器的物理分析和数值模拟

杨温渊, 董烨, 孙会芳, 杨郁林, 董志伟

Physical analysis and numerical simulations of ultra wideband plasma relativistic microwave noise amplifier

Yang Wen-Yuan, Dong Ye, Sun Hui-Fang, Yang Yu-Lin, Dong Zhi-Wei
PDF
HTML
导出引用
  • 利用全电磁粒子模拟方法对等离子体相对论微波噪声放大器(plasma relativistic microwave noise amplifier, PRNA)进行了物理分析和数值模拟. 首先对无耦合时的波束色散关系进行了模拟分析, 接着计算了微波线性增长率与带宽的变化规律, 为后续整体模拟时参数的选择提供了理论依据. 最后对PRNA进行了整体模拟, 验证了PRNA在带宽和可调谐性方面的输出优势. 当等离子体束密度为1.4×1019/m3, 电子束电压和电流分别为500 kV和2 kA, 外加磁场为2.0 T时, 模拟获得了功率约200 MW, 效率为20%的微波输出, 辐射场频谱范围约为7.0—9.0 GHz, 带宽达到了2 GHz, 输出模式为同轴TEM模. 模拟结果还表明: 等离子体束的密度np和厚度$ \Delta {r_{\text{p}}} $对束波色散关系影响较大, 随着np$ \Delta {r_{\text{p}}} $的增加, 输出微波频率呈明显上升趋势, 电子束电流和电压的变化对输出频率的影响相对较小, 等离子体束和电子束径向间距的变化则对输出频率基本没有影响. 研究结果可为器件的进一步的优化设计提供参考依据.
    The physical mechanism and output properties of the plasma relativistic microwave noise amplifier (PRNA) are studied numerically by using the all electromagnetic particle-in-cell (PIC) code. Firstly, the dispersion relation between the operating mode and the slow space charge wave of relativistic electron beam without coupling is simulated and analyzed. Simulation results show that both the plasma density np and radial thickness Δrp affect the dispersion characteristics markedly and their increasing can lead the frequency at the beam-wave resonant point to be enhanced. The beam voltage and current also affect the resonant frequency, but the effect is relatively slight. Secondly, variation of the linear growth rate and the bandwidth are then evaluated by using the linear theory. Calculations show that the PRNA has the virtue of wideband output. Its bandwidth can reach a GHz level. By adjusting the plasma parameters np and Δrp, the relativistic electron beam voltage and current, the operating frequency can be tuned over a wide frequency range. Therefore the PRNA also has virtue of fine frequency tunability. Based on the above calculation results, the whole PIC simulations of the PRNA are then carried out to verify the virtues of wideband microwave output and frequency tunability. The basic features of the field distributions of the operating in the evolution process and out coupling process are given. The bunching process and the energy release process of relativistic electron beam are also plotted. Simulations show that with a plasma density of 1.4×1019 /m3, beam voltage and current of 500 kV and 2 kA and applied magnetic field of 2.0 T, 200 MW output microwave with efficiency about 20% can be obtained. The frequency ranges from about 7.0 to 9.0 GHz, the band width reaches 2 GHz. And the output mode is the TEM mode of the coaxial waveguide. Both np and Δrp affect the dispersion relations markedly and the output frequency increases clearly with np and Δrp increasing. The influence of beam voltage and current on the output frequency are both relatively small and the gap distance between the plasma and electron beam has little effect on the output frequency. The research results will provide useful reference for further designing the PRNA.
      通信作者: 杨温渊, yang_wenyuan@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11875094)资助的课题.
      Corresponding author: Yang Wen-Yuan, yang_wenyuan@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11875094).
    [1]

    Kuzelev M V, Mukhametzyanov F Kh, Rabinovich M S, Rukhadze A A, Strelkov P S, Shkvarunets A G 1982 Sov. Phys. JETP 56 780

    [2]

    Kuzelev M V, Loza O T, Ponomarev A V, Rukhadze A A, Strelkov P S, Shkvarunets A G, Ulyanov D K 1996 Sov. Phys. JETP 82 1102

    [3]

    Bogdankevich L S, Kuzelev M V, Rukhadze A A 1981 Sov. Phys. Usp. 24 1

    [4]

    Kuzelev M V, Rukhadze A A 2000 Plasma Phys. Rep. 26 231Google Scholar

    [5]

    Carmel Y, Lou W R, Antonsen Jr T M, Rodgers J, Levush B, Destler W W, Granatstein V L 1992 Phys. Fluids B 4 2286Google Scholar

    [6]

    Shkvarunets A G, Kobayashi S, Weaver J, Carmel Y, Rodgers J, Antonsen Jr T M, Granatstein V L, Destler W W, Ogura K, Minami K 1996 Phys. Rev. E 53 2045Google Scholar

    [7]

    王宇, 陈再高, 雷奕安 2013 物理学报 62 125204Google Scholar

    Wang Y, Chen Z G, Lei Y A 2013 Acta Phys. Sin. 62 125204Google Scholar

    [8]

    Ponomarev A V, Strelkov P S, Shkvarunets A G 1998 Plasma Phys. Rep. 24 48

    [9]

    Strelkov P S, Ul’yanov D K 2000 Plasma Phys. Rep. 26 303Google Scholar

    [10]

    Barker R J, Schamiloglu E 2001 High-Power Microwaves Sources and Technologies (New York: Institute of Electrical and Electronic Engineer, Inc.) pp25–27

    [11]

    Prather W D, Baum C E, Torres R J, Sabath F, Nitsch D 2004 IEEE Trans. Electromagn. Compat. 46 335Google Scholar

    [12]

    黄裕年, 任国光 2002 微波学报 18 90Google Scholar

    Huan Y N, Ren G G 2002 J. Microwaves 18 90Google Scholar

    [13]

    Strelkov P S, Tarakanov V P, Mikh D E D, Ivanov I E, Shumeiko D V 2019 Plasma Phys. Rep. 45 345Google Scholar

    [14]

    Ernyleva S E, Litvin V O, Loza O T, Bogdankevich I L 2013 Prob. At. Sci. Technol. 2013 3

    [15]

    Ernyleva S E, Litvin V O, Loza O T, Bogdankevich I L 2014 Tech. Phys. 59 1228Google Scholar

    [16]

    Ernyleva S E, Loza O T 2017 Phys. Wave Phenom. 25 56Google Scholar

    [17]

    Ulyanov D K, Bogdankevich I L, Ernyleva S E, Andreev S E 2019 Plasma Phys. Rep. 45 980Google Scholar

    [18]

    Kartashov I N, Kuzelev M V 2021 Plasma Phys. Rep. 47 548Google Scholar

    [19]

    Buleyko A B, Ponomarev A V, Loza O T, Ulyanov D K, Andreev S E 2021 Phys. Plasmas 28 023303Google Scholar

    [20]

    Buleyko A B, Ponomarev A V, Loza O T, Ulyanov D K, Sharypov K A, Shunailov S A, Yalandin M I 2021 Phys. Plasmas 28 023304Google Scholar

    [21]

    Kuzelev M V, Loza O T, Rukhadze A A, Strelkov P S, Shkvarunets A G 2001 Plasma Phys. Rep. 27 669Google Scholar

  • 图 1  PRNA结构示意图, rz截面. 1, 金属波导; 2, 相对论电子束; 3, 等离子体束; 4, 粒子收集极

    Fig. 1.  Schematic drawing of the PRNA in the rz cross section, here 1 is the metal waveguide, 2 is the relativistic electron beam, 3 is the plasma beam and 4 is the particle collector.

    图 2  互作用区不同等离子体密度对应的P-TM01模与慢空间电荷波的色散关系图

    Fig. 2.  Dispersion relations between the P-TM01 modes at different plasma density and the slow space charge wave in the beam-wave interaction region.

    图 4  互作用区P-TM01模与不同电压和电流的慢空间电荷波的色散关系图

    Fig. 4.  Dispersion relations between the P-TM01 mode and slow space charge waves with different voltage and current.

    图 3  不同等离子体厚度对应的P-TM01模与慢空间电荷波的色散关系图

    Fig. 3.  Dispersion relations between the P-TM01 modes at different plasma radial thickness and the slow space charge wave.

    图 5  不同等离子体密度对应的线性增长率随频率的变化曲线

    Fig. 5.  Variations of the linear growth rate with frequency for different plasma beam density.

    图 8  不同等离子体束和电子束径向距离对应的线性增长率随频率的变化曲线

    Fig. 8.  Variations of the linear growth rate with frequency for different plasma-beam radial gap.

    图 6  不同等离子体厚度对应的线性增长率随频率的变化曲线

    Fig. 6.  Variations of the linear growth rate with frequency for different plasma radial thickness.

    图 7  具有不同电压和电流的相对论电子束对应的线性增长率随频率的变化曲线

    Fig. 7.  Variations of the linear growth rate with frequency for different electron beam voltage and current.

    图 9  不同时刻等离子体电子(红色)和离子(蓝色)、电子束电子(橙色)在实空间中的分布图 (a) t = 1.689 ns; (b) t = 2.295 ns

    Fig. 9.  Real space plot of the plasma electrons (red) and ions (blue), and beam electrons (orange) at different times: (a) t = 1.689 ns; (b) t = 2.295 ns.

    图 10  不同时刻等离子体电子(红色)和离子(蓝色)、电子束电子(橙色)在相空间中的分布图 (a) t = 1.689 ns; (b) t = 2.295 ns

    Fig. 10.  Phase space plot of the plasma electrons (red) and ions (blue), and beam electrons (orange) at different times: (a) t = 1.689 ns; (b) t = 2.295 ns.

    图 11  不同时刻互作用区纵向截面轴向电场的等高图 (a) t = 1.689 ns; (b) t = 1.916 ns

    Fig. 11.  Contour plot of the electric field Ez in the interaction region at different times: (a) t = 1.689 ns; (b) t = 1.916 ns.

    图 12  不同时刻互作用区纵向截面径向电场的等高图 (a) t = 1.689 ns; (b) t = 1.916 ns

    Fig. 12.  Contour plot of the electric field Er in the interaction region at different times: (a) t = 1.689 ns; (b) t = 1.916 ns.

    图 13  不同时刻输出区纵向截面径向电场的等高图 (a) t = 2.295 ns; (b) t = 2.975 ns

    Fig. 13.  Contour plot of the electric field Er in the output region at different times: (a) t = 2.295 ns; (b) t = 2.975 ns.

    图 14  瞬时输出功率随时间的变化曲线(a)及其FFT变换图(b)

    Fig. 14.  Time plots of (a) the instantaneous and (b) the corresponding Fourier transform.

    图 15  周期平均输出功率随时间的变化曲线

    Fig. 15.  Time plots of the periodic-average output power.

    图 16  输出区辐射场Er (a) 随时间的变化曲线及其(b) FFT变换图

    Fig. 16.  Variations of Er (a) with time and (b) the corresponding Fourier transform in the output region.

    图 17  输出微波频谱随等离子体密度的变化

    Fig. 17.  Variations of the output frequency spectrum with different plasma density.

    图 18  输出效率随等离子体密度的变化

    Fig. 18.  Variations of the output efficiency with different plasma density.

    图 19  微波频谱随等离子体束厚度的变化

    Fig. 19.  Variations of the output frequency spectrum with different plasma radial width.

    图 20  微波频谱随电子束电压的变化

    Fig. 20.  Variations of the output frequency spectrum with different beam voltage.

    图 21  输出微波带宽随电子束电流的变化

    Fig. 21.  Variations of the output frequency spectrum with different beam current.

    图 22  输出效率随等离子体束和电子束径向间距的变化

    Fig. 22.  Variations of the output efficiency with different plasma and electron beam gaps.

  • [1]

    Kuzelev M V, Mukhametzyanov F Kh, Rabinovich M S, Rukhadze A A, Strelkov P S, Shkvarunets A G 1982 Sov. Phys. JETP 56 780

    [2]

    Kuzelev M V, Loza O T, Ponomarev A V, Rukhadze A A, Strelkov P S, Shkvarunets A G, Ulyanov D K 1996 Sov. Phys. JETP 82 1102

    [3]

    Bogdankevich L S, Kuzelev M V, Rukhadze A A 1981 Sov. Phys. Usp. 24 1

    [4]

    Kuzelev M V, Rukhadze A A 2000 Plasma Phys. Rep. 26 231Google Scholar

    [5]

    Carmel Y, Lou W R, Antonsen Jr T M, Rodgers J, Levush B, Destler W W, Granatstein V L 1992 Phys. Fluids B 4 2286Google Scholar

    [6]

    Shkvarunets A G, Kobayashi S, Weaver J, Carmel Y, Rodgers J, Antonsen Jr T M, Granatstein V L, Destler W W, Ogura K, Minami K 1996 Phys. Rev. E 53 2045Google Scholar

    [7]

    王宇, 陈再高, 雷奕安 2013 物理学报 62 125204Google Scholar

    Wang Y, Chen Z G, Lei Y A 2013 Acta Phys. Sin. 62 125204Google Scholar

    [8]

    Ponomarev A V, Strelkov P S, Shkvarunets A G 1998 Plasma Phys. Rep. 24 48

    [9]

    Strelkov P S, Ul’yanov D K 2000 Plasma Phys. Rep. 26 303Google Scholar

    [10]

    Barker R J, Schamiloglu E 2001 High-Power Microwaves Sources and Technologies (New York: Institute of Electrical and Electronic Engineer, Inc.) pp25–27

    [11]

    Prather W D, Baum C E, Torres R J, Sabath F, Nitsch D 2004 IEEE Trans. Electromagn. Compat. 46 335Google Scholar

    [12]

    黄裕年, 任国光 2002 微波学报 18 90Google Scholar

    Huan Y N, Ren G G 2002 J. Microwaves 18 90Google Scholar

    [13]

    Strelkov P S, Tarakanov V P, Mikh D E D, Ivanov I E, Shumeiko D V 2019 Plasma Phys. Rep. 45 345Google Scholar

    [14]

    Ernyleva S E, Litvin V O, Loza O T, Bogdankevich I L 2013 Prob. At. Sci. Technol. 2013 3

    [15]

    Ernyleva S E, Litvin V O, Loza O T, Bogdankevich I L 2014 Tech. Phys. 59 1228Google Scholar

    [16]

    Ernyleva S E, Loza O T 2017 Phys. Wave Phenom. 25 56Google Scholar

    [17]

    Ulyanov D K, Bogdankevich I L, Ernyleva S E, Andreev S E 2019 Plasma Phys. Rep. 45 980Google Scholar

    [18]

    Kartashov I N, Kuzelev M V 2021 Plasma Phys. Rep. 47 548Google Scholar

    [19]

    Buleyko A B, Ponomarev A V, Loza O T, Ulyanov D K, Andreev S E 2021 Phys. Plasmas 28 023303Google Scholar

    [20]

    Buleyko A B, Ponomarev A V, Loza O T, Ulyanov D K, Sharypov K A, Shunailov S A, Yalandin M I 2021 Phys. Plasmas 28 023304Google Scholar

    [21]

    Kuzelev M V, Loza O T, Rukhadze A A, Strelkov P S, Shkvarunets A G 2001 Plasma Phys. Rep. 27 669Google Scholar

  • [1] 李文秋, 唐彦娜, 刘雅琳, 马维聪, 王刚. 各向同性等离子体覆盖金属天线辐射增强现象. 物理学报, 2023, 72(13): 135202. doi: 10.7498/aps.72.20230101
    [2] 王宬朕, 董全力, 刘苹, 吴奕莹, 盛政明, 张杰. 激光等离子体中高能电子各向异性压强的粒子模拟. 物理学报, 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [3] 李文秋, 王刚, 苏小保. 非磁化冷等离子体柱中的模式辐射特性分析. 物理学报, 2017, 66(5): 055201. doi: 10.7498/aps.66.055201
    [4] 王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东. 基于频域电磁场的微波器件微放电阈值快速粒子模拟. 物理学报, 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [5] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [6] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟. 物理学报, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [7] 陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉. 基于粒子模拟和并行遗传算法的高功率微波源优化设计. 物理学报, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [8] 王宇, 陈再高, 雷奕安. 等离子体填充0.14 THz相对论返波管模拟. 物理学报, 2013, 62(12): 125204. doi: 10.7498/aps.62.125204
    [9] 刘三秋, 国洪梅. 极端相对论快电子分布等离子体中横振荡色散关系. 物理学报, 2011, 60(5): 055203. doi: 10.7498/aps.60.055203
    [10] 刘炳灿, 逯志欣, 于丽. 金属和Kerr非线性介质界面上表面等离子体激元的色散关系. 物理学报, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [11] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟. 物理学报, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [12] 季沛勇, 鲁楠, 祝俊. 量子等离子体中波的色散关系以及朗道阻尼. 物理学报, 2009, 58(11): 7473-7478. doi: 10.7498/aps.58.7473
    [13] 赵国伟, 徐跃民, 陈 诚. 等离子体天线色散关系和辐射场数值计算. 物理学报, 2007, 56(9): 5298-5303. doi: 10.7498/aps.56.5298
    [14] 张秋菊, 武慧春, 王兴海, 盛政明, 张 杰. 超短激光脉冲在等离子体中的分裂以及类孤子结构的形成. 物理学报, 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [15] 巩华荣, 宫玉彬, 魏彦玉, 唐昌建, 薛东海, 王文祥. 考虑到束-波相互作用的速调管离子噪声二维模拟. 物理学报, 2006, 55(10): 5368-5374. doi: 10.7498/aps.55.5368
    [16] 卓红斌, 胡庆丰, 刘 杰, 迟利华, 张文勇. 超短脉冲激光与稀薄等离子体相互作用的准静态粒子模拟研究. 物理学报, 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [17] 宫玉彬, 张 章, 魏彦玉, 孟凡宝, 范植开, 王文祥. 高功率微波器件中脉冲缩短现象的粒子模拟. 物理学报, 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
    [18] 张秋菊, 盛政明, 张 杰. 周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子. 物理学报, 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [19] 谢鸿全, 刘濮鲲, 李承跃, 鄢 扬, 刘盛纲. 等离子体填充波纹波导中低频模式特性分析. 物理学报, 2004, 53(9): 3114-3118. doi: 10.7498/aps.53.3114
    [20] 简广德, 董家齐. 环形等离子体中电子温度梯度不稳定性的粒子模拟. 物理学报, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
计量
  • 文章访问数:  3620
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-28
  • 修回日期:  2022-12-04
  • 上网日期:  2022-12-21
  • 刊出日期:  2023-03-05

/

返回文章
返回