搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于社团结构和活跃性驱动的双层网络传播动力学

沈力峰 王建波 杜占玮 许小可

引用本文:
Citation:

基于社团结构和活跃性驱动的双层网络传播动力学

沈力峰, 王建波, 杜占玮, 许小可

Bilayer network spreading dynamics driven by community structure and activity

Shen Li-Feng, Wang Jian-Bo, Du Zhan-Wei, Xu Xiao-Ke
PDF
HTML
导出引用
  • 现实世界中的流行病爆发往往伴随着急剧的信息扩散, 扩散的信息会改变个体行为模式, 反过来又影响流行病传播. 近年来研究发现社交网络中的社团结构对流行病传播也有重要影响. 因此, 考虑结合上述因素来构建一种新的双层网络, 采用活跃性驱动模型生成时变的线上信息接触层网络和线下物理接触层网络, 再利用个体在线上接触层的信息扩散来影响线下物理接触层的流行病传播动态, 以个体流动性因素来控制社团结构特性. 为得到整个网络的传播动力学方程并有效分析网络的传播阈值, 对微观马尔可夫链(micro-scopic Markov chain, MMC)方法进行改进并将其扩展到时变网络. 使用蒙特卡罗(Monte Carlo, MC)模拟进行了实验验证, 显示出所提方法对流行病爆发阈值的预测具有高准确性. 结果表明个体流动性对流行病爆发阈值没有影响, 但会影响每个社团的最终感染人数, 而线上接触层的个体接触能力越大和线下接触层的个体接触能力越小则可以有效抑制流行病传播. 这些发现可对有效防控现实世界中的流行病传播起到重要的参考和借鉴作用.
    Epidemic outbreaks in the real world are often accompanied by rapid information diffusion, which will change individual behavior patterns and affect the spread of epidemics. The community phenomenon in human society will also have an important influence on the spread of epidemics. The above factors to construct a new bilayer network are considered in this work. The activity-driven model is used to generate time-varying online information contact layer network and offline physical contact layer network. The information diffusion of individual online contact layer is used to affect the epidemic spreading dynamics of offline physical contact layer, and the individual mobility factor is used to control the community structure characteristics. In order to obtain the spreading dynamic equation of the whole network and analyze the spreading threshold of the network effectively, the microscopic Markov chain (MMC) approach is improved and extended to time-varying networks. Experimental verification of Monte Carlo simulations shows that the proposed method is highly accurate in predicting epidemic outbreak thresholds. The results show that individual mobility has no effect on the epidemic outbreak threshold, but it will affect the final number of infections in each community. The greater the individual contact capability of the online contact layer, the smaller the individual contact capability of the offline contact layer that can effectively suppress the epidemic spread. The above findings can present an important reference for effectively preventing and controlling the epidemic transmission in the real world.
      通信作者: 王建波, phyjbw@gmail.com ; 许小可, xuxiaoke@foxmail.com
    • 基金项目: 国家自然科学基金(批准号: 62173065)资助的课题.
      Corresponding author: Wang Jian-Bo, phyjbw@gmail.com ; Xu Xiao-Ke, xuxiaoke@foxmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62173065).
    [1]

    李翔, 李聪, 王建波 2020 复杂网络传播理论-流行的隐秩序(上卷) (北京: 高等教育出版社) 第10页

    Li X, Li C, Wang J B 2020 Theory of Spreading on Complex Networks: Hidden Rules of Epidemics (Vol. 1) (Beijing: Higher Education Press) p10 (in Chinese)

    [2]

    Garten R J, Davis C T, Russell C A, et al. 2009 Science 325 197Google Scholar

    [3]

    Machens A, Gesualdo F, Rizzo C, Tozzi A E, Barrat A, Cattuto C 2013 BMC Infect. Dis. 13 185Google Scholar

    [4]

    Park B J, Wannemuehler K A, Marston B J, Govender N, Pappas P G, Chiller T M 2009 AIDS 23 525Google Scholar

    [5]

    Schwarzkopf Y, Rákos A, Mukamel D 2010 Phys. Rev. E 82 036112Google Scholar

    [6]

    Anderson R M, Anderson B, May R M 1992 Infectious Diseases of Humans: Dynamics and Control (Oxford: Oxford University Press) p127

    [7]

    Hethcote H W 2000 SIAM Rev. 42 599Google Scholar

    [8]

    Grabowski A, Kosiński R A 2004 Phys. Rev. E 70 031908Google Scholar

    [9]

    Yang H, Gu C G, Tang M, Cai S M, Lai Y C 2019 Appl. Math. Model. 75 806Google Scholar

    [10]

    Granell C, Gómez S, Arenas A 2013 Phys. Rev. Lett. 111 128701Google Scholar

    [11]

    Davis J T, Perra N, Zhang Q, Moreno Y, Vespignani A 2020 Nat. Phys. 16 590Google Scholar

    [12]

    Wang B, Gou M, Han Y 2021 Nonlinear Dyn. 105 3835Google Scholar

    [13]

    Zhang Q P, Zhong L, Gao S Y, Li X M 2018 IEEE Trans. Cybern. 48 3411Google Scholar

    [14]

    Salehi M, Sharma R, Marzolla M, Magnani M, Siyari P, Montesi D 2015 IEEE Trans. Netw. Sci. Eng. 2 65Google Scholar

    [15]

    Wang B H, Chen W S, Wang J C, Zhang B, Zhang Z Q, Qiu X G 2019 IEEE Trans. Cybern. 49 4308Google Scholar

    [16]

    孙皓宸, 刘肖凡, 许小可, 吴晔 2020 物理学报 69 240201Google Scholar

    Sun H C, Liu X F, Xu X K, Wu Y 2020 Acta Phys. Sin. 69 240201Google Scholar

    [17]

    Wang H, Zhang H F, Zhu P C, Ma C 2022 Chaos 32 083110Google Scholar

    [18]

    Wang W, Liu Q H, Cai S M, Tang M, Braunstein L A, Stanley H E 2016 Sci. Rep. 6 29259Google Scholar

    [19]

    Pan Y H, Yan Z J 2018 Physica A 491 45Google Scholar

    [20]

    Funk S, Gilad E, Watkins C, Jansen V A 2009 Proc. Natl. Acad. Sci. USA 106 6872Google Scholar

    [21]

    Guo Q T, Lei Y J, Jiang X, Ma Y F, Huo G Y, Zheng Z M 2016 Chaos 26 043110

    [22]

    Yang B, Shang K K, Small M, Chao N P 2022 National Science Open 62 254491591Google Scholar

    [23]

    Fortunato S 2010 Phys. Rep. 486 75Google Scholar

    [24]

    常振超, 陈鸿昶, 刘阳, 于洪涛, 黄瑞阳 2015 物理学报 64 218901Google Scholar

    Chang Z C, Chen H C, Liu Y, Yu H T, Huang R Y 2015 Acta Phys. Sin. 64 218901Google Scholar

    [25]

    Huang H, Chen Y, Ma Y 2021 Appl. Math. Comput. 388 125536

    [26]

    Digital 2022: Another Year of Bumper Growth < a href="https://wearesocial.com/cn/blog/2022/01/digital-2022-another-year-of-bumper-growth/">https://wearesocial.com/cn/blog/2022/01/digital-2022-another-year-of-bumper-growth/ [2022-11-17]

    [27]

    Aleta A, Martín-Corral D, Pastore Y Piontti A, et al. 2020 Nat. Hum. Behav. 4 964Google Scholar

    [28]

    Metcalf C J E, Morris D H, Park S W 2020 Science 369 368Google Scholar

    [29]

    Perra N, Gonçalves B 2012 Sci. Rep. 2 469Google Scholar

    [30]

    Mossong J, Hens N, Jit M, et al. 2008 PLOS Med. 5 e74Google Scholar

  • 图 1  具有社团结构的信息-流行病共演化模型

    Fig. 1.  Information-epidemic co-evolutionary model with community structure.

    图 2  状态为US, AI和AS的概率转移树

    Fig. 2.  Transition probability trees for the states US, AI, and AS, respectively.

    图 3  不同的信息扩散率下MC模拟和理论阈值的对比

    Fig. 3.  Comparison of Monte Carlo simulation and theoretical thresholds for different information diffusion rates.

    图 4  最终感染规模热力图 (a) MC模拟结果; (b) MMC方法结果

    Fig. 4.  Final infection scale heat map: (a) MC simulation results; (b) MMC approach results.

    图 5  (a)—(c) 个体接触能力在不同的$\lambda $下对流行病爆发阈值的影响; (d)—(f)线上信息接触层接触能力在不同的$\lambda $下对流行病爆发阈值影响的波动率; (g)—(i)线下物理接触层接触能力在不同的$\lambda $下对流行病爆发阈值影响的波动率

    Fig. 5.  (a)–(c) Influence of individual contact ability on epidemic outbreak threshold under different conditions; (d)–(f) volatility of the impact on epidemic outbreak thresholds under different virtual network layer contact capabilities; (g)–(i) volatility of impact on epidemic outbreak thresholds for different physical contact layer contact capacities.

    图 6  (a)自我保护率对流行病爆发阈值的影响; (b)自我保护率对稳态感染个体比例的影响

    Fig. 6.  (a) Impact of self-protection rate on epidemic outbreak threshold; (b) effect of self-protection rate on the proportion of individuals with stable infection.

    图 7  稳态感染个体比例${\rho ^{\text{I}}}$作为流行病传染率$\beta $和参数h的函数 (a)社团1的MC结果; (b)社团2的MC结果

    Fig. 7.  Steady-state proportion of infected individuals as a function of the epidemic transmission rate and the parameter h: (a) Monte Carlo results for community 1; (b) Monte Carlo results for community 2.

    表 1  符号的含义

    Table 1.  Description of all symbols

    符号描述
    $N$网络中的个体数
    $t$时间步
    ${k_{\text{v}}}$线上信息接触层中的活跃个体在单位时间步长中产生的连边数
    ${k_{\text{p}}}$线下物理接触层中的活跃个体在单位时间步长中产生的连边数
    $a_{l, i}^{\text{V}}$线上信息接触层中个体i 在$l$社团的活跃性类别
    $a_{l, i}^{\text{P}}$线下物理接触层中个体i 在$l$社团的活跃性类别
    $ \left\langle {{k_{\text{v}}}} \right\rangle $线上信息接触层的平均度
    $\left\langle {{k_{\text{p}}}} \right\rangle $线下物理接触层的平均度
    $\lambda $信息扩散率
    $\delta $信息遗忘率
    $\beta $流行病传染率
    $\mu $流行病恢复率
    ${\beta ^{\text{U}}}$状态为U的个体的流行病传染率
    ${\beta ^{\text{A}}}$状态为A的个体的流行病传染率
    $\sigma $捕捉${\beta ^{\text{U}}}$和${\beta ^{\text{A}}}$之间差异的参数, 又称为自我保护率: ${\beta ^{\text{A}}} = \sigma {\beta ^{\text{U}}}$
    $h$个体流动率
    $P_{l, i}^X$个体i 在$l$社团处于状态X的概率
    ${r_{l, i}}\left( t \right)$处于$l$社团的个体i 在时间$t$内没有被任何邻居告知的概率
    $q_{l, i}^{\text{A}}\left( t \right)$处于$l$社团且状态为A的个体i 在时间$t$内没有被任何邻居感染的概率
    $q_{l, i}^{\text{U}}\left( t \right)$处于$l$社团且状态为U的个体i在时间$t$内没有被任何邻居感染的概率
    下载: 导出CSV
  • [1]

    李翔, 李聪, 王建波 2020 复杂网络传播理论-流行的隐秩序(上卷) (北京: 高等教育出版社) 第10页

    Li X, Li C, Wang J B 2020 Theory of Spreading on Complex Networks: Hidden Rules of Epidemics (Vol. 1) (Beijing: Higher Education Press) p10 (in Chinese)

    [2]

    Garten R J, Davis C T, Russell C A, et al. 2009 Science 325 197Google Scholar

    [3]

    Machens A, Gesualdo F, Rizzo C, Tozzi A E, Barrat A, Cattuto C 2013 BMC Infect. Dis. 13 185Google Scholar

    [4]

    Park B J, Wannemuehler K A, Marston B J, Govender N, Pappas P G, Chiller T M 2009 AIDS 23 525Google Scholar

    [5]

    Schwarzkopf Y, Rákos A, Mukamel D 2010 Phys. Rev. E 82 036112Google Scholar

    [6]

    Anderson R M, Anderson B, May R M 1992 Infectious Diseases of Humans: Dynamics and Control (Oxford: Oxford University Press) p127

    [7]

    Hethcote H W 2000 SIAM Rev. 42 599Google Scholar

    [8]

    Grabowski A, Kosiński R A 2004 Phys. Rev. E 70 031908Google Scholar

    [9]

    Yang H, Gu C G, Tang M, Cai S M, Lai Y C 2019 Appl. Math. Model. 75 806Google Scholar

    [10]

    Granell C, Gómez S, Arenas A 2013 Phys. Rev. Lett. 111 128701Google Scholar

    [11]

    Davis J T, Perra N, Zhang Q, Moreno Y, Vespignani A 2020 Nat. Phys. 16 590Google Scholar

    [12]

    Wang B, Gou M, Han Y 2021 Nonlinear Dyn. 105 3835Google Scholar

    [13]

    Zhang Q P, Zhong L, Gao S Y, Li X M 2018 IEEE Trans. Cybern. 48 3411Google Scholar

    [14]

    Salehi M, Sharma R, Marzolla M, Magnani M, Siyari P, Montesi D 2015 IEEE Trans. Netw. Sci. Eng. 2 65Google Scholar

    [15]

    Wang B H, Chen W S, Wang J C, Zhang B, Zhang Z Q, Qiu X G 2019 IEEE Trans. Cybern. 49 4308Google Scholar

    [16]

    孙皓宸, 刘肖凡, 许小可, 吴晔 2020 物理学报 69 240201Google Scholar

    Sun H C, Liu X F, Xu X K, Wu Y 2020 Acta Phys. Sin. 69 240201Google Scholar

    [17]

    Wang H, Zhang H F, Zhu P C, Ma C 2022 Chaos 32 083110Google Scholar

    [18]

    Wang W, Liu Q H, Cai S M, Tang M, Braunstein L A, Stanley H E 2016 Sci. Rep. 6 29259Google Scholar

    [19]

    Pan Y H, Yan Z J 2018 Physica A 491 45Google Scholar

    [20]

    Funk S, Gilad E, Watkins C, Jansen V A 2009 Proc. Natl. Acad. Sci. USA 106 6872Google Scholar

    [21]

    Guo Q T, Lei Y J, Jiang X, Ma Y F, Huo G Y, Zheng Z M 2016 Chaos 26 043110

    [22]

    Yang B, Shang K K, Small M, Chao N P 2022 National Science Open 62 254491591Google Scholar

    [23]

    Fortunato S 2010 Phys. Rep. 486 75Google Scholar

    [24]

    常振超, 陈鸿昶, 刘阳, 于洪涛, 黄瑞阳 2015 物理学报 64 218901Google Scholar

    Chang Z C, Chen H C, Liu Y, Yu H T, Huang R Y 2015 Acta Phys. Sin. 64 218901Google Scholar

    [25]

    Huang H, Chen Y, Ma Y 2021 Appl. Math. Comput. 388 125536

    [26]

    Digital 2022: Another Year of Bumper Growth < a href="https://wearesocial.com/cn/blog/2022/01/digital-2022-another-year-of-bumper-growth/">https://wearesocial.com/cn/blog/2022/01/digital-2022-another-year-of-bumper-growth/ [2022-11-17]

    [27]

    Aleta A, Martín-Corral D, Pastore Y Piontti A, et al. 2020 Nat. Hum. Behav. 4 964Google Scholar

    [28]

    Metcalf C J E, Morris D H, Park S W 2020 Science 369 368Google Scholar

    [29]

    Perra N, Gonçalves B 2012 Sci. Rep. 2 469Google Scholar

    [30]

    Mossong J, Hens N, Jit M, et al. 2008 PLOS Med. 5 e74Google Scholar

  • [1] 高彦丽, 徐维南, 周杰, 陈世明. 二元双层耦合网络渗流行为分析. 物理学报, 2024, 73(16): 168901. doi: 10.7498/aps.73.20240454
    [2] 李盈科, 赵时, 楼一均, 高道舟, 杨琳, 何岱海. 新型冠状病毒肺炎的流行病学参数与模型. 物理学报, 2020, 69(9): 090202. doi: 10.7498/aps.69.20200389
    [3] 梁潇, 钱志鸿, 田洪亮, 王雪. 基于马尔可夫决策模型的异构无线网络切换选择算法. 物理学报, 2016, 65(23): 236402. doi: 10.7498/aps.65.236402
    [4] 苏晓萍, 宋玉蓉. 利用邻域“结构洞”寻找社会网络中最具影响力节点. 物理学报, 2015, 64(2): 020101. doi: 10.7498/aps.64.020101
    [5] 尹文也, 何伟基, 顾国华, 陈钱. 模拟回火马尔可夫链蒙特卡罗全波形分析方法. 物理学报, 2014, 63(16): 164205. doi: 10.7498/aps.63.164205
    [6] 王兴元, 赵仲祥. 基于节点间依赖度的社团结构划分方法. 物理学报, 2014, 63(17): 178901. doi: 10.7498/aps.63.178901
    [7] 丁益民, 丁卓, 杨昌平. 基于社团结构的城市地铁网络模型研究. 物理学报, 2013, 62(9): 098901. doi: 10.7498/aps.62.098901
    [8] 李睿琪, 唐明, 许伯铭. 多关系网络上的流行病传播动力学研究. 物理学报, 2013, 62(16): 168903. doi: 10.7498/aps.62.168903
    [9] 高忠科, 金宁德, 杨丹, 翟路生, 杜萌. 多元时间序列复杂网络流型动力学分析. 物理学报, 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [10] 袁超, 柴毅. 基于簇相似度的网络社团结构探测算法. 物理学报, 2012, 61(21): 218901. doi: 10.7498/aps.61.218901
    [11] 张聪, 沈惠璋, 李峰, 杨何群. 复杂网络中社团结构发现的多分辨率密度模块度. 物理学报, 2012, 61(14): 148902. doi: 10.7498/aps.61.148902
    [12] 狄根虎, 许勇, 徐伟, 顾仁财. 一类复杂流行病学模型的混沌研究. 物理学报, 2011, 60(2): 020504. doi: 10.7498/aps.60.020504
    [13] 邵斐, 蒋国平. 基于社团结构的负载传输优化策略研究. 物理学报, 2011, 60(7): 078902. doi: 10.7498/aps.60.078902
    [14] 吕翎, 邹家蕊, 杨明, 孟乐, 郭丽, 柴元. 大规模富社团网络的时空混沌同步. 物理学报, 2010, 59(10): 6864-6870. doi: 10.7498/aps.59.6864
    [15] 沈毅, 徐焕良. 加权网络权重自相似评判函数及其社团结构检测. 物理学报, 2010, 59(9): 6022-6028. doi: 10.7498/aps.59.6022
    [16] 王高峡, 沈轶. 网络的模块矩阵及其社团结构指标. 物理学报, 2010, 59(2): 842-850. doi: 10.7498/aps.59.842
    [17] 郑力明, 刘颂豪, 王发强. 非马尔可夫环境下原子的几何相位演化. 物理学报, 2009, 58(4): 2430-2434. doi: 10.7498/aps.58.2430
    [18] 高忠科, 金宁德. 两相流流型复杂网络社团结构及其统计特性. 物理学报, 2008, 57(11): 6909-6920. doi: 10.7498/aps.57.6909
    [19] 陈 波, 夏庆中, V. T. Lebedev. 富勒烯-PVP聚合物链团结构的中子小角散射实验研究. 物理学报, 2005, 54(6): 2821-2825. doi: 10.7498/aps.54.2821
    [20] 钟玲, 翁甲强. 确定动力学流行病模型阈值的一种方法. 物理学报, 2000, 49(4): 626-630. doi: 10.7498/aps.49.626
计量
  • 文章访问数:  5885
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-18
  • 修回日期:  2023-01-04
  • 上网日期:  2023-01-07
  • 刊出日期:  2023-03-20

/

返回文章
返回