-
为了获得性能更为稳定的ZnO压敏电阻, 研究了含有Ga掺杂的ZnO压敏电阻的稳定特性, 对所获得的实验样品的微观结构和电气特性进行了电子显微镜扫描测试、电压-电流非线性特性测试、电容-电压特性测试、X-射线衍射谱测试、能谱扫描测试、介质损耗测试及交流加速老化测试. 实验结果表明, 随着Ga掺杂量的进一步增加, Ga离子占据了ZnO晶格上的空位, 增加了界面态密度, 提高了肖特基势垒高度, 一方面降低了 ZnO压敏电阻的泄漏电流密度, 另一方面抑制了耗尽层中自由电子的迁移, 提高了ZnO压敏电阻在高荷电率环境下的稳定特性. Al离子固溶到ZnO晶格当中, 产生大量的自由电子, 降低了ZnO晶粒的电阻率, 从而有效降低了ZnO压敏电阻在通过大电流时的残压比. 当Ga的掺杂摩尔分数达到0.6%时, 泄漏电流密度为0.84 μA/cm2, 残压比为1.97, 非线性系数为66, 其肖特基势垒高度为1.81 eV. 在115 ℃环境下, 对试验样品施加87% E1 mA, 89% E1 mA和91% E1 mA的交流加速老化电压, 老化时间为1000 h, 老化系数分别为0.394, 0.437和0.550. 此研究将有助于进一步提高ZnO避雷器的保护水平, 实现深度限制电网过电压, 提高电力系统的安全稳定性.The insulation level of power equipment in power system is based on the overvoltage protection level of metal oxide arrester represented by zinc oxide valve blade. Owing to its superior nonlinear voltage current characteristics and surge energy absorption capacity, ZnO varistor is widely used as the core component of power system arrester. The electrical characteristics of ZnO varistors are determined by their complex microstructures and grain boundary characteristics. Therefore, to further improve the insulation level of power grid equipment, doping is required to further improve the grain boundary characteristics of ZnO varistors. In order to obtain more stable ZnO varistors, the stability characteristics of Ga doped ZnO varistors are investigated. The microstructural and electrical characteristics of the obtained experimental samples are tested by scanning electron microscope, voltage current nonlinear characteristics, capacitance voltage characteristics, X-ray diffraction spectrum, energy spectrum scanning, dielectric loss, and AC acceleration aging. The experimental results show that with the further increase of gallium doping, gallium ions occupy the vacancies on the zinc oxide lattice, increasing the interface state density, and improving the Schottky barrier height. On the one hand, the leakage current density of ZnO varistor is reduced, on the other hand, the migration of free electrons in the depletion layer is suppressed, and the stability of ZnO varistor in the high charge rate environment is improved. Aluminum ions are dissolved into the ZnO lattice to generate a large number of free electrons, thereby reducing the resistivity of ZnO grains, which can effectively reduce the residual voltage ratio of ZnO varistor when large current passes through it. When the doping amount of Ga reaches 0.6%, the leakage current is 0.84 μA/cm2, the residual voltage ratio is 1.97, the nonlinear coefficient is 66, and the Schottky barrier height is 1.81 eV. At 115 ℃, AC accelerated aging voltages of 87% E1 mA, 89% E1 mA and 91% E1 mA are applied to the test sample separately. The aging time is 1000 h, and the aging coefficients are 0.394, 0.437 and 0.550 separately. This research will help to further improve the protection level of zinc oxide surge arresters, achieving the deep limitation of grid overvoltage, and improving the security and stability of power systems.
-
Keywords:
- ZnO varistor /
- aging stability /
- electrical properties /
- charge rate
[1] Gupta T K 1990 J. Am. Ceram. Soc. 73 1817Google Scholar
[2] 姚睿丰, 王妍, 高景晖, 陈川, 郭经红 2021 电工技术学报 36 1324
Yao R F, Wang Y, Gao J H, Chen C, Guo J H 2021 Trans. Chin. Elc. Soc. 36 1324
[3] 王玉平, 孙西昌 2006 电气技术 36 35Google Scholar
Wang Y P, Sun X C 2006 Elc. Tchnol. 36 35Google Scholar
[4] 舒印彪 2016 中国经贸导刊 34 54Google Scholar
Shu Y B 2016 Chni. Eco. Tra. Her. 34 54Google Scholar
[5] 李振, 余占清, 何金良, 彭向阳, 李志锋 2011 高电压技术 37 3120
Li Z, Yu Z Q, He J L, Peng X Y, Li Z F 2011 High Voltage Eng. 37 3120
[6] Lu Z Y, Chen Z Y, Wu J Q 2009 J. Ceram. Soc. Jpn. 117 851Google Scholar
[7] Tominaga S, Shibuya Y, Fujiwara Y, Imataki M, Nitta T 1980 IEEE Trans. Power. Syst. 99 1548
[8] Zhao H F, He J L, Hu J, Chen S M, Xie Q Y 2016 J. Mater. Lett. 164 80Google Scholar
[9] Meng P F, Gu S Q, Wang J, Hu J, He J L 2018 J. Ceram. Int. 44 1168Google Scholar
[10] Gupta T K, Carlson W G 1985 J. Mater. Sci. 20 3487Google Scholar
[11] Eda K, Iga A, Matsuoka M 1980 J. Appl. Phys. 51 2678Google Scholar
[12] 万帅, 许衡, 席成圆, 孟鹏飞, 赵洪峰, 曹伟 2020 高电压技术 46 1434
Wan S, Xu H, Xi C Y, Meng P F, Zhao H F, Cao W 2020 High Voltage Eng. 46 1434
[13] Zhao H F, Hu J, Chen S M, Xie Q Y, He J L 2016 J. Ceram. Int. 42 5582Google Scholar
[14] Wurst J C, Nelson I A 1972 J. Am. Ceram. Soc. 97 109
[15] Wang H Z, Li G Q, Wang G B, Peng J C, Jiang H, Liu Y T 2017 Appl. Energ. 188 56Google Scholar
[16] Kim S S, Cho H G, Choi I S, Park T G, Jung S Y 2002 International Conference on Power System Technology Proceedings Kunming, China, October 13–17, 2002 p13
[17] IEC60099-4 2006 Matel Oxide Arresters without Gapless for a.c. Systems (Swithzerlan: Geneva)
[18] Bueno P R, Cassia-Santos D E M R, Leite E R, Longo L, Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F 2000 J. Appl. Phys. 88 6545Google Scholar
[19] Long W C, Hu J, He J L 2010 J. Matter. Lett. 64 1081Google Scholar
[20] 程 宽, 赵洪峰, 周远翔 2022 电工技术学报 37 3413
Cheng K, Zhao H F, Zhou Y X 2022 Trans. Chin. Elc. Soc. 37 3413
[21] GB/T11032–2010 中华人民共和国国家标准交流无间隙金属氧化物避雷器 (北京: 中国标准出版社)
GB11032—2010 Metal-oxide Surge Arresters without Gaps for ac Systems (Beijing: China Standard Press) (in Chinese)
[22] Cheng L H, Yuan K Y, Meng L, Zheng L Y 2012 J. Am. Ceram. Soc. 95 1004
[23] 李天娇, 张博, 乌江 2022 电工技术学报 37 1554
Li T J, Zhang B, Wu J 2022 Trans. Chin. Elc. Soc. 37 1554
[24] 孟鹏飞, 胡军, 邬锦波, 何金良 2018 高电压技术 44 241
Meng P F, Hu J, Wu J B, He J L 2018 High Voltage Eng. 44 241
[25] 刘向洋 2018 硕士学位论文 (郑州: 中原工学院)
Liu X Y 2012 M. S. Thesis (Zhengzhou: Zhongyuan University of Technology) (in Chinese)
[26] Gupta T K 1994 J. Mater. Res. 9 2213Google Scholar
[27] Jaroszewski M, Pospieszna J 2004 International Conference on Solid Dieliectrics Toulouse, France, July 5–9, 2004 p731
[28] 孟鹏飞, 胡军, 邬锦波, 何金良 2017 中国电机工程学报 37 7377
Meng P F, Hu J, Wu J B, He J L 2017 Chin. Soc. Elec. Eng. 37 7377
[29] Casro M S, Benavente M A, Aldao C M 1993 J. Appl. Phys. 5 A341
-
表 1 老化前后ZnO压敏电阻的微观结构和宏观电气参数
Table 1. Microstructure and macro electrical parameters of ZnO varistors before and after aging.
样品编号 Ga content/% d/μm E1 mA/(V·mm–1) JL/(μA·cm–2) α Nd/(1023 m–3) Ni/(1016 m–2) $ {\phi _{\text{b}}} $/eV K Kt 老
化
前#1 0 8.2 373.1 1.76 54 0.87 1.40 1.45 2.35 — #2 0.2 7.9 423.2 1.34 57 0.92 1.51 1.60 2.17 — #3 0.4 7.7 440.4 0.89 63 1.07 1.64 1.62 1.99 — #4 0.6 7.4 454.4 0.84 66 1.13 1.78 1.81 1.97 — #5 0.8 7.3 478.5 1.12 61 1.25 1.75 1.58 2.14 — 老
化
后#4-87% 436.3 1.12 61 1.26 1.77 1.60 — 0.394 变化率 –3.98% 33.30% –7.60% 11.50% –0.56% –11.60% — — #4-89% 427.2 1.15 58 1.29 1.74 1.51 — 0.437 变化率 –5.99% 36.90% –12.10% 14.16% –2.25% –16.57% — — #4-91% 418.1 1.23 55 1.34 1.69 1.38 — 0.550 变化率 –7.99% 46.40% –16.70% 18.58% –5.06% –23.76% — — -
[1] Gupta T K 1990 J. Am. Ceram. Soc. 73 1817Google Scholar
[2] 姚睿丰, 王妍, 高景晖, 陈川, 郭经红 2021 电工技术学报 36 1324
Yao R F, Wang Y, Gao J H, Chen C, Guo J H 2021 Trans. Chin. Elc. Soc. 36 1324
[3] 王玉平, 孙西昌 2006 电气技术 36 35Google Scholar
Wang Y P, Sun X C 2006 Elc. Tchnol. 36 35Google Scholar
[4] 舒印彪 2016 中国经贸导刊 34 54Google Scholar
Shu Y B 2016 Chni. Eco. Tra. Her. 34 54Google Scholar
[5] 李振, 余占清, 何金良, 彭向阳, 李志锋 2011 高电压技术 37 3120
Li Z, Yu Z Q, He J L, Peng X Y, Li Z F 2011 High Voltage Eng. 37 3120
[6] Lu Z Y, Chen Z Y, Wu J Q 2009 J. Ceram. Soc. Jpn. 117 851Google Scholar
[7] Tominaga S, Shibuya Y, Fujiwara Y, Imataki M, Nitta T 1980 IEEE Trans. Power. Syst. 99 1548
[8] Zhao H F, He J L, Hu J, Chen S M, Xie Q Y 2016 J. Mater. Lett. 164 80Google Scholar
[9] Meng P F, Gu S Q, Wang J, Hu J, He J L 2018 J. Ceram. Int. 44 1168Google Scholar
[10] Gupta T K, Carlson W G 1985 J. Mater. Sci. 20 3487Google Scholar
[11] Eda K, Iga A, Matsuoka M 1980 J. Appl. Phys. 51 2678Google Scholar
[12] 万帅, 许衡, 席成圆, 孟鹏飞, 赵洪峰, 曹伟 2020 高电压技术 46 1434
Wan S, Xu H, Xi C Y, Meng P F, Zhao H F, Cao W 2020 High Voltage Eng. 46 1434
[13] Zhao H F, Hu J, Chen S M, Xie Q Y, He J L 2016 J. Ceram. Int. 42 5582Google Scholar
[14] Wurst J C, Nelson I A 1972 J. Am. Ceram. Soc. 97 109
[15] Wang H Z, Li G Q, Wang G B, Peng J C, Jiang H, Liu Y T 2017 Appl. Energ. 188 56Google Scholar
[16] Kim S S, Cho H G, Choi I S, Park T G, Jung S Y 2002 International Conference on Power System Technology Proceedings Kunming, China, October 13–17, 2002 p13
[17] IEC60099-4 2006 Matel Oxide Arresters without Gapless for a.c. Systems (Swithzerlan: Geneva)
[18] Bueno P R, Cassia-Santos D E M R, Leite E R, Longo L, Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F 2000 J. Appl. Phys. 88 6545Google Scholar
[19] Long W C, Hu J, He J L 2010 J. Matter. Lett. 64 1081Google Scholar
[20] 程 宽, 赵洪峰, 周远翔 2022 电工技术学报 37 3413
Cheng K, Zhao H F, Zhou Y X 2022 Trans. Chin. Elc. Soc. 37 3413
[21] GB/T11032–2010 中华人民共和国国家标准交流无间隙金属氧化物避雷器 (北京: 中国标准出版社)
GB11032—2010 Metal-oxide Surge Arresters without Gaps for ac Systems (Beijing: China Standard Press) (in Chinese)
[22] Cheng L H, Yuan K Y, Meng L, Zheng L Y 2012 J. Am. Ceram. Soc. 95 1004
[23] 李天娇, 张博, 乌江 2022 电工技术学报 37 1554
Li T J, Zhang B, Wu J 2022 Trans. Chin. Elc. Soc. 37 1554
[24] 孟鹏飞, 胡军, 邬锦波, 何金良 2018 高电压技术 44 241
Meng P F, Hu J, Wu J B, He J L 2018 High Voltage Eng. 44 241
[25] 刘向洋 2018 硕士学位论文 (郑州: 中原工学院)
Liu X Y 2012 M. S. Thesis (Zhengzhou: Zhongyuan University of Technology) (in Chinese)
[26] Gupta T K 1994 J. Mater. Res. 9 2213Google Scholar
[27] Jaroszewski M, Pospieszna J 2004 International Conference on Solid Dieliectrics Toulouse, France, July 5–9, 2004 p731
[28] 孟鹏飞, 胡军, 邬锦波, 何金良 2017 中国电机工程学报 37 7377
Meng P F, Hu J, Wu J B, He J L 2017 Chin. Soc. Elec. Eng. 37 7377
[29] Casro M S, Benavente M A, Aldao C M 1993 J. Appl. Phys. 5 A341
计量
- 文章访问数: 3846
- PDF下载量: 71
- 被引次数: 0