-
GHz重复频率飞秒激光具有高单纵模功率和高采样速率等优点, 在科学前沿和工业加工等领域具有重要的应用价值. 受限于锁模原理和泵浦源的可用功率, GHz重复频率克尔透镜锁模激光器的平均输出功率通常仅为数十到百毫瓦量级, 限制了其直接应用. 基于此, 本文报道了利用高功率单模光纤激光器泵浦的GHz重复频率高功率克尔透镜锁模飞秒激光器. 通过合理的腔模设计, 构建了四镜环形腔结构, 使晶体中激光模式可以和整形后的泵浦光形成良好匹配, 以利于软孔克尔透镜锁模的实现. 在8 W的泵浦功率下, 首次在Yb:CaYAlO4激光器中实现了GHz重复频率的亚百飞秒高功率锁模运转, 平均输出功率为2.1 W, 重复频率为1.8 GHz, 脉冲宽度为88 fs, 对应峰值功率大于10 kW. 该实验结果表明Yb:CaYAlO4晶体具有产生GHz重复频率高功率飞秒激光的潜力, 高功率短脉宽GHz飞秒激光器可为光学频率梳和微加工等领域提供优质光源.Femtosecond lasers with GHz repetition rate play an important role in scientific and industrial applications such as spectroscopy, optical frequency combs and GHz-Burst pulse trains for micro-machining in the ablation-cooled regime. Kerr-lens mode-locked (KLM) technique and passively mode-locking based on semiconductor saturable absorber mirror (SESAM) are the primary methods to generate GHz femtosecond all-solid-state lasers (ASSLs). Kerr-lens mode-locked Ti:Sapphire lasers have made significant progress benefited from the high-power green pump lasers, and repetition rate up to 10 GHz has been obtained with the average power of 1.2 W. In the early 21st century, ytterbium ion (Yb3+) doped laser crystals and ceramics with emission wavelengths near 1 μm received attention due to their high conversion efficiency and broad gain-bandwidth. Combining the customized SESAM and high-power multimode fiber-coupled laser diodes (LDs), GHz Yb-doped ASSLs with watt-level average power may be easily attained and have made rapid progress. However, GHz KLM lasers have strict requirements for the cavity design and pump sources. For satisfying mode matching and enhancing the soft aperture effect within the gain medium, a high-brightness pump source with excellent beam quality (M 2 ~ 1) is desired, such as the single-mode fiber coupled LD, however, the maximum pump power of which is only ~1 W. As a result, the average power of GHz KLM femtosecond laser is typically limited to few tens of milliwatts, which limits the further applications. In this work, we report the first GHz high-power KLM Yb:CaYAlO4 laser by using a high-power single-mode fiber laser instead of the low-power single-mode fiber coupled LDs as the pump source. On the basis of ABCD matrix, a simple four-mirror bow-tie ring cavity is built so that the laser mode can match well with the focused pump spot in the crystal. At the pump power of 8 W, stable unidirectional KLM is achieved, the laser has the average power of 2.1 W with a pulse duration of 88 fs and a repetition rate of 1.8 GHz, corresponding to the peak power of 11.57 kW. The high peak power and extremely short pulse duration are crucial for coherent octave-spanning supercontinuum generation. The powerful GHz KLM laser with sub-100 fs pulse duration provides an attractive source for realizing the optical frequency combs and micro-machining applications.
-
Keywords:
- lasers /
- Kerr-lens mode-locked /
- GHz repetition rate /
- ring cavity
[1] Wilt B A, Burns L D, Ho E T W, Ghosh K K, Mukamel E A, Schnitzer M J 2009 Annu. Rev. Neurosci. 32 435Google Scholar
[2] Diddams S A, Udem Th, Bergquist J C, Curtis E A, Drullinger R E, Hollberg L, Itano W M, Lee W D, Oates C W, Vogel K R, Wineland D J 2001 Science 293 825Google Scholar
[3] Hillerkuss D, Schmogrow R, Schellinger T, Jordan M, Winter M, Huber G, Vallaitis T, Bonk R, Kleinow P, Frey F, Roeger M, Koenig S, Ludwig A, Marculescu A, Li J, Hoh M, Dreschmann M, Meyer J, Ben E S, Narkiss N, Nebendahl B, Parmigiani F, Petropoulos P, Resan B, Oehler A, Weingarten K, Ellermeyer T, Lutz J, Moeller M, Huebner M, Becker J, Koos C, Freude W, Leuthold J 2011 Nat. Photonics 5 364Google Scholar
[4] Steinmetz T, Wilken T, Araujo-Hauck C, Holzwarth R, Hänsch T W, Pasquini L, Manescau A, D’Odorico S, Murphy M T, Kentischer T, Schmidt W, Udem T 2008 Science 321 1335Google Scholar
[5] 韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群 2007 物理学报 56 2760Google Scholar
Han H N, Zhang W, Wang P, Li D H, Wei Z Y, Shen N C, Nie Y X, Gao Y P, Zhang S G, Li S Q 2007 Acta Phys. Sin. 56 2760Google Scholar
[6] 刘欢, 曹士英, 孟飞, 林百科, 方占军 2015 物理学报 64 094204Google Scholar
Liu H, Cao S Y, Meng F, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 094204Google Scholar
[7] Diddams S A, Hollberg L, Mbele V 2007 Nature 445 627Google Scholar
[8] Ideguchi T, Holzner S, Bernhardt B, Guelachvili G, Picqué N, Hänsch T W 2013 Nature 502 355Google Scholar
[9] Villares G, Hugi A, Blaser S, Faist J 2014 Nat. Commun. 5 5192Google Scholar
[10] Link S M, Maas D J H C, Waldburger D, Keller U 2017 Science 356 1164Google Scholar
[11] Kerse C, Kalaycıoğlu H, Elahi P, Çetin B, Kesim D K, Akçaalan Ö, Yavaş S, Aşık M D, Öktem B, Hoogland H, Holzwarth R, Ilday F Ö 2016 Nature 537 84Google Scholar
[12] Bartels A, Heinecke D, Diddams S A 2009 Science 326 681Google Scholar
[13] Martinez A, Yamashita S 2011 Opt. Express 19 6155Google Scholar
[14] Liu X M, Pang M 2019 Laser Photonics Rev. 13 1800333Google Scholar
[15] 朱江峰, 田文龙, 高子叶, 魏志义 2017 中国激光 44 0900001Google Scholar
Zhu J F, Tian W L, Gao Z Y, Wei Z Y 2017 Chin. J. Lasers 44 0900001Google Scholar
[16] Yamazoe S, Katou M, Adachi T, Kasamatsu T 2010 Opt. Lett. 35 748Google Scholar
[17] Pekarek S, Südmeyer T, Lecomte S, Kundermann S, Dudley J M, Keller U 2011 Opt. Express 19 16491Google Scholar
[18] Klenner A, Golling M, Keller U 2014 Opt. Express 22 11884Google Scholar
[19] Pekarek S, Klenner A, Südmeyer T, Fiebig C, Paschke K, Erbert G, Keller U 2012 Opt. Express 20 4248Google Scholar
[20] Klenner A, Keller U 2015 Opt. Express 23 8532Google Scholar
[21] Mayer A S, Phillips C R, Keller U 2017 Nat. Commun. 8 1673Google Scholar
[22] Liu X, Yao X, Cui Y 2018 Phys. Rev. Lett. 121 023905Google Scholar
[23] Liu X, Popa D, Akhmediev N 2019 Phys. Rev. Lett. 123 093901Google Scholar
[24] Wasylczyk P, Wnuk P, Radzewicz C 2009 Opt. Express 17 5630Google Scholar
[25] Endo M, Ozawa A, Kobayashi Y 2012 Opt. Express 20 12191Google Scholar
[26] Endo M, Ozawa A, Kobayashi Y 2013 Opt. Lett. 38 4502Google Scholar
[27] Endo M, Ito I, Kobayashi Y 2015 Opt. Express 23 1276Google Scholar
[28] Kimura S, Tani S, Kobayashi Y 2019 Optica 6 532Google Scholar
[29] Hamrouni M, Labaye F, Modsching N, Wittwer V J, Südmeyer T 2022 Opt. Express 30 30012Google Scholar
[30] Zheng L, Tian W L, Liu H, Wang G Y, Bai C, Xu R, Zhang D C, Han H N, Zhu J F, Wei Z Y 2021 Opt. Express 29 12950Google Scholar
[31] Akbari R, Fedorova K A, Rafailov E U, Major A 2017 Appl. Phys. B 123 123Google Scholar
[32] Zheng L, Chen Y H, Tian W L, Yu Y, Wang G Y, Bai C, Zhang D C, Zhu J F, Wei Z Y 2022 Conference on Lasers and Electro-Optics San Jose, California United States, May 15–20, 2022 pSS2A.6
-
图 1 1.8 GHz Yb:CaYAlO4激光器实验装置示意图及实物图, 其中HR, 高反镜; HWP, 半波片; L1, 焦距25 mm凹透镜; L2, 焦距75 mm凸透镜; L3, 焦距40 mm 凸透镜; M1, 曲率半径30 mm凹面双色镜; M2, 曲率半径30 mm的–800 fs2色散镜; M3, –550 fs2平面色散镜; OC, 1.6%输出耦合镜
Fig. 1. Experimental setup of 1.8 GHz Yb:CaYAlO4 laser. HR, high-reflection mirror; HWP, half-wave plate; L1, concave lens with 25 mm focal length; L2, convex lens with 75 mm focal length; L3, convex lens with 40 mm focal length; M1, dichroic concave mirror with radius of curvature of 30 mm; M2, –800 fs2 dispersive mirror with radius of curvature of 30 mm; M3, –550 fs2 plane dispersive mirror; OC, output coupler with transmittance of 1.6%.
-
[1] Wilt B A, Burns L D, Ho E T W, Ghosh K K, Mukamel E A, Schnitzer M J 2009 Annu. Rev. Neurosci. 32 435Google Scholar
[2] Diddams S A, Udem Th, Bergquist J C, Curtis E A, Drullinger R E, Hollberg L, Itano W M, Lee W D, Oates C W, Vogel K R, Wineland D J 2001 Science 293 825Google Scholar
[3] Hillerkuss D, Schmogrow R, Schellinger T, Jordan M, Winter M, Huber G, Vallaitis T, Bonk R, Kleinow P, Frey F, Roeger M, Koenig S, Ludwig A, Marculescu A, Li J, Hoh M, Dreschmann M, Meyer J, Ben E S, Narkiss N, Nebendahl B, Parmigiani F, Petropoulos P, Resan B, Oehler A, Weingarten K, Ellermeyer T, Lutz J, Moeller M, Huebner M, Becker J, Koos C, Freude W, Leuthold J 2011 Nat. Photonics 5 364Google Scholar
[4] Steinmetz T, Wilken T, Araujo-Hauck C, Holzwarth R, Hänsch T W, Pasquini L, Manescau A, D’Odorico S, Murphy M T, Kentischer T, Schmidt W, Udem T 2008 Science 321 1335Google Scholar
[5] 韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群 2007 物理学报 56 2760Google Scholar
Han H N, Zhang W, Wang P, Li D H, Wei Z Y, Shen N C, Nie Y X, Gao Y P, Zhang S G, Li S Q 2007 Acta Phys. Sin. 56 2760Google Scholar
[6] 刘欢, 曹士英, 孟飞, 林百科, 方占军 2015 物理学报 64 094204Google Scholar
Liu H, Cao S Y, Meng F, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 094204Google Scholar
[7] Diddams S A, Hollberg L, Mbele V 2007 Nature 445 627Google Scholar
[8] Ideguchi T, Holzner S, Bernhardt B, Guelachvili G, Picqué N, Hänsch T W 2013 Nature 502 355Google Scholar
[9] Villares G, Hugi A, Blaser S, Faist J 2014 Nat. Commun. 5 5192Google Scholar
[10] Link S M, Maas D J H C, Waldburger D, Keller U 2017 Science 356 1164Google Scholar
[11] Kerse C, Kalaycıoğlu H, Elahi P, Çetin B, Kesim D K, Akçaalan Ö, Yavaş S, Aşık M D, Öktem B, Hoogland H, Holzwarth R, Ilday F Ö 2016 Nature 537 84Google Scholar
[12] Bartels A, Heinecke D, Diddams S A 2009 Science 326 681Google Scholar
[13] Martinez A, Yamashita S 2011 Opt. Express 19 6155Google Scholar
[14] Liu X M, Pang M 2019 Laser Photonics Rev. 13 1800333Google Scholar
[15] 朱江峰, 田文龙, 高子叶, 魏志义 2017 中国激光 44 0900001Google Scholar
Zhu J F, Tian W L, Gao Z Y, Wei Z Y 2017 Chin. J. Lasers 44 0900001Google Scholar
[16] Yamazoe S, Katou M, Adachi T, Kasamatsu T 2010 Opt. Lett. 35 748Google Scholar
[17] Pekarek S, Südmeyer T, Lecomte S, Kundermann S, Dudley J M, Keller U 2011 Opt. Express 19 16491Google Scholar
[18] Klenner A, Golling M, Keller U 2014 Opt. Express 22 11884Google Scholar
[19] Pekarek S, Klenner A, Südmeyer T, Fiebig C, Paschke K, Erbert G, Keller U 2012 Opt. Express 20 4248Google Scholar
[20] Klenner A, Keller U 2015 Opt. Express 23 8532Google Scholar
[21] Mayer A S, Phillips C R, Keller U 2017 Nat. Commun. 8 1673Google Scholar
[22] Liu X, Yao X, Cui Y 2018 Phys. Rev. Lett. 121 023905Google Scholar
[23] Liu X, Popa D, Akhmediev N 2019 Phys. Rev. Lett. 123 093901Google Scholar
[24] Wasylczyk P, Wnuk P, Radzewicz C 2009 Opt. Express 17 5630Google Scholar
[25] Endo M, Ozawa A, Kobayashi Y 2012 Opt. Express 20 12191Google Scholar
[26] Endo M, Ozawa A, Kobayashi Y 2013 Opt. Lett. 38 4502Google Scholar
[27] Endo M, Ito I, Kobayashi Y 2015 Opt. Express 23 1276Google Scholar
[28] Kimura S, Tani S, Kobayashi Y 2019 Optica 6 532Google Scholar
[29] Hamrouni M, Labaye F, Modsching N, Wittwer V J, Südmeyer T 2022 Opt. Express 30 30012Google Scholar
[30] Zheng L, Tian W L, Liu H, Wang G Y, Bai C, Xu R, Zhang D C, Han H N, Zhu J F, Wei Z Y 2021 Opt. Express 29 12950Google Scholar
[31] Akbari R, Fedorova K A, Rafailov E U, Major A 2017 Appl. Phys. B 123 123Google Scholar
[32] Zheng L, Chen Y H, Tian W L, Yu Y, Wang G Y, Bai C, Zhang D C, Zhu J F, Wei Z Y 2022 Conference on Lasers and Electro-Optics San Jose, California United States, May 15–20, 2022 pSS2A.6
计量
- 文章访问数: 4123
- PDF下载量: 134
- 被引次数: 0