搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GHz重复频率亚百飞秒克尔透镜锁模Yb:CaYAlO4激光器

郑立 田文龙 马骏逸 于洋 徐晓东 韩海年 魏志义 朱江峰

引用本文:
Citation:

GHz重复频率亚百飞秒克尔透镜锁模Yb:CaYAlO4激光器

郑立, 田文龙, 马骏逸, 于洋, 徐晓东, 韩海年, 魏志义, 朱江峰

Sub-100 fs Kerr-lens mode-locked femtosecond Yb:CaYAlO4 laser with GHz repetition rate

Zheng Li, Tian Wen-Long, Ma Jun-Yi, Yu Yang, Xu Xiao-Dong, Han Hai-Nian, Wei Zhi-Yi, Zhu Jiang-Feng
PDF
HTML
导出引用
  • GHz重复频率飞秒激光具有高单纵模功率和高采样速率等优点, 在科学前沿和工业加工等领域具有重要的应用价值. 受限于锁模原理和泵浦源的可用功率, GHz重复频率克尔透镜锁模激光器的平均输出功率通常仅为数十到百毫瓦量级, 限制了其直接应用. 基于此, 本文报道了利用高功率单模光纤激光器泵浦的GHz重复频率高功率克尔透镜锁模飞秒激光器. 通过合理的腔模设计, 构建了四镜环形腔结构, 使晶体中激光模式可以和整形后的泵浦光形成良好匹配, 以利于软孔克尔透镜锁模的实现. 在8 W的泵浦功率下, 首次在Yb:CaYAlO4激光器中实现了GHz重复频率的亚百飞秒高功率锁模运转, 平均输出功率为2.1 W, 重复频率为1.8 GHz, 脉冲宽度为88 fs, 对应峰值功率大于10 kW. 该实验结果表明Yb:CaYAlO4晶体具有产生GHz重复频率高功率飞秒激光的潜力, 高功率短脉宽GHz飞秒激光器可为光学频率梳和微加工等领域提供优质光源.
    Femtosecond lasers with GHz repetition rate play an important role in scientific and industrial applications such as spectroscopy, optical frequency combs and GHz-Burst pulse trains for micro-machining in the ablation-cooled regime. Kerr-lens mode-locked (KLM) technique and passively mode-locking based on semiconductor saturable absorber mirror (SESAM) are the primary methods to generate GHz femtosecond all-solid-state lasers (ASSLs). Kerr-lens mode-locked Ti:Sapphire lasers have made significant progress benefited from the high-power green pump lasers, and repetition rate up to 10 GHz has been obtained with the average power of 1.2 W. In the early 21st century, ytterbium ion (Yb3+) doped laser crystals and ceramics with emission wavelengths near 1 μm received attention due to their high conversion efficiency and broad gain-bandwidth. Combining the customized SESAM and high-power multimode fiber-coupled laser diodes (LDs), GHz Yb-doped ASSLs with watt-level average power may be easily attained and have made rapid progress. However, GHz KLM lasers have strict requirements for the cavity design and pump sources. For satisfying mode matching and enhancing the soft aperture effect within the gain medium, a high-brightness pump source with excellent beam quality (M 2 ~ 1) is desired, such as the single-mode fiber coupled LD, however, the maximum pump power of which is only ~1 W. As a result, the average power of GHz KLM femtosecond laser is typically limited to few tens of milliwatts, which limits the further applications. In this work, we report the first GHz high-power KLM Yb:CaYAlO4 laser by using a high-power single-mode fiber laser instead of the low-power single-mode fiber coupled LDs as the pump source. On the basis of ABCD matrix, a simple four-mirror bow-tie ring cavity is built so that the laser mode can match well with the focused pump spot in the crystal. At the pump power of 8 W, stable unidirectional KLM is achieved, the laser has the average power of 2.1 W with a pulse duration of 88 fs and a repetition rate of 1.8 GHz, corresponding to the peak power of 11.57 kW. The high peak power and extremely short pulse duration are crucial for coherent octave-spanning supercontinuum generation. The powerful GHz KLM laser with sub-100 fs pulse duration provides an attractive source for realizing the optical frequency combs and micro-machining applications.
      通信作者: 田文龙, wltian@xidian.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFB4601102)、国家自然科学基金(批准号: 61975071, 62105253)、西安市科技创新计划(批准号: 202005YK01)和中央高校基本科研业务费专项资金(批准号: XJS222206)资助的课题.
      Corresponding author: Tian Wen-Long, wltian@xidian.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB4601102), the National Natural Science Foundation of China (Grant Nos. 61975071, 62105253), the Science and Technology Program of Xi’an, China (Grant No. 202005YK01), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. XJS222206).
    [1]

    Wilt B A, Burns L D, Ho E T W, Ghosh K K, Mukamel E A, Schnitzer M J 2009 Annu. Rev. Neurosci. 32 435Google Scholar

    [2]

    Diddams S A, Udem Th, Bergquist J C, Curtis E A, Drullinger R E, Hollberg L, Itano W M, Lee W D, Oates C W, Vogel K R, Wineland D J 2001 Science 293 825Google Scholar

    [3]

    Hillerkuss D, Schmogrow R, Schellinger T, Jordan M, Winter M, Huber G, Vallaitis T, Bonk R, Kleinow P, Frey F, Roeger M, Koenig S, Ludwig A, Marculescu A, Li J, Hoh M, Dreschmann M, Meyer J, Ben E S, Narkiss N, Nebendahl B, Parmigiani F, Petropoulos P, Resan B, Oehler A, Weingarten K, Ellermeyer T, Lutz J, Moeller M, Huebner M, Becker J, Koos C, Freude W, Leuthold J 2011 Nat. Photonics 5 364Google Scholar

    [4]

    Steinmetz T, Wilken T, Araujo-Hauck C, Holzwarth R, Hänsch T W, Pasquini L, Manescau A, D’Odorico S, Murphy M T, Kentischer T, Schmidt W, Udem T 2008 Science 321 1335Google Scholar

    [5]

    韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群 2007 物理学报 56 2760Google Scholar

    Han H N, Zhang W, Wang P, Li D H, Wei Z Y, Shen N C, Nie Y X, Gao Y P, Zhang S G, Li S Q 2007 Acta Phys. Sin. 56 2760Google Scholar

    [6]

    刘欢, 曹士英, 孟飞, 林百科, 方占军 2015 物理学报 64 094204Google Scholar

    Liu H, Cao S Y, Meng F, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 094204Google Scholar

    [7]

    Diddams S A, Hollberg L, Mbele V 2007 Nature 445 627Google Scholar

    [8]

    Ideguchi T, Holzner S, Bernhardt B, Guelachvili G, Picqué N, Hänsch T W 2013 Nature 502 355Google Scholar

    [9]

    Villares G, Hugi A, Blaser S, Faist J 2014 Nat. Commun. 5 5192Google Scholar

    [10]

    Link S M, Maas D J H C, Waldburger D, Keller U 2017 Science 356 1164Google Scholar

    [11]

    Kerse C, Kalaycıoğlu H, Elahi P, Çetin B, Kesim D K, Akçaalan Ö, Yavaş S, Aşık M D, Öktem B, Hoogland H, Holzwarth R, Ilday F Ö 2016 Nature 537 84Google Scholar

    [12]

    Bartels A, Heinecke D, Diddams S A 2009 Science 326 681Google Scholar

    [13]

    Martinez A, Yamashita S 2011 Opt. Express 19 6155Google Scholar

    [14]

    Liu X M, Pang M 2019 Laser Photonics Rev. 13 1800333Google Scholar

    [15]

    朱江峰, 田文龙, 高子叶, 魏志义 2017 中国激光 44 0900001Google Scholar

    Zhu J F, Tian W L, Gao Z Y, Wei Z Y 2017 Chin. J. Lasers 44 0900001Google Scholar

    [16]

    Yamazoe S, Katou M, Adachi T, Kasamatsu T 2010 Opt. Lett. 35 748Google Scholar

    [17]

    Pekarek S, Südmeyer T, Lecomte S, Kundermann S, Dudley J M, Keller U 2011 Opt. Express 19 16491Google Scholar

    [18]

    Klenner A, Golling M, Keller U 2014 Opt. Express 22 11884Google Scholar

    [19]

    Pekarek S, Klenner A, Südmeyer T, Fiebig C, Paschke K, Erbert G, Keller U 2012 Opt. Express 20 4248Google Scholar

    [20]

    Klenner A, Keller U 2015 Opt. Express 23 8532Google Scholar

    [21]

    Mayer A S, Phillips C R, Keller U 2017 Nat. Commun. 8 1673Google Scholar

    [22]

    Liu X, Yao X, Cui Y 2018 Phys. Rev. Lett. 121 023905Google Scholar

    [23]

    Liu X, Popa D, Akhmediev N 2019 Phys. Rev. Lett. 123 093901Google Scholar

    [24]

    Wasylczyk P, Wnuk P, Radzewicz C 2009 Opt. Express 17 5630Google Scholar

    [25]

    Endo M, Ozawa A, Kobayashi Y 2012 Opt. Express 20 12191Google Scholar

    [26]

    Endo M, Ozawa A, Kobayashi Y 2013 Opt. Lett. 38 4502Google Scholar

    [27]

    Endo M, Ito I, Kobayashi Y 2015 Opt. Express 23 1276Google Scholar

    [28]

    Kimura S, Tani S, Kobayashi Y 2019 Optica 6 532Google Scholar

    [29]

    Hamrouni M, Labaye F, Modsching N, Wittwer V J, Südmeyer T 2022 Opt. Express 30 30012Google Scholar

    [30]

    Zheng L, Tian W L, Liu H, Wang G Y, Bai C, Xu R, Zhang D C, Han H N, Zhu J F, Wei Z Y 2021 Opt. Express 29 12950Google Scholar

    [31]

    Akbari R, Fedorova K A, Rafailov E U, Major A 2017 Appl. Phys. B 123 123Google Scholar

    [32]

    Zheng L, Chen Y H, Tian W L, Yu Y, Wang G Y, Bai C, Zhang D C, Zhu J F, Wei Z Y 2022 Conference on Lasers and Electro-Optics San Jose, California United States, May 15–20, 2022 pSS2A.6

  • 图 1  1.8 GHz Yb:CaYAlO4激光器实验装置示意图及实物图, 其中HR, 高反镜; HWP, 半波片; L1, 焦距25 mm凹透镜; L2, 焦距75 mm凸透镜; L3, 焦距40 mm 凸透镜; M1, 曲率半径30 mm凹面双色镜; M2, 曲率半径30 mm的–800 fs2色散镜; M3, –550 fs2平面色散镜; OC, 1.6%输出耦合镜

    Fig. 1.  Experimental setup of 1.8 GHz Yb:CaYAlO4 laser. HR, high-reflection mirror; HWP, half-wave plate; L1, concave lens with 25 mm focal length; L2, convex lens with 75 mm focal length; L3, convex lens with 40 mm focal length; M1, dichroic concave mirror with radius of curvature of 30 mm; M2, –800 fs2 dispersive mirror with radius of curvature of 30 mm; M3, –550 fs2 plane dispersive mirror; OC, output coupler with transmittance of 1.6%.

    图 2  1.8 GHz Yb:CaYAlO4激光器腔内激光模式计算 (a)谐振腔整体腔模分布; (b)晶体中激光模式

    Fig. 2.  Calculated cavity mode of 1.8 GHz Yb:CaYAlO4 laser: (a) The cavity mode throughout the whole resonator; (b) the laser mode in the crystal.

    图 3  晶体中最小激光模式处$ \delta $随稳区$ z $的变化

    Fig. 3.  Variation of $ \delta $ as a function of $ z $ at the position of the minimum beam radius inside the gain medium.

    图 4  单向克尔透镜锁模光谱(GDD, 群延迟色散)

    Fig. 4.  Optical spectrum of the unidirectional KLM (GDD, group delay dispersion).

    图 5  单向克尔透镜锁模自相关轨迹

    Fig. 5.  Measured auto-correlation trace of the unidirectional KLM.

    图 6  分辨率为1 kHz和10 kHz情况下测得的单向克尔透镜锁模基频和谐波频谱信号

    Fig. 6.  Measured fundamental and harmonic radio frequency spectra with resolution bandwidth (RBW) of 1 kHz and 10 kHz of the unidirectional KLM.

    图 7  单向克尔透镜锁模在1 ns和1 μs时间尺度下的脉冲序列

    Fig. 7.  Measured pulse trains in time scale of 1 ns/div and 1 μs/div of the unidirectional KLM.

    图 8  单向克尔透镜锁模120 min内功率稳定性测量

    Fig. 8.  Measured power fluctuation in 120 minutes of the unidirectional KLM.

  • [1]

    Wilt B A, Burns L D, Ho E T W, Ghosh K K, Mukamel E A, Schnitzer M J 2009 Annu. Rev. Neurosci. 32 435Google Scholar

    [2]

    Diddams S A, Udem Th, Bergquist J C, Curtis E A, Drullinger R E, Hollberg L, Itano W M, Lee W D, Oates C W, Vogel K R, Wineland D J 2001 Science 293 825Google Scholar

    [3]

    Hillerkuss D, Schmogrow R, Schellinger T, Jordan M, Winter M, Huber G, Vallaitis T, Bonk R, Kleinow P, Frey F, Roeger M, Koenig S, Ludwig A, Marculescu A, Li J, Hoh M, Dreschmann M, Meyer J, Ben E S, Narkiss N, Nebendahl B, Parmigiani F, Petropoulos P, Resan B, Oehler A, Weingarten K, Ellermeyer T, Lutz J, Moeller M, Huebner M, Becker J, Koos C, Freude W, Leuthold J 2011 Nat. Photonics 5 364Google Scholar

    [4]

    Steinmetz T, Wilken T, Araujo-Hauck C, Holzwarth R, Hänsch T W, Pasquini L, Manescau A, D’Odorico S, Murphy M T, Kentischer T, Schmidt W, Udem T 2008 Science 321 1335Google Scholar

    [5]

    韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群 2007 物理学报 56 2760Google Scholar

    Han H N, Zhang W, Wang P, Li D H, Wei Z Y, Shen N C, Nie Y X, Gao Y P, Zhang S G, Li S Q 2007 Acta Phys. Sin. 56 2760Google Scholar

    [6]

    刘欢, 曹士英, 孟飞, 林百科, 方占军 2015 物理学报 64 094204Google Scholar

    Liu H, Cao S Y, Meng F, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 094204Google Scholar

    [7]

    Diddams S A, Hollberg L, Mbele V 2007 Nature 445 627Google Scholar

    [8]

    Ideguchi T, Holzner S, Bernhardt B, Guelachvili G, Picqué N, Hänsch T W 2013 Nature 502 355Google Scholar

    [9]

    Villares G, Hugi A, Blaser S, Faist J 2014 Nat. Commun. 5 5192Google Scholar

    [10]

    Link S M, Maas D J H C, Waldburger D, Keller U 2017 Science 356 1164Google Scholar

    [11]

    Kerse C, Kalaycıoğlu H, Elahi P, Çetin B, Kesim D K, Akçaalan Ö, Yavaş S, Aşık M D, Öktem B, Hoogland H, Holzwarth R, Ilday F Ö 2016 Nature 537 84Google Scholar

    [12]

    Bartels A, Heinecke D, Diddams S A 2009 Science 326 681Google Scholar

    [13]

    Martinez A, Yamashita S 2011 Opt. Express 19 6155Google Scholar

    [14]

    Liu X M, Pang M 2019 Laser Photonics Rev. 13 1800333Google Scholar

    [15]

    朱江峰, 田文龙, 高子叶, 魏志义 2017 中国激光 44 0900001Google Scholar

    Zhu J F, Tian W L, Gao Z Y, Wei Z Y 2017 Chin. J. Lasers 44 0900001Google Scholar

    [16]

    Yamazoe S, Katou M, Adachi T, Kasamatsu T 2010 Opt. Lett. 35 748Google Scholar

    [17]

    Pekarek S, Südmeyer T, Lecomte S, Kundermann S, Dudley J M, Keller U 2011 Opt. Express 19 16491Google Scholar

    [18]

    Klenner A, Golling M, Keller U 2014 Opt. Express 22 11884Google Scholar

    [19]

    Pekarek S, Klenner A, Südmeyer T, Fiebig C, Paschke K, Erbert G, Keller U 2012 Opt. Express 20 4248Google Scholar

    [20]

    Klenner A, Keller U 2015 Opt. Express 23 8532Google Scholar

    [21]

    Mayer A S, Phillips C R, Keller U 2017 Nat. Commun. 8 1673Google Scholar

    [22]

    Liu X, Yao X, Cui Y 2018 Phys. Rev. Lett. 121 023905Google Scholar

    [23]

    Liu X, Popa D, Akhmediev N 2019 Phys. Rev. Lett. 123 093901Google Scholar

    [24]

    Wasylczyk P, Wnuk P, Radzewicz C 2009 Opt. Express 17 5630Google Scholar

    [25]

    Endo M, Ozawa A, Kobayashi Y 2012 Opt. Express 20 12191Google Scholar

    [26]

    Endo M, Ozawa A, Kobayashi Y 2013 Opt. Lett. 38 4502Google Scholar

    [27]

    Endo M, Ito I, Kobayashi Y 2015 Opt. Express 23 1276Google Scholar

    [28]

    Kimura S, Tani S, Kobayashi Y 2019 Optica 6 532Google Scholar

    [29]

    Hamrouni M, Labaye F, Modsching N, Wittwer V J, Südmeyer T 2022 Opt. Express 30 30012Google Scholar

    [30]

    Zheng L, Tian W L, Liu H, Wang G Y, Bai C, Xu R, Zhang D C, Han H N, Zhu J F, Wei Z Y 2021 Opt. Express 29 12950Google Scholar

    [31]

    Akbari R, Fedorova K A, Rafailov E U, Major A 2017 Appl. Phys. B 123 123Google Scholar

    [32]

    Zheng L, Chen Y H, Tian W L, Yu Y, Wang G Y, Bai C, Zhang D C, Zhu J F, Wei Z Y 2022 Conference on Lasers and Electro-Optics San Jose, California United States, May 15–20, 2022 pSS2A.6

  • [1] 秦璐, 任杰, 许兴胜. 垂直腔面发射激光器低温光电特性. 物理学报, 2019, 68(19): 194203. doi: 10.7498/aps.68.20190427
    [2] 谢仕永, 张小富, 乐小云, 杨程亮, 薄勇, 王鹏远, 许祖彦. 885nm双端泵准连续微秒脉冲1319nm三镜环形腔激光. 物理学报, 2016, 65(15): 154205. doi: 10.7498/aps.65.154205
    [3] 颜森林. 半导体激光器混沌法拉第效应控制方法. 物理学报, 2015, 64(24): 240505. doi: 10.7498/aps.64.240505
    [4] 周静, 王鸣, 倪海彬, 马鑫. 环形狭缝腔阵列光学特性的研究. 物理学报, 2015, 64(22): 227301. doi: 10.7498/aps.64.227301
    [5] 陈颖, 王文跃, 于娜. 粒子群算法优化异质结构光子晶体环形腔滤波特性. 物理学报, 2014, 63(3): 034205. doi: 10.7498/aps.63.034205
    [6] 刘成, 王兆华, 沈忠伟, 张伟, 滕浩, 魏志义. 高能量环形长腔再生放大啁啾脉冲激光的研究. 物理学报, 2013, 62(9): 094209. doi: 10.7498/aps.62.094209
    [7] 张伟, 滕浩, 王兆华, 沈忠伟, 刘成, 魏志义. 采用环形再生腔结构的飞秒激光啁啾脉冲放大研究. 物理学报, 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [8] 白扬博, 向望华, 祖鹏, 张贵忠. 基于体光栅的被动锁模可调谐线型腔掺镱光纤激光器. 物理学报, 2012, 61(21): 214208. doi: 10.7498/aps.61.214208
    [9] 冯野, 杨毅彪, 王安帮, 王云才. 利用半导体激光器环产生27 GHz的平坦宽带混沌激光. 物理学报, 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [10] 杨春云, 徐旭明, 叶涛, 缪路平. 一种新型可调制的光子晶体环形腔滤波器. 物理学报, 2011, 60(1): 017807. doi: 10.7498/aps.60.017807
    [11] 薛宇豪, 周军, 何兵, 李震, 漆云凤, 刘驰, 楼祺洪. 基于空间滤波的光纤激光被动相位锁定技术研究. 物理学报, 2010, 59(11): 7869-7874. doi: 10.7498/aps.59.7869
    [12] 王静, 郑凯, 李坚, 刘利松, 陈根祥, 简水生. 基于高双折射Sagnac环的可调环形腔掺铒光纤激光器理论与实验研究. 物理学报, 2009, 58(11): 7695-7701. doi: 10.7498/aps.58.7695
    [13] 颜森林. 半导体激光器混沌光电延时负反馈控制方法研究. 物理学报, 2008, 57(4): 2100-2106. doi: 10.7498/aps.57.2100
    [14] 颜森林. 外腔延时反馈半导体激光器混沌偏振可调控制方法研究. 物理学报, 2008, 57(11): 6878-6882. doi: 10.7498/aps.57.6878
    [15] 颜森林. 注入半导体激光器混沌相位周期控制方法研究. 物理学报, 2006, 55(10): 5109-5114. doi: 10.7498/aps.55.5109
    [16] 令维军, 郑加安, 贾玉磊, 魏志义. 低阈值飞秒钛宝石激光器的理论研究. 物理学报, 2005, 54(4): 1619-1623. doi: 10.7498/aps.54.1619
    [17] 令维军, 魏志义, 孙敬华, 王兆华, 田金荣, 贾玉磊, 王 鹏, 韩海年. 低阈值掺钛蓝宝石激光器实验研究. 物理学报, 2005, 54(9): 4182-4185. doi: 10.7498/aps.54.4182
    [18] 徐 帆, 张新亮, 黄德修. 新型结构可调谐全光波长转换器的理论与实验研究. 物理学报, 2004, 53(7): 2165-2169. doi: 10.7498/aps.53.2165
    [19] 孙敬华, 章若冰, 胡有方, 张志刚, 王清月. 自启动KLM钛宝石激光器谐振腔的理论计算. 物理学报, 2002, 51(6): 1272-1278. doi: 10.7498/aps.51.1272
    [20] 杨辉, 邱阳, 腾浩, 张军, 苍宇, 吕铁铮, 王兆华, 王鸿飞, 魏志义, 张杰. 4.5MW小型化全固态腔倒空飞秒掺钛蓝宝石激光器. 物理学报, 2001, 50(10): 1930-1934. doi: 10.7498/aps.50.1930
计量
  • 文章访问数:  2584
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-01
  • 修回日期:  2022-12-27
  • 上网日期:  2023-01-12
  • 刊出日期:  2023-03-20

/

返回文章
返回