搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直通道内两相流动的格子玻尔兹曼方法模拟

冯晶森 闵敬春

引用本文:
Citation:

直通道内两相流动的格子玻尔兹曼方法模拟

冯晶森, 闵敬春

Lattice Boltzmann method simulation of two-phase flow in horizontal channel

Feng Jing-Sen, Min Jing-Chun
PDF
HTML
导出引用
  • 本文改进了多弛豫时间多组分伪势格子玻尔兹曼方法, 使其可以适用于极大黏度比的情况. 研究了二维直通道内的两相流动, 分析了饱和度、黏度比、润湿性和毛细管数对相对渗透率和相渗曲线的影响. 结果表明, 大黏度相的相对渗透率随着黏度比的增大而增大, 维持高流动能力的饱和度范围也随之扩大, 小黏度相与之相反; 黏性耦合效应对两相相对渗透率的影响存在极限, 即不会导致小黏度相的相对渗透率低于最小值, 也不会使大黏度相的相对渗透率高于最大值; 非润湿条件会使大黏度相的流动能力增强, 相对渗透率增加, 并强化相渗曲线的非单调性; 润湿条件会减弱大黏度相的流动能力, 相对渗透率降低; 毛细管数的增加会导致更明显的接触角滞后效应, 使两相相对渗透率降低.
    Immiscible two-phase flow exists in many fields such as the chemical engineering, energy engineering, and geography. It is of great significance in enhancing the oil recovery and geological carbon dioxide storage. Relative permeability is a comprehensive reflection of the effects of various factors including the saturation, contact angle, viscosity ratio, and capillary number of immiscible two-phase flow, and it is a key parameter describing such a flow and thus can directly reflect the flow capacity of each phase. As a new fluid numerical calculation method, the lattice Boltzmann method (LBM) has its own unique advantage in simulating various flows because it does not need to capture the phase interface, and thus has been widely used in recent years. In this research, the multi-relaxation time multi-component pseudopotential lattice Boltzmann method is improved to make it possible to solve the two-phase relative permeability under high viscosity ratios. It is known that the LBM is a particle-based hydrodynamic method, with the spontaneous diffusion of components in multi-component system inevitably causing a mixing between components, leading to distortion of the velocity of two-phase flow with a high viscosity ratio. The color gradient model is introduced into the pseudopotential model for the treatment of mixing, the multiple relaxation time is employed to improve the numerical stability and viscosity ratio range, and the numerical distortion caused by mixing is therefore resolved. The resulting model is validated by the use of the two-phase layered flow in a 2D infinite channel, and accurate numerical results are obtained even if the viscosity ratio reaches 1000. Based on the improved model, the two-phase flow in a two-dimensional horizontal channel is analyzed and the effects of saturation, viscosity ratio, wettability and capillary number on relative permeability and phase permeation curves are investigated. The results show that the relative permeability of the high-viscosity phase increases with the increase of the viscosity ratio, and the saturation range for maintaining high flow capacity broadens with the increase of the low-viscosity phase. There is a limit for the influence of viscous coupling effect on the relative permeability of two phases: at a certain saturation, the relative permeability of the small viscosity phase has a minimum value while that of the large viscosity phase has a maximum value, the viscous coupling effect will never make the relative permeability of the small viscosity phase to be lower than the minimum value and that of the large viscosity phase to be higher than the maximum value. Non-wetting condition plays a role in increasing the flow capacity and relative permeability of the high-viscosity phase, while the wetting condition can weaken the flow capability, relative permeability of the high-viscosity phase. When the high-viscosity phase is a non-wetting phase, the decrease of the contact area with the solid wall increases its proportion in the middle flow passage, which enables it to maintain a strong flow capability in a wide saturation range. Wall wetting tends to inhibit fluid flow and consequently reduce the relative permeability. The increase of the capillary number may cause a more obvious contact angle hysteresis effect, which reduces the relative permeability of two phases.
      通信作者: 闵敬春, minjc@tsinghua.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFA0708704)资助的课题.
      Corresponding author: Min Jing-Chun, minjc@tsinghua.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0708704).
    [1]

    Zhao H, Ning Z, Kang Q, Chen L, Zhao T 2017 Int. Commun. Heat Mass 85 53Google Scholar

    [2]

    Zhang D, Papadikis K, Gu S 2016 Adv. Water Resour. 95 61Google Scholar

    [3]

    Dullien F A L, Dong M 1996 Transport Porous Med. 25 97Google Scholar

    [4]

    Bentsen R G, Manai A A 1993 Transport Porous Med. 11 243Google Scholar

    [5]

    Akbarabadi M, Piri M 2013 Adv. Water Resour. 52 190Google Scholar

    [6]

    Hao L, Cheng P 2010 Int. J. Heat Mass Tran. 53 1908Google Scholar

    [7]

    Li Z, Chen T, Ning Y, Zhang K, Guan Q 2019 Qin SPE Middle East Oil and Gas Show and Conference, Bahrain, March 18–21, 2019 SPE-194770-MS

    [8]

    Wang J, Dong M, Asghari K 2006 SPE/DOE Symposium on Improved Oil Recovery, USA, April 22–26, 2006 SPE-99763-MS

    [9]

    Inamuro T, Ogata T, Tajima S, Konishi N 2004 J. Comput. Phys. 198 628Google Scholar

    [10]

    Rothman D H, Keller J M 1988 J. Stat. Phys. 52 1119Google Scholar

    [11]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815Google Scholar

    [12]

    Swift M R, Orlandini E, Osborn W R, Yeomans J M 1996 Phys. Rev. E 54 5041Google Scholar

    [13]

    He X, Shan X, Doolen G D 1998 Phys. Rev. E 57 R13

    [14]

    Ramstad T, Øren P E, Bakke S 2010 SPE J. 15 917Google Scholar

    [15]

    Liu T, Wang M 2022 Transport Porous Med. 144 111Google Scholar

    [16]

    Li H, Pan C, Miller C T 2005 Phys. Rev. E 72 026705Google Scholar

    [17]

    Yiotis A G, Psihogios J, Kainourgiakis M E, Papaioannou A, Stubos A K 2007 Colloid. Surface. A 300 35Google Scholar

    [18]

    Huang H, Li Z, Liu S, Lu X Y 2009 Int. J. Numer. Meth. Fl. 61 341Google Scholar

    [19]

    Ghassemi A, Pak A 2011 J. Petrol Sci. Eng. 77 135Google Scholar

    [20]

    Gao C, Xu R N, Jiang P X 2015 Int. J. Numer. Meth Fl. 25 1957

    [21]

    Dou Z, Zhou Z F 2013 Int. J. Heat Fluid Fl. 42 23Google Scholar

    [22]

    Zhang D, Li S, Jiao S, Shang Y, Dong M 2019 Int. J. Heat Mass Tran. 134 311Google Scholar

    [23]

    Li S, Jiang F, Wei B, Hou J, Liu H 2021 Phys. Fluids 33 063302Google Scholar

    [24]

    Huang H, Sukop M, Lu X 2015 Multiphase Lattice Boltzmann Methods: Theory and Application (Oxford: Wiley Blackwell) pp96–99

    [25]

    Guo Z, Zheng C, Shi B 2008 Phys. Rev. E 77 036707Google Scholar

    [26]

    Zheng J, Chen Z, Xie C, Wang Z, Lei Z, Ju Y, Wang M 2018 Comput. Fluids 168 21Google Scholar

  • 图 1  两组分表面张力验证结果  (a), (b) 方形液滴在表面张力的作用下逐渐变为圆形液滴; (c) 液滴内外的压力差与曲率半径的线性关系

    Fig. 1.  The verification of two-component surface tension: (a), (b) The square drops gradually become round drops under the action of surface tension; (c) linear relationship between the pressure difference inside and outside the droplet and the radius of curvature.

    图 2  不同接触角的模拟结果 (a) θ = 30°; (b) θ = 90°; (c) θ = 150°

    Fig. 2.  Simulation results of the different contact angles: (a) θ = 30°; (b) θ = 90°; (c) θ = 150°.

    图 3  二维直通道示意图

    Fig. 3.  2D horizontal channel diagram.

    图 4  二维无限长直通道相对渗透率曲线 (a) M = 10; (b) M = 100; (c) M = 1000

    Fig. 4.  Relative permeability curves of 2D infinite horizontal channel: (a) M = 10; (b) M = 100; (c) M = 1000.

    图 5  不同随机初始化和最终相分布的演化结果

    Fig. 5.  Evolution results of different random initializations and final phase distributions.

    图 6  不同随机初始化情况下相对渗透率随计算时间的变化

    Fig. 6.  Variation of relative permeability with time under different random initialization conditions.

    图 7  $ {S}_{1}=0.7 $时, 不同黏度比下的流动形态(a1)—(a5)和速度分布(b1)—(b5)  (a1), (b1) M = 1; (a2), (b2) M = 20; (a3), (b3) M = 40; (a4), (b4) M = 100; (a5), (b5) M = 200

    Fig. 7.  Flow pattern (a1)–(a5) and velocity distribution (b1)–(b5) for the different viscosity ratios at $ {S}_{1}=0.7 $: (a1), (b1) M = 1; (a2), (b2) M = 20; (a3), (b3) M = 40; (a4), (b4) M = 100; (a5), (b5) M = 200.

    图 8  θ = 90°时, 中性润湿条件下不同黏度比时的相对渗透率曲线

    Fig. 8.  Relative permeability curves with different viscosity ratios under neutral wetting condition at θ = 90°.

    图 9  θ = 90°时, 相同饱和度下相对渗透率随黏度比变化曲线 (a)相1相对渗透率变化; (b) 相2相对渗透率变化

    Fig. 9.  Relative permeability versus viscosity ratio at the same saturation at θ = 90°: (a) Relative permeability changes of phase 1; (b) relative permeability changes of phase 2.

    图 10  M = 100时, 不同润湿条件下的相对渗透率曲线 (a)相1相对渗透率变化; (b)相2相对渗透率变化

    Fig. 10.  Relative permeability curves under different wetting conditions at M = 100: (a) Relative permeability changes of phase 1; (b) relative permeability changes of phase 2.

    图 11  $ {S}_{1}=0.7 $时, 不同润湿条件下的稳态相分布  (a) θ = 30°; (b) θ = 90°; (c) θ = 150°

    Fig. 11.  Stable phase distributions under the different wetting conditions for $ {S}_{1}=0.7 $: (a) θ = 30°; (b) θ = 90°; (c) θ = 150°.

    图 12  M = 100, ${S}_{1}=0.7 \;({S}_{2}=0.3)$时, 相对渗透率随接触角变化曲线

    Fig. 12.  Relative permeability curve with contact angle for M = 100 and ${S}_{1}=0.7 \;({S}_{2}=0.3)$.

    图 13  M = 1, θ = 90°时, 不同毛细管数下的相渗曲线

    Fig. 13.  Relative permeability curves for different capillary numbers at M = 1 and θ = 90°.

    图 14  $ {S}_{1}=0.7 $时, 不同毛细管数下的相分布 (a) $ Ca= $$ 0.021 $; (b) $ Ca=0.041 $; (c) $ Ca=0.082 $

    Fig. 14.  Phase distributions for different capillary numbers for $ {S}_{1}=0.7 $: (a) $ Ca=0.021 $; (b) $ Ca=0.041 $ ; (c) $Ca= $$ 0.082$.

    表 1  不同黏度比下的两组分表面张力

    Table 1.  Surface tensions of two-component under different viscosity ratios.

    黏度比M表面张力σ
    10.1452
    200.1379
    500.1330
    1000.1371
    2000.1325
    下载: 导出CSV
  • [1]

    Zhao H, Ning Z, Kang Q, Chen L, Zhao T 2017 Int. Commun. Heat Mass 85 53Google Scholar

    [2]

    Zhang D, Papadikis K, Gu S 2016 Adv. Water Resour. 95 61Google Scholar

    [3]

    Dullien F A L, Dong M 1996 Transport Porous Med. 25 97Google Scholar

    [4]

    Bentsen R G, Manai A A 1993 Transport Porous Med. 11 243Google Scholar

    [5]

    Akbarabadi M, Piri M 2013 Adv. Water Resour. 52 190Google Scholar

    [6]

    Hao L, Cheng P 2010 Int. J. Heat Mass Tran. 53 1908Google Scholar

    [7]

    Li Z, Chen T, Ning Y, Zhang K, Guan Q 2019 Qin SPE Middle East Oil and Gas Show and Conference, Bahrain, March 18–21, 2019 SPE-194770-MS

    [8]

    Wang J, Dong M, Asghari K 2006 SPE/DOE Symposium on Improved Oil Recovery, USA, April 22–26, 2006 SPE-99763-MS

    [9]

    Inamuro T, Ogata T, Tajima S, Konishi N 2004 J. Comput. Phys. 198 628Google Scholar

    [10]

    Rothman D H, Keller J M 1988 J. Stat. Phys. 52 1119Google Scholar

    [11]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815Google Scholar

    [12]

    Swift M R, Orlandini E, Osborn W R, Yeomans J M 1996 Phys. Rev. E 54 5041Google Scholar

    [13]

    He X, Shan X, Doolen G D 1998 Phys. Rev. E 57 R13

    [14]

    Ramstad T, Øren P E, Bakke S 2010 SPE J. 15 917Google Scholar

    [15]

    Liu T, Wang M 2022 Transport Porous Med. 144 111Google Scholar

    [16]

    Li H, Pan C, Miller C T 2005 Phys. Rev. E 72 026705Google Scholar

    [17]

    Yiotis A G, Psihogios J, Kainourgiakis M E, Papaioannou A, Stubos A K 2007 Colloid. Surface. A 300 35Google Scholar

    [18]

    Huang H, Li Z, Liu S, Lu X Y 2009 Int. J. Numer. Meth. Fl. 61 341Google Scholar

    [19]

    Ghassemi A, Pak A 2011 J. Petrol Sci. Eng. 77 135Google Scholar

    [20]

    Gao C, Xu R N, Jiang P X 2015 Int. J. Numer. Meth Fl. 25 1957

    [21]

    Dou Z, Zhou Z F 2013 Int. J. Heat Fluid Fl. 42 23Google Scholar

    [22]

    Zhang D, Li S, Jiao S, Shang Y, Dong M 2019 Int. J. Heat Mass Tran. 134 311Google Scholar

    [23]

    Li S, Jiang F, Wei B, Hou J, Liu H 2021 Phys. Fluids 33 063302Google Scholar

    [24]

    Huang H, Sukop M, Lu X 2015 Multiphase Lattice Boltzmann Methods: Theory and Application (Oxford: Wiley Blackwell) pp96–99

    [25]

    Guo Z, Zheng C, Shi B 2008 Phys. Rev. E 77 036707Google Scholar

    [26]

    Zheng J, Chen Z, Xie C, Wang Z, Lei Z, Ju Y, Wang M 2018 Comput. Fluids 168 21Google Scholar

  • [1] 隋鹏翔. 颗粒尺寸对纳米流体自然对流模式影响的格子Boltzmann方法模拟. 物理学报, 2024, 73(23): 234702. doi: 10.7498/aps.73.20241332
    [2] 张乾毅, 韦华健, 李华兵. 基于晶格玻尔兹曼方法的多段淋巴管模型. 物理学报, 2021, 70(21): 210501. doi: 10.7498/aps.70.20210514
    [3] 张贝豪, 郑林. 倾斜多孔介质方腔内纳米流体自然对流的格子Boltzmann方法模拟. 物理学报, 2020, 69(16): 164401. doi: 10.7498/aps.69.20200308
    [4] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [5] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型. 物理学报, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [6] 何郁波, 唐先华, 林晓艳. 基于格子玻尔兹曼方法的一类FitzHugh-Nagumo系统仿真研究. 物理学报, 2016, 65(15): 154701. doi: 10.7498/aps.65.154701
    [7] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟. 物理学报, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [8] 陈佳民, 蒋燕华, 施娟, 周锦阳, 李华兵. 脉动流在分叉管中通栓效果的晶格玻尔兹曼方法研究. 物理学报, 2015, 64(14): 144701. doi: 10.7498/aps.64.144701
    [9] 施娟, 王立龙, 周锦阳, 薛泽, 李华兵, 王健, 谭惠丽. 用晶格玻尔兹曼方法研究血液在分岔管中的栓塞. 物理学报, 2014, 63(1): 014702. doi: 10.7498/aps.63.014702
    [10] 薛泽, 施娟, 王立龙, 周锦阳, 谭惠丽, 李华兵. 粒子在锥形管中运动的晶格玻尔兹曼方法研究. 物理学报, 2013, 62(8): 084702. doi: 10.7498/aps.62.084702
    [11] 郑晖, 张崇宏, 孙博, 杨义涛, 白彬, 宋银, 赖新春. 小体积比两相分离早期过程的三维格子气模型研究. 物理学报, 2013, 62(15): 156401. doi: 10.7498/aps.62.156401
    [12] 孙东科, 项楠, 陈科, 倪中华. 格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为. 物理学报, 2013, 62(2): 024703. doi: 10.7498/aps.62.024703
    [13] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟. 物理学报, 2013, 62(12): 120502. doi: 10.7498/aps.62.120502
    [14] 吴伟, 孙东科, 戴挺, 朱鸣芳. 枝晶生长和气泡形成的数值模拟. 物理学报, 2012, 61(15): 150501. doi: 10.7498/aps.61.150501
    [15] 王文霞, 施娟, 邱冰, 李华兵. 用晶格玻尔兹曼方法研究微结构表面的疏水性能. 物理学报, 2010, 59(12): 8371-8376. doi: 10.7498/aps.59.8371
    [16] 周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟. 物理学报, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [17] 施娟, 李剑, 邱冰, 李华兵. 用晶格玻尔兹曼方法研究颗粒在涡流中的运动. 物理学报, 2009, 58(8): 5174-5178. doi: 10.7498/aps.58.5174
    [18] 孙东科, 朱鸣芳, 杨朝蓉, 潘诗琰, 戴挺. 强制对流和自然对流作用下枝晶生长的数值模拟. 物理学报, 2009, 58(13): 285-S291. doi: 10.7498/aps.58.285
    [19] 邓敏艺, 施 娟, 李华兵, 孔令江, 刘慕仁. 用晶格玻尔兹曼方法研究螺旋波的产生机制和演化行为. 物理学报, 2007, 56(4): 2012-2017. doi: 10.7498/aps.56.2012
    [20] 许友生, 李华兵, 方海平, 黄国翔. 用格子玻尔兹曼方法研究流动-反应耦合的非线性渗流问题. 物理学报, 2004, 53(3): 773-777. doi: 10.7498/aps.53.773
计量
  • 文章访问数:  3958
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-21
  • 修回日期:  2023-02-01
  • 上网日期:  2023-02-23
  • 刊出日期:  2023-04-20

/

返回文章
返回