搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光烧蚀固体碳氢材料的离子组分分离研究

陆云杰 陶弢 赵斌 郑坚

引用本文:
Citation:

激光烧蚀固体碳氢材料的离子组分分离研究

陆云杰, 陶弢, 赵斌, 郑坚

Separation of ion component from solid hydrocarbon materials by laser ablation

Lu Yun-Jie, Tao Tao, Zhao Bin, Zheng Jian
PDF
HTML
导出引用
  • 本文从双离子组分等离子体的Landau-Fokker-Planck方程出发, 通过Chapman-Enskog方法约化得到离子输运方程, 求得双离子组分等离子体的离子输运系数, 给出了计及离子扩散的完备离子流体方程; 再结合一维辐射流体力学程序Multi-1D模拟得到的烧蚀层的宏观状态, 研究了激光烧蚀固体碳氢材料时的组分分离现象. 计算结果显示, 离子组分分离对等离子体流体演化的影响小, 基本可以忽略; 但对于敏感依赖于离子组分的其他物理过程, 如汤姆孙散射, 离子组分分离的影响显著, 这意味着研究激光等离子体相互作用时, 离子组分分离必须予以考虑.
    Plasma usually consists of multiple ion component. Ion-component separation occurs in various conditions, and profoundly affects the plasma dynamic evolution. In this work, ion-component separation in two-ion-component plasma is investigated in the hydrodynamic condition. Starting from the Landau-Fokker-Planck equations of two-ion-component plasma, the ion transport equations are reduced through the Chapman-Enskog approach. The transport equations are then transformed into a set of linear algebraic equations and solved by expanding the perturbed ion distribution functions into the series of Sonine polynomials. The diffusive ion mass flows with inclusion of baro-diffusion, thermo-diffusion and electro-diffusion are thus obtained. With these efforts, the complete ion fluid equations are presented, which can be used to describe the processes of ion-component separation. We evaluate ion-component separation in the case of a solid CH plate target ablated with a laser pulse, by solving the ion diffusion equation with the hydro states output from the one-dimensional radiative hydro code Multi-1D. The simulation results show that ion-component separation mainly occurs around ablation front and under-dense region, and that the effect of ion-species separation on plasma hydrodynamic evolution is minor and can be neglected. For those physical processes sensitive to ion concentration such as Thomson scattering, however, the effect of ion-component separation is significant, which means that ion-component separation should be included in the study of laser plasma interaction.
      通信作者: 郑坚, jzheng@ustc.edu.cn
    • 基金项目: 中国科学院战略性先导科技专项(批准号: XDA25010200, XDA25050600)和中央高校基本科研业务费专项资金(批准号: WK2140000014)资助的课题.
      Corresponding author: Zheng Jian, jzheng@ustc.edu.cn
    • Funds: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25010200, XDA25050600) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. WK2140000014).
    [1]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Vol. 125) (Oxford: Oxford University) pp38–41

    [2]

    Zimmerman G, Kershaw D, Bailey D, Harte J 1978 J. Opt. Soc. Am. 68 549

    [3]

    Marinak M M, Kerbel G D, Gentile N A, Jones O, Munro D, Pollaine S, Dittrich T R, Haan S W 2001 Phys. Plasmas 8 2275Google Scholar

    [4]

    Radha P B, Goncharov V N, Collins T J B, Delettrez J A, Elbaz Y, Glebov V Y, Keck R L, Keller D E, Knauer J P, Marozas J A, Marshall F J, McKenty P W, Meyerhofer D D, Regan S P, Sangster T C, Shvarts D, Skupsky S, Srebro Y, Town R P J, Stoeckl C 2005 Phys. Plasmas 12 032702Google Scholar

    [5]

    Song P, Zhai C, Li S, Yong H, Qi J, Hang X, Yang R, Cheng J, Zeng Q, Hu X, Wang S, Shi Y, Zheng W, Gu P, Zou S, Li X, Zhao Y, Zhang H, Zhang A, An H, Li J, Pei W, Zhu S 2015 High Power Laser Part. Beams 27 032007Google Scholar

    [6]

    Landau L D, Lifshitz E M 1987 Fluid Mechanics (Vol. 6) (Oxford: Pergamon) pp227–235

    [7]

    Amendt P, Bellei C, Wilks S 2012 Phys. Rev. Lett. 109 075002Google Scholar

    [8]

    Kagan G, Tang X Z 2012 Phys. Plasmas 19 082709Google Scholar

    [9]

    Hicks D G, Meezan N B, Dewald E L, et al. 2012 Phys. Plasmas 19 122702Google Scholar

    [10]

    MacLaren S A, Schneider M B, Widmann K, Hammer J H, Yoxall B E, Moody J D, Bell P M, Benedetti L R, Bradley D K, Edwards M J, Guymer T M, Hinkel D E, Hsing W W, Kervin M L, Meezan N B, Moore A S, Ralph J E 2014 Phys. Rev. Lett. 112 105003Google Scholar

    [11]

    Kagan G, Tang X Z 2014 Phys. Lett. A 378 1531Google Scholar

    [12]

    Michel D T, Goncharov V N, Igumenshchev I V, Epstein R, Froula D H 2013 Phys. Rev. Lett. 111 245005Google Scholar

    [13]

    Clark D S, Weber C R, Kritcher A L, Milovich J L, Patel P K, Haan S W, Hammel B A, Koning J M, Marinak M M, Patel M V, Schroeder C R, Sepke S M, Edwards M J 2019 Nucl. Fusion 59 032008Google Scholar

    [14]

    Haberberger D, Shvydky A, Goncharov V N, Cao D, Carroll-Nellenback J, Hu S X, Ivancic S T, Karaseiv V V, Knauer J P, Maximov A V, Froula D H 2019 Phys. Rev. Lett. 123 235001Google Scholar

    [15]

    Zhang S, Hu S X 2020 Phys. Rev. Lett. 125 105001Google Scholar

    [16]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [17]

    Ramis R, Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226Google Scholar

    [18]

    Byvank T, Langendorf S J, Thoma C, Hsu S C 2020 Phys. Plasmas 27 042302Google Scholar

    [19]

    Simakov A N, Keenan B D, Taitano W T, Chacon L 2017 Phys. Plasmas 24 092702Google Scholar

    [20]

    Chapmann S, Cowling T 1970 The Mathematical Theory of Non-Uniform Gases (Cambridge: Cambridge University)

    [21]

    Braginskii S 1965 Rev. Plasma Phys. 1 205

    [22]

    Molvig K, Simakov A N, Vold E L 2014 Phys. Plasmas 21 092709Google Scholar

    [23]

    Ross J S, Park H S, Amendt P, Divol L, Kugland N L, Rozmus W, Glenzer S H 2012 Rev. Sci. Instrum. 83 10e323Google Scholar

    [24]

    Stejner M, Nielsen S K, Bindslev H, Korsholm S B, Salewski M 2011 Plasma Phys. Control. Fusion 53 065020Google Scholar

  • 图 1  4种扩散系数和质量丰度c的关系 (a) CH; (b) DT

    Fig. 1.  Four diffusion coefficients as a function of mass concentration c for two materials: (a) CH; (b) DT.

    图 2  动摩擦系数Aab随质量丰度c的函数

    Fig. 2.  Dynamic friction coefficient Aab as a function of mass concentration c for two materials.

    图 3  (a) 1.6 ns时电子温度和离子温度随空间的分布; (b) 1.6 ns时电子压力和离子压力随空间的分布

    Fig. 3.  (a) Spatial distribution of electron temperature and ion temperature in 1.6 ns; (b) spatial distribution of electron pressure and ion pressure in 1.6 ns.

    图 4  1.6 ns时电子密度随空间分布图

    Fig. 4.  Spatial distribution of electron density in 1.6 ns.

    图 5  不同时刻下H离子粒子数丰度${\zeta _a}$随空间的变化, 其中黑色虚线表示烧蚀面, 红色虚线表示临界密度面, 蓝色虚线表示1/4临界密度面, 黄色虚线表示1/10临界密度面 (a) 0.4 ns; (b) 0.8 ns; (c) 1.2 ns; (d) 1.6 ns

    Fig. 5.  The variation of H ion particle number abundance ${\zeta _a}$ with space at different times. Black dotted line indicates ablation front, red dotted line indicates critical density surface, blue dotted line indicates 1/4 critical density surface, yellow dotted line indicates 1/10 critical density surface: (a) 0.4 ns; (b) 0.8 ns; (c) 1.2 ns; (d) 1.6 ns.

    图 6  电子-离子温度弛豫项随H离子粒子数丰度变化

    Fig. 6.  Variation of electron-ion thermal relaxation term with the abundance of H-ion particles.

    图 7  离子比内能随H离子粒子数丰度变化图

    Fig. 7.  Variation of ion specific internal energy with the abundance of H-ion particles

    图 8  2927 μm处离子声波在1.6 ns时对应的汤姆逊散射光谱

    Fig. 8.  Thomson scattering spectrum of ion acoustic wave at 2927 μm in 1.6 ns.

  • [1]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Vol. 125) (Oxford: Oxford University) pp38–41

    [2]

    Zimmerman G, Kershaw D, Bailey D, Harte J 1978 J. Opt. Soc. Am. 68 549

    [3]

    Marinak M M, Kerbel G D, Gentile N A, Jones O, Munro D, Pollaine S, Dittrich T R, Haan S W 2001 Phys. Plasmas 8 2275Google Scholar

    [4]

    Radha P B, Goncharov V N, Collins T J B, Delettrez J A, Elbaz Y, Glebov V Y, Keck R L, Keller D E, Knauer J P, Marozas J A, Marshall F J, McKenty P W, Meyerhofer D D, Regan S P, Sangster T C, Shvarts D, Skupsky S, Srebro Y, Town R P J, Stoeckl C 2005 Phys. Plasmas 12 032702Google Scholar

    [5]

    Song P, Zhai C, Li S, Yong H, Qi J, Hang X, Yang R, Cheng J, Zeng Q, Hu X, Wang S, Shi Y, Zheng W, Gu P, Zou S, Li X, Zhao Y, Zhang H, Zhang A, An H, Li J, Pei W, Zhu S 2015 High Power Laser Part. Beams 27 032007Google Scholar

    [6]

    Landau L D, Lifshitz E M 1987 Fluid Mechanics (Vol. 6) (Oxford: Pergamon) pp227–235

    [7]

    Amendt P, Bellei C, Wilks S 2012 Phys. Rev. Lett. 109 075002Google Scholar

    [8]

    Kagan G, Tang X Z 2012 Phys. Plasmas 19 082709Google Scholar

    [9]

    Hicks D G, Meezan N B, Dewald E L, et al. 2012 Phys. Plasmas 19 122702Google Scholar

    [10]

    MacLaren S A, Schneider M B, Widmann K, Hammer J H, Yoxall B E, Moody J D, Bell P M, Benedetti L R, Bradley D K, Edwards M J, Guymer T M, Hinkel D E, Hsing W W, Kervin M L, Meezan N B, Moore A S, Ralph J E 2014 Phys. Rev. Lett. 112 105003Google Scholar

    [11]

    Kagan G, Tang X Z 2014 Phys. Lett. A 378 1531Google Scholar

    [12]

    Michel D T, Goncharov V N, Igumenshchev I V, Epstein R, Froula D H 2013 Phys. Rev. Lett. 111 245005Google Scholar

    [13]

    Clark D S, Weber C R, Kritcher A L, Milovich J L, Patel P K, Haan S W, Hammel B A, Koning J M, Marinak M M, Patel M V, Schroeder C R, Sepke S M, Edwards M J 2019 Nucl. Fusion 59 032008Google Scholar

    [14]

    Haberberger D, Shvydky A, Goncharov V N, Cao D, Carroll-Nellenback J, Hu S X, Ivancic S T, Karaseiv V V, Knauer J P, Maximov A V, Froula D H 2019 Phys. Rev. Lett. 123 235001Google Scholar

    [15]

    Zhang S, Hu S X 2020 Phys. Rev. Lett. 125 105001Google Scholar

    [16]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [17]

    Ramis R, Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226Google Scholar

    [18]

    Byvank T, Langendorf S J, Thoma C, Hsu S C 2020 Phys. Plasmas 27 042302Google Scholar

    [19]

    Simakov A N, Keenan B D, Taitano W T, Chacon L 2017 Phys. Plasmas 24 092702Google Scholar

    [20]

    Chapmann S, Cowling T 1970 The Mathematical Theory of Non-Uniform Gases (Cambridge: Cambridge University)

    [21]

    Braginskii S 1965 Rev. Plasma Phys. 1 205

    [22]

    Molvig K, Simakov A N, Vold E L 2014 Phys. Plasmas 21 092709Google Scholar

    [23]

    Ross J S, Park H S, Amendt P, Divol L, Kugland N L, Rozmus W, Glenzer S H 2012 Rev. Sci. Instrum. 83 10e323Google Scholar

    [24]

    Stejner M, Nielsen S K, Bindslev H, Korsholm S B, Salewski M 2011 Plasma Phys. Control. Fusion 53 065020Google Scholar

  • [1] 杨振宇, 张元哲, 范威, 杨广杰, 韩先伟. 磁等离子体发动机中磁喷管分离过程的流体模拟. 物理学报, 2024, 73(10): 105201. doi: 10.7498/aps.73.20231862
    [2] 周毛吉, 李亚举, 钱东斌, 叶晓燕, 林平, 马新文. 粒径对激光驱动颗粒溅射动力学特征的影响. 物理学报, 2022, 71(14): 145203. doi: 10.7498/aps.71.20220243
    [3] 叶浩, 黄印博, 王琛, 刘国荣, 卢兴吉, 曹振松, 黄尧, 齐刚, 梅海平. 激光烧蚀-吸收光谱测量铀同位素比实验研究. 物理学报, 2021, 70(16): 163201. doi: 10.7498/aps.70.20210193
    [4] 白清顺, 张凯, 沈荣琦, 张飞虎, 苗心向, 袁晓东. 单晶铁金属表面污染物的激光烧蚀机理. 物理学报, 2018, 67(23): 234401. doi: 10.7498/aps.67.20180999
    [5] 罗乐乐, 窦志国, 叶继飞. 掺杂红外染料聚叠氮缩水甘油醚工质激光烧蚀推进性能优化探索. 物理学报, 2018, 67(18): 187901. doi: 10.7498/aps.67.20180479
    [6] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用. 物理学报, 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [7] 段兴跃, 李小康, 程谋森, 李干. 激光烧蚀掺杂金属聚合物羽流屏蔽特性数值研究. 物理学报, 2016, 65(19): 197901. doi: 10.7498/aps.65.197901
    [8] 康小卫, 陈龙, 陈洁, 盛政明. 大气环境下飞秒激光对铝靶烧蚀过程的研究. 物理学报, 2016, 65(5): 055204. doi: 10.7498/aps.65.055204
    [9] 李干, 程谋森, 李小康. 激光烧蚀聚甲醛的热-化学耦合模型及其验证. 物理学报, 2014, 63(10): 107901. doi: 10.7498/aps.63.107901
    [10] 刘慎业, 黄翼翔, 胡昕, 张继彦, 杨国洪, 李军, 易荣清, 杜华冰, 丁永坤. 高强度二倍频激光辐照银薄膜靶的烧蚀和X光辐射实验研究. 物理学报, 2013, 62(3): 035202. doi: 10.7498/aps.62.035202
    [11] 常浩, 金星, 陈朝阳. 纳秒激光烧蚀冲量耦合数值模拟. 物理学报, 2013, 62(19): 195203. doi: 10.7498/aps.62.195203
    [12] 包凌东, 韩敬华, 段涛, 孙年春, 高翔, 冯国英, 杨李茗, 牛瑞华, 刘全喜. 纳秒紫外重复脉冲激光烧蚀单晶硅的热力学过程研究. 物理学报, 2012, 61(19): 197901. doi: 10.7498/aps.61.197901
    [13] 陈安民, 高勋, 姜远飞, 丁大军, 刘航, 金明星. 数值模拟飞秒激光加热金属的热电子发射. 物理学报, 2010, 59(10): 7198-7202. doi: 10.7498/aps.59.7198
    [14] 刘世炳, 刘院省, 何润, 陈涛. 纳秒激光诱导铜等离子体中原子激发态 5s' 4D7/2的瞬态特性研究. 物理学报, 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [15] 黄庆举. 激光烧蚀金属Al诱导发光的动力学研究. 物理学报, 2008, 57(4): 2314-2319. doi: 10.7498/aps.57.2314
    [16] 郑新亮, 李广山, 钟寿仙, 田进寿, 李振红, 任兆玉. 激光烧蚀对碳纳米管薄膜场发射性能的影响. 物理学报, 2008, 57(12): 7912-7918. doi: 10.7498/aps.57.7912
    [17] 张 翼, 郑志远, 李玉同, 刘 峰, 李汉明, 鲁 欣, 张 杰. 两个冲击波相互碰撞的演化过程. 物理学报, 2007, 56(10): 5931-5936. doi: 10.7498/aps.56.5931
    [18] 成金秀, 郑志坚, 陈红素, 缪文勇, 陈 波, 王耀梅, 胡 昕. 1.06μm 激光直接驱动烧蚀靶内爆压缩特性. 物理学报, 2004, 53(10): 3419-3423. doi: 10.7498/aps.53.3419
    [19] 张树东, 李海洋. 激光烧蚀Al热原子与CF4反应中C2的形成及其发光光谱研究. 物理学报, 2003, 52(5): 1297-1301. doi: 10.7498/aps.52.1297
    [20] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波. 物理学报, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
计量
  • 文章访问数:  3111
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-03
  • 修回日期:  2023-02-06
  • 上网日期:  2023-02-11
  • 刊出日期:  2023-04-05

/

返回文章
返回