搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sc掺杂Ti1–xNiSb半哈斯勒合金的制备与热电性能

刘榕涛 王晨阳 黄嘉勉 罗鹏飞 刘欣 叶松 董子睿 张继业 骆军

引用本文:
Citation:

Sc掺杂Ti1–xNiSb半哈斯勒合金的制备与热电性能

刘榕涛, 王晨阳, 黄嘉勉, 罗鹏飞, 刘欣, 叶松, 董子睿, 张继业, 骆军

Preparation and thermoelectric properties of Sc-doped Ti1–xNiSb half-Heusler alloys

Liu Rong-Tao, Wang Chen-Yang, Huang Jia-Mian, Luo Peng-Fei, Liu Xin, Ye Song, Dong Zi-Rui, Zhang Ji-Ye, Luo Jun
PDF
HTML
导出引用
  • 采用高能球磨法制备了Ti1–xNiSb (x = 0, 0.10, 0.15, 0.20, 0.25) 和Ti1–xyScyNiSb (x = 0.10, 0.15; y = 0.03, 0.05) 样品, 并系统地研究了Sc掺杂对Ti1–xNiSb样品的物相、微结构以及电热输运性能的影响. 实验结果表明, Sc掺杂能够有效降低载流子浓度, 提高塞贝克系数, 改善材料的电输运性能. 此外, 由于Sc掺杂能够提高原子间的结合能, 从而有效减少了NiSb杂相. Ti1–xyScyNiSb的晶格热导率随Sc掺杂而上升, 这可归因于化学键的增强以及电声散射作用的减弱. 但是载流子浓度的急剧下降导致样品的电子热导率显著下降, 从而Ti1–xyScyNiSb样品的总热导率明显降低. 最终, Ti0.8Sc0.05NiSb样品获得最佳的热电性能, 其功率因子在973 K达到17.7 μW·cm-1·K-2, 无量纲热电优值ZT在973 K达到0.42, 相比未掺杂的单相Ti0.9NiSb样品提升了180%.
    The nominal composition TiNiSb with 19 valence electrons is demonstrated to be composed of off-stoichiometric half-Heusler phase and impurities. In this work, the Ti1–xNiSb (x = 0, 0.10, 0.15, 0.20, 0.25) samples are prepared by ball milling and spark plasma sintering. The single-phase Ti0.9NiSb sample, deviating from the theoretical composition Ti0.75NiSb base on 18-electron rule, is obtained, which might be ascribed to the small defect formation energy of Ti filling the vacancy as well as our ball-milling preparation method. With the single-phase Ti0.9NiSb sample used as the base material, a small amount of Sc is used to partially replace Ti in order to further reduce the carrier concentration. Thus, the Ti1–xyScyNiSb (x = 0.10, 0.15; y = 0.03, 0.05) samples are designed to investigate the effect of Sc doping on the thermoelectric properties. The X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) analysis confirm the single-phase nature of the Ti1–xyScyNiSb samples. Energy-dispersive X-ray spectroscopy (EDS) results indicate that the actual compositions of the Ti1–xyScyNiSb samples are consistent well with their nominal compositions, and all elements are distributed uniformly in the sample. Moreover, the doping of Sc can increase the content of Ti vacancy while maintaining the single-phase structure, which could be attributed to the higher binding energy between Sc and Sb because the electronegativity of Sc is less than that of Ti. Both the substitution of Sc for Ti and the increase of the Ti vacancies significantly reduce the carrier concentration, which decreases from ~13.6 × 1021 cm–3 for Ti0.9NiSb to ~3.4 × 1021 cm–3 for Ti0.8Sc0.05NiSb. The reduced carrier concentration results in greatly increased Seebeck coefficient, therefore the Ti0.8Sc0.05NiSb sample achieves a power factor as high as 17.7 μW·cm-1·K-2 at 973 K. Although the lattice thermal conductivity of Sc-doped sample increases slightly due to the reduction of electron–phonon scattering and the enhancement of chemical bonds, the total thermal conductivity decreases dramatically due to the electronic thermal conductivity decreasing greatly. Finally, the Ti0.8Sc0.05NiSb sample reaches a ZT value of ~0.42 at 973 K, which is 180% higher than that of Ti0.9NiSb sample. Despite the fact that the thermoelectric performance of our sample is still inferior to those of the state-of-the-art off-stoichiometric 19-electron half-Heusler alloys, this work demonstrates that the thermoelectric performance of Ti1–xNiSb can be further improved by non-isoelectronic doping.
      通信作者: 董子睿, zirui@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51902194, 52272226)资助的课题.
      Corresponding author: Dong Zi-Rui, zirui@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51902194, 52272226).
    [1]

    Bell L E 2008 Science 321 1457Google Scholar

    [2]

    Jia N, Cao J, Tan X Y, Dong J F, Liu H F, Tan C K I, Xu J W, Yan Q Y, Loh X J, Suwardi A 2021 Energy Environ. Sci. 21 100519Google Scholar

    [3]

    Min R A, Wang Y X, Jiang X, Chen R C, Kang H J, Guo E Y, Chen Z N, Yang X, Wang T M 2022 Chem. Eng. J. 449 137898Google Scholar

    [4]

    Joshi G, Dahal T, Chen S, Wang H Z, Shiomi J, Chen G, Ren Z F 2013 Nano Energy 2 82Google Scholar

    [5]

    Yu C, Zhu T J, Shi R Z, Zhang Y, Zhao X B, He J 2009 Acta Mater. 57 2757Google Scholar

    [6]

    Fu C G, Zhu T J, Liu Y T, Xie H H, Zhao X B 2015 Energy Environ. Sci. 8 216Google Scholar

    [7]

    Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D, Snyder G J 2011 Nature 473 66Google Scholar

    [8]

    Fu C G, Zhu T J, Pei Y Z, Xie H H, Wang H, Snyder G J, Liu Y, Liu Y T, Zhao X B 2014 Adv. Energy Mater. 4 1400600Google Scholar

    [9]

    Tan C, Wang H X, Yao J, Chen T T, Wang L, Sun Y Q, Khan M, Wang H C, Wang C L 2022 J. Eur. Ceram. Soc. 42 7010Google Scholar

    [10]

    Biswas K, He J Q, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414Google Scholar

    [11]

    Sun Y J, Shuai Z G, Wang D 2019 J. Phys. Chem. C 123 12001Google Scholar

    [12]

    He R, Gahlawat S, Guo C F, Chen S, Dahal T, Zhang H, Liu W S, Zhang Q, Chere E, White K, Ren Z F 2015 Phys. Status. Solidi. A 212 2191Google Scholar

    [13]

    Graf T, Felser C, Parkin S S P 2011 Prog. Solid. State Ch. 39 1Google Scholar

    [14]

    Sakurada S, Shutoh N 2005 Appl. Phys. Lett. 86 082105Google Scholar

    [15]

    Uher C, Yang J, Hu S, Morelli D T, Meisner G P 1999 Phys. Rev. B 59 8615Google Scholar

    [16]

    王鹏将, 康慧君, 杨雄, 刘颖, 程成, 王同敏 2022 无机材料学报 37 717Google Scholar

    Wang P J, Kang H J, Yang X, Liu Y, Cheng C, Wang T M 2022 J. Inorg. Mater. 37 717Google Scholar

    [17]

    Sekimoto T, Kurosaki K, Muta H, Yamanaka S 2006 Mater. Trans. 47 1445Google Scholar

    [18]

    Sekimoto T, Kurosaki K, Muta H, Yamanaka S 2005 Mater. Trans. 46 1481Google Scholar

    [19]

    Sekimoto T, Kurosaki K, Muta H, Yamanaka S 2007 Jpn. J. Appl. Phys. 46 L673Google Scholar

    [20]

    Huang Y, Hayashi K, Miyazaki Y 2020 Chem. Mater. 32 5173Google Scholar

    [21]

    Joshi G, He R, Engber M, Samsonidze G, Pantha T, Dahal E, Dahal K, Yang J, Lan Y C, Kozinsky B, Ren Z F 2014 Energy Environ. Sci. 7 4070Google Scholar

    [22]

    Zhu H T, Mao J, Li Y W, et al. 2019 Nat. Commun. 10 270Google Scholar

    [23]

    Xia K, Liu Y, Anand S, Snyder G J, Xin J, Yu J, Zhao X, Zhu T 2018 Adv. Funct. Mater. 28 1705845Google Scholar

    [24]

    Li S, Bai F X, Wang R F, Chen C, Li X F, Cao F, Yu B, Sui J H, Liu X J, Ren Z F, Zhang Q 2020 Ann. Phys. 532 1900440Google Scholar

    [25]

    Miranda J, Gruhn T 2022 J. Electron. Mater. 51 2043Google Scholar

    [26]

    Huang L H, Wang J C, Mo X B, Lei X B, Ma S D, Wang C, Zhang Q Y 2019 Materials 12 1637Google Scholar

    [27]

    Kainuma R, Umino R, Xu X, Han K, Omori T 2020 J. Phase. Equilibria. Diffus. 41 116Google Scholar

    [28]

    Romaka V V, Rogl P, Romaka L, Stadnyk Y, Melnychenko N, Grytsiv A, Falmbigl M, Skryabina N 2013 J. Solid State Chem. 197 103Google Scholar

    [29]

    Anand S, Xia K Y, Zhu T J, Wolverton C, Snyder G J 2018 Adv. Energy Mater. 8 1801409Google Scholar

    [30]

    Luo F, Wang J, Zhu C, He X, Zhang S, Wang J F, Liu H X, Sun Z G 2022 J. Mater. Chem. A 10 9655Google Scholar

    [31]

    Anand S, Xia K Y, Hegde V I, Aydemir U, Kocevski V, Zhu T J, Wolverton C, Snyder G J 2018 Energy Environ. Sci. 11 1480Google Scholar

    [32]

    Romaka V V, Rogl G, Grytsiv A, Rogl P 2020 Comput. Mater. Sci. 172 109307Google Scholar

    [33]

    Zhou M, Chen L D, Feng C D, Wang D L, Li J F 2007 J. Appl. Phys. 101 113714Google Scholar

    [34]

    Zhao D G, Wang L, Bo L, Wu D 2018 Metals 8 61Google Scholar

    [35]

    Tavassoli A, Failamani F, Grytsiv A, Rogl G, Heinrich P, Müller H, Bauer E, Zehetbauer M, Rogl P 2017 Acta Mater. 135 263Google Scholar

    [36]

    Kim H S, Gibbs Z M, Tang Y L, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [37]

    沈家骏, 方腾, 傅铁铮, 忻佳展, 赵新兵, 朱铁军 2019 无机材料学报 34 260Google Scholar

    Shen J J, Fang T, Fu T Z, Xin J Z, Zhao X B, Zhu T J 2019 J. Inorg. Mater. 34 260Google Scholar

    [38]

    Zhu T J, Yu G T, Xu J, Wu H J, Fu C G, Liu X H, He J Q, Zhao X B 2016 Adv. Electron. Mater. 2 1600171Google Scholar

    [39]

    Karati A, Hariharan V S, Ghosh S, Prasad A, Nagini M, Guruvidyathri K, Mallik R C, Shabadi R, Bichler L, Murty B S, Varadaraju U V 2020 Scr. Mater. 186 375Google Scholar

    [40]

    Hasan R, Park T, Kim S I, Kim H S, Jo S, Lee K H 2022 Adv. Energy Sustainability Res. 3 2100206Google Scholar

    [41]

    Zhang X Y, Bu Z L, Shi X M, Chen Z W, Lin S Q, Shan B, Wood M, Snyder A H, Chen L D, Snyder G J, Pei Y Z 2020 Sci. Adv. 6 eabc0726Google Scholar

  • 图 1  Ti1–xNiSb (0 ≤ x ≤ 0.25) 和Ti1–xyScyNiSb (x = 0.10, 0.15; y = 0.03, 0.05) 样品的XRD图谱(a), (c)与晶格常数(b), (d)

    Fig. 1.  XRD patterns (a), (c) and lattice constant (b), (d) of Ti1–xNiSb (0 ≤ x ≤ 0.25) and Ti1–xyScyNiSb (x = 0.10, 0.15; y = 0.03, 0.05)

    图 2  Ti0.85NiSb和Ti0.8Sc0.05NiSb样品的XPS能谱

    Fig. 2.  XPS spectra of Ti0.85NiSb and Ti0.8Sc0.05NiSb samples.

    图 3  样品Ti0.8Sc0.05NiSb的SEM (a)和BSE (b) 图像 (插图为EDS面扫描元素分布图)

    Fig. 3.  SEM image (a) and BSE image (b) of the Ti0.8Sc0.05NiSb samples (The insets are the EDS elemental mappings).

    图 4  Ti1–xyScyNiSb (x = 0.10, 0.15; y = 0.03, 0.05)的电输运特性随温度的变化 (a) 电导率σ; (b) 塞贝克系数S; (c) 功率因子. (d) Ti1–xyScyNiSb样品的载流子浓度nH和迁移率μH

    Fig. 4.  Temperature dependent electrical transport properties of Ti1–xyScyNiSb (x = 0.10, 0.15; y = 0.03, 0.05) samples: (a) Electrical conductivity σ; (b) Seebeck coefficients S; (c) power factor. (d) Room-temperature Hall carrier concentration nH and mobility μH of Ti1–x-yScyNiSb samples.

    图 5  Ti1–xyScyNiSb样品的塞贝克系数S随载流子浓度nH的变化

    Fig. 5.  Carrier concentration dependent Seebeck coefficient for Ti1–xyScyNiSb samples at room temperature.

    图 6  (a), (b) Ti1–xyScyNiSb (x = 0.10, 0.15; y = 0.03, 0.05) 样品的总热导率κ和晶格热导率κl随温度的变化 (图(b)中的虚线为T–0.5关系)

    Fig. 6.  (a), (b) Temperature dependence of total thermal conductivity (κ) and lattice thermal conductivity (κl) of Ti1–xyScyNiSb (x = 0.10, 0.15; y = 0.03, 0.05) samples (The dashed lines in Fig. (b) represent the T–0.5 relationship).

    图 7  (a) Ti1–xyScyNiSb (x = 0.10, 0.15; y = 0.03, 0.05) 样品的ZT值随温度的变化; (b) Ti0.8Sc0.05NiSb样品的ZT值与文献数据对比[39,40]

    Fig. 7.  (a) Temperature dependence of ZT value for Ti1–xyScyNiSb (x = 0.10, 0.15; y = 0.03, 0.05) samples; (b) comparison of ZT value of Ti0.8Sc0.05NiSb sample with literature data[39,40].

    表 1  Ti1–xyScyNiSb (x = 0.10, 0.15; y = 0.03, 0.05) 样品的名义成分和EDS实际成分

    Table 1.  Nominal and actual atomic contents for Ti1–xyScyNiSb (x = 0.10, 0.15; y = 0.03, 0.05) detected by EDS.

    名义成分实际成分
    Ti0.9NiSbTi0.87NiSb1.04
    Ti0.87Sc0.03NiSbTi0.85Sc0.03NiSb1.02
    Ti0.85Sc0.05NiSbTi0.85Sc0.06NiSb1.15
    Ti0.80Sc0.05NiSbTi0.80Sc0.06NiSb1.04
    下载: 导出CSV

    表 2  室温下Ti1–xyScyNiSb (x = 0.10, 0.15; y = 0.03, 0.05) 样品的横波${{v}}_{\text{l}}$和纵波声速${{v}}_{\text{t}}$, 以及利用公式计算得到的平均声速${{v}}_{\text{s}}$

    Table 2.  Measured longitudinal${{v}}_{\text{l}}\text{}$and transverse${{v}}_{\text{t}}$ sound velocities for Ti1–xyScyNiSb (x = 0.10, 0.15; y = 0.03, 0.05) samples at room temperature. The average sound velocity ${{v}}_{\text{s}}$ is calculated by the formula

    样品${ {v} }_{{\rm{l}} }$/(m·s–1)${v} _{{\rm{t}}}$/(m·s–1)${v}_{{\rm{s}}}$/(m·s–1)
    Ti0.9NiSb308558873451
    Ti0.87Sc0.03NiSb309458413458
    Ti0.85Sc0.05NiSb310058443464
    Ti0.80Sc0.05NiSb312159773491
    注: ① ${ {v} }_{\text{s} }=\left[\dfrac{\text{1} }{\text{3} }\text{}\left(\dfrac{\text{1} }{ { {v} }_{\text{l} }^{\text{3} } }+\dfrac{\text{2} }{ { {v} }_{\text{t} }^{\text{3} } }\right)\right] ^{ {-1/3} }.$
    下载: 导出CSV
  • [1]

    Bell L E 2008 Science 321 1457Google Scholar

    [2]

    Jia N, Cao J, Tan X Y, Dong J F, Liu H F, Tan C K I, Xu J W, Yan Q Y, Loh X J, Suwardi A 2021 Energy Environ. Sci. 21 100519Google Scholar

    [3]

    Min R A, Wang Y X, Jiang X, Chen R C, Kang H J, Guo E Y, Chen Z N, Yang X, Wang T M 2022 Chem. Eng. J. 449 137898Google Scholar

    [4]

    Joshi G, Dahal T, Chen S, Wang H Z, Shiomi J, Chen G, Ren Z F 2013 Nano Energy 2 82Google Scholar

    [5]

    Yu C, Zhu T J, Shi R Z, Zhang Y, Zhao X B, He J 2009 Acta Mater. 57 2757Google Scholar

    [6]

    Fu C G, Zhu T J, Liu Y T, Xie H H, Zhao X B 2015 Energy Environ. Sci. 8 216Google Scholar

    [7]

    Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D, Snyder G J 2011 Nature 473 66Google Scholar

    [8]

    Fu C G, Zhu T J, Pei Y Z, Xie H H, Wang H, Snyder G J, Liu Y, Liu Y T, Zhao X B 2014 Adv. Energy Mater. 4 1400600Google Scholar

    [9]

    Tan C, Wang H X, Yao J, Chen T T, Wang L, Sun Y Q, Khan M, Wang H C, Wang C L 2022 J. Eur. Ceram. Soc. 42 7010Google Scholar

    [10]

    Biswas K, He J Q, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414Google Scholar

    [11]

    Sun Y J, Shuai Z G, Wang D 2019 J. Phys. Chem. C 123 12001Google Scholar

    [12]

    He R, Gahlawat S, Guo C F, Chen S, Dahal T, Zhang H, Liu W S, Zhang Q, Chere E, White K, Ren Z F 2015 Phys. Status. Solidi. A 212 2191Google Scholar

    [13]

    Graf T, Felser C, Parkin S S P 2011 Prog. Solid. State Ch. 39 1Google Scholar

    [14]

    Sakurada S, Shutoh N 2005 Appl. Phys. Lett. 86 082105Google Scholar

    [15]

    Uher C, Yang J, Hu S, Morelli D T, Meisner G P 1999 Phys. Rev. B 59 8615Google Scholar

    [16]

    王鹏将, 康慧君, 杨雄, 刘颖, 程成, 王同敏 2022 无机材料学报 37 717Google Scholar

    Wang P J, Kang H J, Yang X, Liu Y, Cheng C, Wang T M 2022 J. Inorg. Mater. 37 717Google Scholar

    [17]

    Sekimoto T, Kurosaki K, Muta H, Yamanaka S 2006 Mater. Trans. 47 1445Google Scholar

    [18]

    Sekimoto T, Kurosaki K, Muta H, Yamanaka S 2005 Mater. Trans. 46 1481Google Scholar

    [19]

    Sekimoto T, Kurosaki K, Muta H, Yamanaka S 2007 Jpn. J. Appl. Phys. 46 L673Google Scholar

    [20]

    Huang Y, Hayashi K, Miyazaki Y 2020 Chem. Mater. 32 5173Google Scholar

    [21]

    Joshi G, He R, Engber M, Samsonidze G, Pantha T, Dahal E, Dahal K, Yang J, Lan Y C, Kozinsky B, Ren Z F 2014 Energy Environ. Sci. 7 4070Google Scholar

    [22]

    Zhu H T, Mao J, Li Y W, et al. 2019 Nat. Commun. 10 270Google Scholar

    [23]

    Xia K, Liu Y, Anand S, Snyder G J, Xin J, Yu J, Zhao X, Zhu T 2018 Adv. Funct. Mater. 28 1705845Google Scholar

    [24]

    Li S, Bai F X, Wang R F, Chen C, Li X F, Cao F, Yu B, Sui J H, Liu X J, Ren Z F, Zhang Q 2020 Ann. Phys. 532 1900440Google Scholar

    [25]

    Miranda J, Gruhn T 2022 J. Electron. Mater. 51 2043Google Scholar

    [26]

    Huang L H, Wang J C, Mo X B, Lei X B, Ma S D, Wang C, Zhang Q Y 2019 Materials 12 1637Google Scholar

    [27]

    Kainuma R, Umino R, Xu X, Han K, Omori T 2020 J. Phase. Equilibria. Diffus. 41 116Google Scholar

    [28]

    Romaka V V, Rogl P, Romaka L, Stadnyk Y, Melnychenko N, Grytsiv A, Falmbigl M, Skryabina N 2013 J. Solid State Chem. 197 103Google Scholar

    [29]

    Anand S, Xia K Y, Zhu T J, Wolverton C, Snyder G J 2018 Adv. Energy Mater. 8 1801409Google Scholar

    [30]

    Luo F, Wang J, Zhu C, He X, Zhang S, Wang J F, Liu H X, Sun Z G 2022 J. Mater. Chem. A 10 9655Google Scholar

    [31]

    Anand S, Xia K Y, Hegde V I, Aydemir U, Kocevski V, Zhu T J, Wolverton C, Snyder G J 2018 Energy Environ. Sci. 11 1480Google Scholar

    [32]

    Romaka V V, Rogl G, Grytsiv A, Rogl P 2020 Comput. Mater. Sci. 172 109307Google Scholar

    [33]

    Zhou M, Chen L D, Feng C D, Wang D L, Li J F 2007 J. Appl. Phys. 101 113714Google Scholar

    [34]

    Zhao D G, Wang L, Bo L, Wu D 2018 Metals 8 61Google Scholar

    [35]

    Tavassoli A, Failamani F, Grytsiv A, Rogl G, Heinrich P, Müller H, Bauer E, Zehetbauer M, Rogl P 2017 Acta Mater. 135 263Google Scholar

    [36]

    Kim H S, Gibbs Z M, Tang Y L, Wang H, Snyder G J 2015 APL Mater. 3 041506Google Scholar

    [37]

    沈家骏, 方腾, 傅铁铮, 忻佳展, 赵新兵, 朱铁军 2019 无机材料学报 34 260Google Scholar

    Shen J J, Fang T, Fu T Z, Xin J Z, Zhao X B, Zhu T J 2019 J. Inorg. Mater. 34 260Google Scholar

    [38]

    Zhu T J, Yu G T, Xu J, Wu H J, Fu C G, Liu X H, He J Q, Zhao X B 2016 Adv. Electron. Mater. 2 1600171Google Scholar

    [39]

    Karati A, Hariharan V S, Ghosh S, Prasad A, Nagini M, Guruvidyathri K, Mallik R C, Shabadi R, Bichler L, Murty B S, Varadaraju U V 2020 Scr. Mater. 186 375Google Scholar

    [40]

    Hasan R, Park T, Kim S I, Kim H S, Jo S, Lee K H 2022 Adv. Energy Sustainability Res. 3 2100206Google Scholar

    [41]

    Zhang X Y, Bu Z L, Shi X M, Chen Z W, Lin S Q, Shan B, Wood M, Snyder A H, Chen L D, Snyder G J, Pei Y Z 2020 Sci. Adv. 6 eabc0726Google Scholar

  • [1] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211843
    [2] 魏江涛, 杨亮亮, 魏磊, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. Si微/纳米带的制备与热电性能. 物理学报, 2021, 70(18): 187304. doi: 10.7498/aps.70.20210801
    [3] 彭军辉, TikhonovEvgenii. 三元Hf-C-N体系的空位有序结构及其力学性质和电子性质的第一性原理研究. 物理学报, 2021, 70(21): 216101. doi: 10.7498/aps.70.20210244
    [4] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [5] 付宝勤, 侯氢, 汪俊, 丘明杰, 崔节超. 钨空位捕获氢及其解离过程的分子动力学. 物理学报, 2019, 68(24): 240201. doi: 10.7498/aps.68.20190701
    [6] 牛海波, 陈光德, 伍叶龙, 耶红刚. 空位对纤锌矿型AlN自发极化影响的最大局域化Wannier函数方法研究. 物理学报, 2014, 63(16): 167701. doi: 10.7498/aps.63.167701
    [7] 徐爽, 郭雅芳. 纳米铜薄膜塑性变形中空位型缺陷形核与演化的分子动力学研究. 物理学报, 2013, 62(19): 196201. doi: 10.7498/aps.62.196201
    [8] 魏哲, 袁健美, 李顺辉, 廖建, 毛宇亮. 含空位二维六角氮化硼电子和磁性质的密度泛函研究. 物理学报, 2013, 62(20): 203101. doi: 10.7498/aps.62.203101
    [9] 李宇波, 王骁, 戴庭舸, 袁广中, 杨杭生. 第一性原理计算研究立方氮化硼空位的电学和光学特性. 物理学报, 2013, 62(7): 074201. doi: 10.7498/aps.62.074201
    [10] 张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴. 纳米结构碲化铋合金的制备及电热输运特性. 物理学报, 2012, 61(4): 047201. doi: 10.7498/aps.61.047201
    [11] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能. 物理学报, 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [12] 杜保立, 徐静静, 鄢永高, 唐新峰. 非化学计量比AgSbTe2+x化合物制备及热电性能. 物理学报, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [13] 罗文辉, 李涵, 林泽冰, 唐新峰. Si含量对高锰硅化合物相组成及热电性能的影响研究. 物理学报, 2010, 59(12): 8783-8788. doi: 10.7498/aps.59.8783
    [14] 王超营, 王振清, 孟庆元. 空位的第一性原理及经验势函数的对比研究. 物理学报, 2010, 59(5): 3370-3376. doi: 10.7498/aps.59.3370
    [15] 蒋明波, 吴智雄, 周敏, 黄荣进, 李来风. Bi2Te3 合金低温热电性能及冷能发电研究. 物理学报, 2010, 59(10): 7314-7319. doi: 10.7498/aps.59.7314
    [16] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能. 物理学报, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [17] 周正存, 赵宏平, 顾苏怡, 吴 倩. 快冷Fe-Al合金中的原子缺陷弛豫. 物理学报, 2008, 57(2): 1025-1029. doi: 10.7498/aps.57.1025
    [18] 张 忻, 李 佳, 路清梅, 张久兴, 刘燕琴. (Bi1-x Agx)2(Te1-ySey)3粉体的机械合金化制备及其放电等离子烧结体的热电输运特性. 物理学报, 2008, 57(7): 4466-4470. doi: 10.7498/aps.57.4466
    [19] 蒋 俊, 李亚丽, 许高杰, 崔 平, 吴 汀, 陈立东, 王 刚. 制备工艺对p型碲化铋基合金热电性能的影响. 物理学报, 2007, 56(5): 2858-2862. doi: 10.7498/aps.56.2858
    [20] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟. 物理学报, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
计量
  • 文章访问数:  3683
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-07
  • 修回日期:  2023-02-03
  • 上网日期:  2023-02-14
  • 刊出日期:  2023-04-20

/

返回文章
返回