搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

莫尔石墨烯体系的新奇电学性质

张世豪 解博 彭然 刘晓迁 吕昕 刘健鹏

引用本文:
Citation:

莫尔石墨烯体系的新奇电学性质

张世豪, 解博, 彭然, 刘晓迁, 吕昕, 刘健鹏

Novel electrical properties of moiré graphene systems

Zhang Shi-Hao, Xie Bo, Peng Ran, Liu Xiao-Qian, Lü Xin, Liu Jian-Peng
PDF
HTML
导出引用
  • 讨论了转角双层石墨烯、转角多层石墨烯以及石墨烯-绝缘态异质结等体系中的电子结构、拓扑性质、关联物态、非线性光学响应、声子特征以及电声耦合效应等新奇物态和物性. 首先讨论了在转角石墨烯体系中普遍存在的拓扑非平庸的平带和轨道铁磁性. 其中, 魔角双层石墨烯中的拓扑平带可以从零赝朗道能级的图像去理解. 该图像可以很简明地解释实验上观测到的量子反常霍尔效应、关联绝缘态等新奇现象. 这些拓扑平带也可以带来接近量子化的拓扑压电响应, 可以用来定量地测量莫尔石墨烯中平带的谷陈数. 转角多层石墨烯和交错转角多层石墨烯体系也存在一些普适的手性分解规则, 可快速判断这类转角石墨烯体系中低能电子结构特征. 然后进一步讨论了魔角双层石墨烯和转角多层石墨烯中的关联绝缘态、密度波态、向列序态以及单粒子激发谱的级联转变等新奇物性, 并提出非线性光学响应可以当作区分各类“无特征”关联绝缘态的实验探针. 其次讨论了转角双层石墨烯体系的莫尔声子性质以及非平庸的电声耦合效应. 最后, 讨论了能带对齐的石墨烯和绝缘衬底形成的异质结体系中的新奇物理图景, 并对二维材料莫尔异质结体系中的新奇物性做了总结和展望.
    In this review, we discuss the electronic structures, topological properties, correlated states, nonlinear optical responses, as well as phonon and electron-phonon coupling effects of moiré graphene superlattices. First, we illustrate that topologically non-trivial flat bands and moiré orbital magnetism are ubiquitous in various twisted graphene systems. In particular, the topological flat bands of magic-angle twisted bilayer graphene can be explained from a zeroth pseudo-Landau-level picture, which can naturally explain the experimentally observed quantum anomalous Hall effect and some of the other correlated states. These topologically nontrivial flat bands may lead to nearly quantized piezoelectric response, which can be used to directly probe the valley Chern numbers in these moiré graphene systems. A simple and general chiral decomposition rule is reviewed and discussed, which can be used to predict the low-energy band dispersions of generic twisted multilayer graphene system and alternating twisted multilayer graphene system. This review further discusses nontrivial interaction effects of magic-angle TBG such as the correlated insulator states, density wave states, cascade transitions, and nematic states, and proposes nonlinear optical measurement as an experimental probe to distinguish the different “featureless” correlated states. The phonon properties and electron-phonon coupling effects are also briefly reviewed. The novel physics emerging from band-aligned graphene-insulator heterostructres is also discussed in this review. In the end, we make a summary and an outlook about the novel physical properties of moiré superlattices based on two-dimensional materials.
      通信作者: 刘健鹏, liujp@shanghaitech.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174257)、国家重点研发计划(批准号: 2020YFA0309601)和上海科技大学启动经费资助的课题
      Corresponding author: Liu Jian-Peng, liujp@shanghaitech.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174257), the National Key R&D Program of China (Grant No. 2020YFA0309601), and the Start-up Grant of ShanghaiTech University, China
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [3]

    Du X, Skachko I, Duerr F, Luican A, Andrei E Y 2009 Nature 462 192Google Scholar

    [4]

    Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [5]

    Kotov V N, Uchoa B, Pereira V M, Guinea F, Neto A C 2012 Rev. Mod. Phys. 84 1067Google Scholar

    [6]

    Tran T T, Bray K, Ford M J, Toth M, Aharonovich I 2016 Nat. Nanotechnol. 11 37Google Scholar

    [7]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [8]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [9]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [10]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [11]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [12]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [13]

    Bistritzer R, MacDonald A H 2011 PNAS 108 12233Google Scholar

    [14]

    Cao Y, Fatemi V, Demir A, et al. 2018 Nature 556 80Google Scholar

    [15]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [16]

    Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [17]

    Kerelsky A, McGilly L J, Kennes D M, et al. 2019 Nature 572 95Google Scholar

    [18]

    Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, Andrei E Y 2019 Nature 573 91Google Scholar

    [19]

    Xie Y, Lian B, Jäck B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2019 Nature 572 101Google Scholar

    [20]

    Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J, Refael G, von Oppen F, Watanabe K, Taniguchi T, Nadj-Perge S 2019 Nat. Phys. 15 1174Google Scholar

    [21]

    Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A 2020 Science 367 900Google Scholar

    [22]

    Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L, Efetov D K 2020 Nature 583 375Google Scholar

    [23]

    Saito Y, Ge J, Watanabe K, Taniguchi T, Young A F 2020 Nat. Phys. 16 926Google Scholar

    [24]

    Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O, Li J 2021 Science 371 1261Google Scholar

    [25]

    Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [26]

    Codecido E, Wang Q, Koester R, Che S, Tian H, Lv R, Tran S, Watanabe K, Taniguchi T, Zhang F, Bockrath M, Lau C N 2019 Sci. Adv. 5 eaaw9770Google Scholar

    [27]

    Cao Y, Rodan-Legrain D, Park J M, Yuan N F, Watanabe K, Taniguchi T, Fernandes R M, Fu L, Jarillo-Herrero P 2021 Science 372 264Google Scholar

    [28]

    Balents L, Dean C R, Efetov D K, Young A F 2020 Nat. Phys. 16 725Google Scholar

    [29]

    Andrei E Y, Efetov D K, Jarillo-Herrero P, MacDonald A H, Mak K F, Senthil T, Tutuc E, Yazdani A, Young A F 2021 Nat. Rev. Mater. 6 201Google Scholar

    [30]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [31]

    Stepanov P, Xie M, Taniguchi T, Watanabe K, Lu X, MacDonald A H, Bernevig B A, Efetov D K 2021 Phys. Rev. Lett. 127 197701Google Scholar

    [32]

    Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 588 610Google Scholar

    [33]

    Wu S, Zhang Z, Watanabe K, Taniguchi T, Andrei E Y 2021 Nat. Mater. 20 488Google Scholar

    [34]

    Das I, Lu X, Herzog-Arbeitman J, Song Z D, Watanabe K, Taniguchi T, Bernevig B A, Efetov D K 2021 Nat. Phys. 17 710Google Scholar

    [35]

    Pierce A T, Xie Y, Park J M, et al. 2021 Nat. Phys. 17 1210Google Scholar

    [36]

    Shen C, Ying J, Liu L, Liu J, Li N, Wang S, Tang J, Zhao Y, Chu Y, Watanabe K, Taniguchi T, Yang R, Shi D, Qu F, Lu L, Yang W, Zhang G 2021 Chin. Phys. Lett. 38 047301Google Scholar

    [37]

    Liu J, Dai X 2021 Nat. Rev. Phys. 3 367Google Scholar

    [38]

    Tschirhart C L, Serlin M, Polshyn H, Shragai A, Xia Z, Zhu J, Zhang Y, Watanabe K, Taniguchi T, Huber M E, Young A F 2021 Science 372 1323Google Scholar

    [39]

    Diez-Merida J, Díez-Carlón A, Yang S, Xie Y M, Gao X J, Watanabe K, Taniguchi T, Lu X, Law K T, Efetov D K 2021 arXiv: 2110.01067 [cond-mat.supr-con]

    [40]

    Xie Y, Pierce A T, Park J M, Parker D E, Khalaf E, Ledwith P, Cao Y, Lee S H, Chen S, Forrester P R, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P, Yacoby A 2021 Nature 600 439Google Scholar

    [41]

    Song Z, Wang Z, Shi W, Li G, Fang C, Bernevig B A 2019 Phys. Rev. Lett. 123 036401Google Scholar

    [42]

    Ahn J, Park S, Yang B J 2019 Phys. Rev. X 9 021013Google Scholar

    [43]

    Po H C, Zou L, Senthil T, Vishwanath A 2019 Phys. Rev. B 99 195455Google Scholar

    [44]

    Tarnopolsky G, Kruchkov A J, Vishwanath A 2019 Phys. Rev. Lett. 122 106405Google Scholar

    [45]

    Liu J, Liu J, Dai X 2019 Phys. Rev. B 99 155415Google Scholar

    [46]

    Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P, Senthil T 2019 Phys. Rev. B 99 075127Google Scholar

    [47]

    Liu J, Ma Z, Gao J, Dai X 2019 Phys. Rev. X 9 031021Google Scholar

    [48]

    Chittari B L, Chen G, Zhang Y, Wang F, Jung J 2019 Phys. Rev. Lett. 122 016401Google Scholar

    [49]

    Chebrolu N R, Chittari B L, Jung J 2019 Phys. Rev. B 99 235417Google Scholar

    [50]

    Koshino M 2019 Phys. Rev. B 99 235406Google Scholar

    [51]

    Lee J Y, Khalaf E, Liu S, Liu X, Hao Z, Kim P, Vishwanath A 2019 Nat. Commun. 10 5333Google Scholar

    [52]

    Khalaf E, Kruchkov A J, Tarnopolsky G, Vishwanath A 2019 Phys. Rev. B 100 085109Google Scholar

    [53]

    Li X, Wu F, MacDonald A H 2019 arXiv: 1907.12338 [cond-mat.mtrl-sci]

    [54]

    Ma Z, Li S, Zheng Y W, Xiao M M, Jiang H, Gao J H, Xie X 2021 Science Bulletin 66 18Google Scholar

    [55]

    Zhang S, Xie B, Wu Q, Liu J, Yazyev O V 2020 arXiv: 2012.11964 [cond-mat.mes-hall]

    [56]

    Xie B, Peng R, Zhang S, Liu J 2022 npj Comput. Mater. 8 110Google Scholar

    [57]

    Ledwith P J, Vishwanath A, Khalaf E 2022 Phys. Rev. Lett. 128 176404Google Scholar

    [58]

    Wang J, Liu Z 2022 Phys. Rev. Lett. 128 176403Google Scholar

    [59]

    Liu Z, Shi W, Yang T, Zhang Z 2022 J. Mater. Sci. Technol. 111 28Google Scholar

    [60]

    Tong L H, Tong Q, Yang L Z, Zhou Y Y, Wu Q, Tian Y, Zhang L, Zhang L, Qin Z, Yin L J 2022 Phys. Rev. Lett. 128 126401Google Scholar

    [61]

    Polshyn H, Zhu J, Kumar M, et al. 2020 Nature 588 66Google Scholar

    [62]

    He M, Zhang Y H, Li Y, Fei Z, Watanabe K, Taniguchi T, Xu X, Yankowitz M 2021 Nat. Commun. 12 4727Google Scholar

    [63]

    Li S Y, Wang Z, Xue Y, Wang Y, Zhang S, Liu J, Zhu Z, Watanabe K, Taniguchi T, Gao H j, Jiang Y, Mao J 2022 Nat. Commun. 13 4225Google Scholar

    [64]

    Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R, Yankowitz M 2021 Nat. Phys. 17 374Google Scholar

    [65]

    Xu S, Al Ezzi M M, Balakrishnan N, Garcia-Ruiz A, Tsim B, Mullan C, Barrier J, Xin N, Piot B A, Taniguchi T, Watanabe K, Carvalho A, Mishchenko A, Geim A K, Fal'ko V I, Adam S, Neto A H C, Novoselov K S, Shi Y 2021 Nat. Phys. 17 619Google Scholar

    [66]

    Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2020 Nature 583 221Google Scholar

    [67]

    Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215Google Scholar

    [68]

    Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520Google Scholar

    [69]

    Burg G W, Zhu J, Taniguchi T, Watanabe K, MacDonald A H, Tutuc E 2019 Phys. Rev. Lett. 123 197702Google Scholar

    [70]

    Rubio-Verdú C, Turkel S, Song Y, Klebl L, Samajdar R, Scheurer M S, Venderbos J W F, Watanabe K, Taniguchi T, Ochoa H, Xian L, Kennes D M, Fernandes R M, Rubio Á, Pasupathy A N 2022 Nat. Phys. 18 196Google Scholar

    [71]

    Li Q, Cheng B, Chen M, Xie B, Xie Y, Wang P, Chen F, Liu Z, Watanabe K, Taniguchi T, Liang S J, Wang D, Wang C, Wang Q H, Liu J, Miao F 2022 Nature 609 479Google Scholar

    [72]

    Li Y, Zhang S, Chen F, Wei L, Zhang Z, Xiao H, Gao H, Chen M, Liang S, Pei D, Xu L, Watanabe K, Taniguchi T, Yang L, Miao F, Liu J, Cheng B, Wang M, Chen Y, Liu Z 2022 Adv. Mater. 34 2205996Google Scholar

    [73]

    Kim H, Choi Y, Lewandowski C, Thomson A, Zhang Y, Polski R, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2021 arXiv: 2109.12127 [cond-mat.mes-hall]

    [74]

    Cao Y, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 595 526Google Scholar

    [75]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 590 249Google Scholar

    [76]

    Liu X, Zhang N J, Watanabe K, Taniguchi T, Li J I A 2022 Nat. Phys. 18 522Google Scholar

    [77]

    Sun X, Zhang S, Liu Z, Zhu H, Huang J, Yuan K, Wang Z, Watanabe K, Taniguchi T, Li X, Zhu M, Mao J, Yang T, Kang J, Liu J, Ye Y, Han Z V, Zhang Z 2021 Nat. Commun. 12 7196Google Scholar

    [78]

    Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y, Wang F 2019 Nat. Phys. 15 237Google Scholar

    [79]

    Chen G, Sharpe A L, Fox E J, et al. 2020 Nature 579 56Google Scholar

    [80]

    Xie B, Peng R, Zhang S, Liu J 2022 npj Comput. Mater. 8 1Google Scholar

    [81]

    Peng R, Liu J 2022 Phys. Rev. Res. 4 L032006Google Scholar

    [82]

    Zhang S, Lu X, Liu J 2022 Phys. Rev. Lett. 128 247402Google Scholar

    [83]

    Zhang S, Dai X, Liu J 2022 Phys. Rev. Lett. 128 026403Google Scholar

    [84]

    Liu L, Zhang S, Chu Y, Shen C, Huang Y, Yuan Y, Tian J, Tang J, Ji Y, Yang R, Watanabe K, Taniguchi T, Shi D, Liu J, Yang W, Zhang G 2022 Nat. Commun. 13 3292Google Scholar

    [85]

    Liu X, Peng R, Sun Z, Liu J 2022 Nano Lett. 22 7791Google Scholar

    [86]

    Lu X, Zhang S, Gao X, Yang K, Gao Y, Ye Y, Han Z V, Liu J 2022 arXiv: 2206.05659 [cond-mat.mes-hall]

    [87]

    Wang Y, Gao X, Yang K, Gu P, Lu X, Zhang S, Gao Y, Ren N, Dong B, Jiang Y, Watanabe K, Taniguchi T, Kang J, Lou W, Mao J, Liu J, Ye Y, Han Z, Chang K, Zhang J, Zhang Z 2022 Nat. Nanotechnol. 17 1272Google Scholar

    [88]

    Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2012 Phys. Rev. B 86 155449Google Scholar

    [89]

    Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K, Fu L 2018 Phys. Rev. X 8 031087Google Scholar

    [90]

    He M, Li Y, Cai J, Liu Y, Watanabe K, Taniguchi T, Xu X, Yankowitz M 2021 Nat. Phys. 17 26Google Scholar

    [91]

    Yuan N F Q, Fu L 2018 Phys. Rev. B 98 045103Google Scholar

    [92]

    刘健鹏, 戴希 2020 物理学报 69 147301Google Scholar

    Liu J P, Dai X 2020 Acta Phys. Sin. 69 147301Google Scholar

    [93]

    Liu J, Dai X 2021 Phys. Rev. B 103 035427Google Scholar

    [94]

    Zhu J, Su J J, MacDonald A H 2020 Phys. Rev. Lett. 125 227702Google Scholar

    [95]

    Li S Y, Zhang Y, Ren Y N, Liu J, Dai X, He L 2020 Phys. Rev. B 102 121406Google Scholar

    [96]

    He W Y, Goldhaber-Gordon D, Law K T 2020 Nat. Commun. 11 1650Google Scholar

    [97]

    Su Y, Lin S Z 2020 Phys. Rev. Lett. 125 226401Google Scholar

    [98]

    Huang C, Wei N, MacDonald A H 2021 Phys. Rev. Lett. 126 056801Google Scholar

    [99]

    Ying X, Ye M, Balents L 2021 Phys. Rev. B 103 115436Google Scholar

    [100]

    Min H, MacDonald A H 2008 Prog. Theor. Phys. Suppl. 176 227Google Scholar

    [101]

    Xie F, Regnault N, Călugăru D, Bernevig B A, Lian B 2021 Phys. Rev. B 104 115167Google Scholar

    [102]

    Bouhon A, Black-Schaffer A M, Slager R J 2019 Phys. Rev. B 100 195135Google Scholar

    [103]

    Zhang Y H, Mao D, Senthil T 2019 Phys. Rev. Res. 1 033126Google Scholar

    [104]

    Bultinck N, Chatterjee S, Zaletel M P 2020 Phys. Rev. Lett. 124 166601Google Scholar

    [105]

    King-Smith R, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar

    [106]

    Rabe K M, Ahn C H, Triscone J M 2007 Physics of Ferroelectrics: a Modern Perspective (Berlin: Springer-Verlag) pp31−68

    [107]

    Pereira V M, Castro Neto A H 2009 Phys. Rev. Lett. 103 046801Google Scholar

    [108]

    Yu J, Liu C 2020 Nat. Commun. 11 2290Google Scholar

    [109]

    Moon P, Koshino M 2014 Phys. Rev. B 90 155406Google Scholar

    [110]

    Jung J, Raoux A, Qiao Z, MacDonald A H 2014 Phys. Rev. B 89 205414Google Scholar

    [111]

    Nam N N T, Koshino M 2017 Phys. Rev. B 96 075311Google Scholar

    [112]

    Gupta R, Rost F, Fleischmann M, Sharma S, Shallcross S 2019 Phys. Rev. B 99 125407Google Scholar

    [113]

    Bultinck N, Khalaf E, Liu S, Chatterjee S, Vishwanath A, Zaletel M P 2020 Phys. Rev. X 10 031034Google Scholar

    [114]

    Zhang Y, Jiang K, Wang Z, Zhang F 2020 Phys. Rev. B 102 035136Google Scholar

    [115]

    Lian B, Song Z D, Regnault N, Efetov D K, Yazdani A, Bernevig B A 2021 Phys. Rev. B 103 205414Google Scholar

    [116]

    Bernevig B A, Song Z D, Regnault N, Lian B 2021 Phys. Rev. B 103 205413Google Scholar

    [117]

    Kwan Y H, Wagner G, Soejima T, Zaletel M P, Simon S H, Parameswaran S A, Bultinck N 2021 Phys. Rev. X 11 041063Google Scholar

    [118]

    Wagner G, Kwan Y H, Bultinck N, Simon S H, Parameswaran S A 2022 Phys. Rev. Lett. 128 156401Google Scholar

    [119]

    Kang J, Vafek O 2019 Phys. Rev. Lett. 122 246401Google Scholar

    [120]

    Po H C, Zou L, Vishwanath A, Senthil T 2018 Phys. Rev. X 8 031089Google Scholar

    [121]

    Rademaker L, Mellado P 2018 Phys. Rev. B 98 235158Google Scholar

    [122]

    Kang J, Vafek O 2018 Phys. Rev. X 8 031088Google Scholar

    [123]

    Xu X Y, Law K T, Lee P A 2018 Phys. Rev. B 98 121406Google Scholar

    [124]

    Huang T, Zhang L, Ma T 2019 Sci. Bull. 64 310Google Scholar

    [125]

    Liu C C, Zhang L D, Chen W Q, Yang F 2018 Phys. Rev. Lett. 121 217001Google Scholar

    [126]

    Venderbos J W F, Fernandes R M 2018 Phys. Rev. B 98 245103Google Scholar

    [127]

    Lu C, Zhang Y, Zhang Y, Zhang M, Liu C C, Wang Y, Gu Z C, Chen W Q, Yang F 2022 Phys. Rev. B 106 024518Google Scholar

    [128]

    Da Liao Y, Kang J, Breiø C N, Xu X Y, Wu H Q, Andersen B M, Fernandes R M, Meng Z Y 2021 Phys. Rev. X 11 011014Google Scholar

    [129]

    Seo K, Kotov V N, Uchoa B 2019 Phys. Rev. Lett. 122 246402Google Scholar

    [130]

    Isobe H, Yuan N F Q, Fu L 2018 Phys. Rev. X 8 041041Google Scholar

    [131]

    Chichinadze D V, Classen L, Chubukov A V 2020 Phys. Rev. B 102 125120Google Scholar

    [132]

    Hejazi K, Chen X, Balents L 2021 Phys. Rev. Res. 3 013242Google Scholar

    [133]

    Xie M, MacDonald A H 2020 Phys. Rev. Lett. 124 097601Google Scholar

    [134]

    Liu S, Khalaf E, Lee J Y, Vishwanath A 2021 Phys. Rev. Res. 3 013033Google Scholar

    [135]

    Kang J, Vafek O 2020 Phys. Rev. B 102 035161Google Scholar

    [136]

    Soejima T, Parker D E, Bultinck N, Hauschild J, Zaletel M P 2020 Phys. Rev. B 102 205111Google Scholar

    [137]

    Chen B B, Liao Y D, Chen Z, Vafek O, Kang J, Li W, Meng Z Y 2021 Nat. Commun. 12 5480Google Scholar

    [138]

    Lin X, Chen B B, Li W, Meng Z Y, Shi T 2022 Phys. Rev. Lett. 128 157201Google Scholar

    [139]

    Zhang X, Pan G, Zhang Y, Kang J, Meng Z Y 2021 Chin. Phys. Lett. 38 077305Google Scholar

    [140]

    Hofmann J S, Khalaf E, Vishwanath A, Berg E, Lee J Y 2022 Phys. Rev. X 12 011061Google Scholar

    [141]

    Pan G, Zhang X, Lu H, Li H, Chen B B, Sun K, Meng Z Y 2023 Phys. Rev. Lett. 130 016401Google Scholar

    [142]

    Xie F, Cowsik A, Song Z D, Lian B, Bernevig B A, Regnault N 2021 Phys. Rev. B 103 205416Google Scholar

    [143]

    Potasz P, Xie M, MacDonald A H 2021 Phys. Rev. Lett. 127 147203Google Scholar

    [144]

    Parker D E, Soejima T, Hauschild J, Zaletel M P, Bultinck N 2021 Phys. Rev. Lett. 127 027601Google Scholar

    [145]

    Shi H, Dai X 2022 Phys. Rev. B 106 245129Google Scholar

    [146]

    Hejazi K, Liu C, Shapourian H, Chen X, Balents L 2019 Phys. Rev. B 99 035111Google Scholar

    [147]

    Song Z D, Bernevig B A 2022 Phys. Rev. Lett. 129 047601Google Scholar

    [148]

    Kang J, Bernevig B A, Vafek O 2021 Phys. Rev. Lett. 127 266402Google Scholar

    [149]

    Vanhala T I, Pollet L 2020 Phys. Rev. B 102 035154Google Scholar

    [150]

    Wong D, Nuckolls K P, Oh M, Lian B, Xie Y, Jeon S, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 582 198Google Scholar

    [151]

    Zondiner U, Rozen A, Rodan-Legrain D, Cao Y, Queiroz R, Taniguchi T, Watanabe K, Oreg Y, von Oppen F, Stern A, Berg E, Jarillo-Herrero P, Ilani S 2020 Nature 582 203Google Scholar

    [152]

    Xie F, Kang J, Bernevig B A, Vafek O, Regnault N 2023 Phys. Rev. B 107 075156Google Scholar

    [153]

    Polshyn H, Zhang Y, Kumar M A, Soejima T, Ledwith P, Watanabe K, Taniguchi T, Vishwanath A, Zaletel M P, Young A F 2022 Nat. Phys. 18 42Google Scholar

    [154]

    Padhi B, Setty C, Phillips P W 2018 Nano Lett. 18 6175Google Scholar

    [155]

    Zhang K, Zhang Y, Fu L, Kim E A 2022 Commun. Phys. 5 250Google Scholar

    [156]

    Parker D, Ledwith P, Khalaf E, Soejima T, Hauschild J, Xie Y, Pierce A, Zaletel M P, Yacoby A, Vishwanath A 2021 arXiv:2112.13837 [cond-mat.str-el]

    [157]

    Liu J, Dai X 2020 npj Comput. Mater. 6 57Google Scholar

    [158]

    Yang F, Song W, Meng F, Luo F, Lou S, Lin S, Gong Z, Cao J, Barnard E S, Chan E, Yang L, Yao J 2020 Matter 3 1361Google Scholar

    [159]

    Torre A d l, Seyler K L, Zhao L, Matteo S D, Scheurer M S, Li Y, Yu B, Greven M, Sachdev S, Norman M R, Hsieh D 2021 Nat. Phys. 17 777Google Scholar

    [160]

    Zhao L, Torchinsky D H, Chu H, Ivanov V, Lifshitz R, Flint R, Qi T, Cao G, Hsieh D 2016 Nat. Phys. 12 32Google Scholar

    [161]

    Hong J P, Soejima T, Zaletel M P 2022 Phys. Rev. Lett. 129 147001Google Scholar

    [162]

    Călugăru D, Regnault N, Oh M, Nuckolls K P, Wong D, Lee R L, Yazdani A, Vafek O, Bernevig B A 2022 Phys. Rev. Lett. 129 117602Google Scholar

    [163]

    Rademaker L, Protopopov I V, Abanin D A 2020 Phys. Rev. Res. 2 033150Google Scholar

    [164]

    Hofstadter D R 1976 Phys. Rev. B 14 2239Google Scholar

    [165]

    Song Z, Sun S, Xu Y, Nie S, Weng H, Fang Z, Dai X 2022 Memorial Volume for Shoucheng Zhang (Singapore: World Scientific) pp263–281

    [166]

    Koshino M 2011 Phys. Rev. B 84 125427Google Scholar

    [167]

    Wu Q, Liu J, Guan Y, Yazyev O V 2021 Phys. Rev. Lett. 126 056401Google Scholar

    [168]

    Sun S, Song Z, Weng H, Dai X 2020 Phys. Rev. B 101 125118Google Scholar

    [169]

    Streda P 1982 J. Phys. C: Solid State Phys. 15 L717Google Scholar

    [170]

    Xiao D, Shi J, Niu Q 2005 Phys. Rev. Lett. 95 137204Google Scholar

    [171]

    Polshyn H, Yankowitz M, Chen S, Zhang Y, Watanabe K, Taniguchi T, Dean C R, Young A F 2019 Nat. Phys. 15 1011Google Scholar

    [172]

    Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O, Watanabe K, Taniguchi T, Senthil T, Jarillo-Herrero P 2020 Phys. Rev. Lett. 124 076801Google Scholar

    [173]

    Wu F, MacDonald A H, Martin I 2018 Phys. Rev. Lett. 121 257001Google Scholar

    [174]

    Lian B, Wang Z, Bernevig B A 2019 Phys. Rev. Lett. 122 257002Google Scholar

    [175]

    Wu F, Hwang E, Das Sarma S 2019 Phys. Rev. B 99 165112Google Scholar

    [176]

    Lamparski M, Troeye B V, Meunier V 2020 2D Mater. 7 025050Google Scholar

    [177]

    Sharma G, Yudhistira I, Chakraborty N, Ho D Y H, Ezzi M M A, Fuhrer M S, Vignale G, Adam S 2021 Nat. Commun. 12 5737Google Scholar

    [178]

    Cocemasov A I, Nika D L, Balandin A A 2013 Phys. Rev. B 88 035428Google Scholar

    [179]

    Choi Y W, Choi H J 2018 Phys. Rev. B 98 241412Google Scholar

    [180]

    Angeli M, Tosatti E, Fabrizio M 2019 Phys. Rev. X 9 041010Google Scholar

    [181]

    Eliel G S N, Moutinho M V O, Gadelha A C, Righi A, Campos L C, Ribeiro H B, Chiu P W, Watanabe K, Taniguchi T, Puech P, Paillet M, Michel T, Venezuela P, Pimenta M A 2018 Nat. Commun. 9 1221Google Scholar

    [182]

    Koshino M, Son Y W 2019 Phys. Rev. B 100 075416Google Scholar

    [183]

    Koshino M, Nam N N T 2020 Phys. Rev. B 101 195425Google Scholar

    [184]

    Choi Y W, Choi H J 2021 Phys. Rev. Lett. 127 167001Google Scholar

    [185]

    Zhang L, Han J, Wang H, Car R, E W 2018 Phys. Rev. Lett. 120 143001Google Scholar

    [186]

    Miao W, Li C, Pan D, Dai X 2022 arXiv: 2210.02026 [cond-mat.mes-hall]

    [187]

    Wigner E 1934 Phys. Rev. 46 1002Google Scholar

    [188]

    Andrei E Y, Deville G, Glattli D C, Williams F I B, Paris E, Etienne B 1988 Phys. Rev. Lett. 60 2765Google Scholar

    [189]

    Li H, Li S, Regan E C, Wang D, Zhao W, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Crommie M F, Wang F 2021 Nature 597 650Google Scholar

    [190]

    Altvater M A, Hung S H, Tilak N, Won C J, Li G, Cheong S W, Chung C H, Jeng H T, Andrei E Y 2022 arXiv: 2201.09195 [cond-mat.mes-hall]

    [191]

    Tseng C C, Song T, Jiang Q, Lin Z, Wang C, Suh J, Watanabe K, Taniguchi T, McGuire M A, Xiao D, Chu J H, Cobden D H, Xu X, Yankowitz M 2022 Nano Lett. 22 8495Google Scholar

    [192]

    Drummond N D, Needs R J 2009 Phys. Rev. Lett. 102 126402Google Scholar

    [193]

    Gamayun O V, Gorbar E V, Gusynin V P 2010 Phys. Rev. B 81 075429Google Scholar

    [194]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30Google Scholar

    [195]

    Herzog-Arbeitman J, Song Z D, Regnault N, Bernevig B A 2020 Phys. Rev. Lett. 125 236804Google Scholar

    [196]

    Wu F, Das Sarma S 2020 Phys. Rev. Lett. 124 046403Google Scholar

    [197]

    Bernevig B A, Lian B, Cowsik A, Xie F, Regnault N, Song Z D 2021 Phys. Rev. B 103 205415Google Scholar

    [198]

    Khalaf E, Bultinck N, Vishwanath A, Zaletel M P 2020 arXiv: 2009.14827 [cond-mat.mes-hall]

    [199]

    Vafek O, Kang J 2020 Phys. Rev. Lett. 125 257602Google Scholar

    [200]

    Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y, Wang F 2019 Nature 572 215Google Scholar

    [201]

    Xu C, Balents L 2018 Phys. Rev. Lett. 121 087001Google Scholar

    [202]

    Wu F 2019 Phys. Rev. B 99 195114Google Scholar

    [203]

    Qin W, MacDonald A H 2021 Phys. Rev. Lett. 127 097001Google Scholar

    [204]

    Hsu Y T, Wu F, Das Sarma S 2020 Phys. Rev. B 102 085103Google Scholar

    [205]

    Khalaf E, Chatterjee S, Bultinck N, Zaletel M P, Vishwanath A 2021 Sci. Adv. 7 eabf5299Google Scholar

    [206]

    Yu J, Xie M, Bernevig B A, Sarma S D 2023 arXiv: 2301.04171 [cond-mat.mes-hall]

    [207]

    Tran K, Moody G, Wu F, et al. 2019 Nature 567 71Google Scholar

    [208]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [209]

    Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [210]

    Alexeev E M, Ruiz-Tijerina D A, Danovich M, et al,. 2019 Nature 567 81Google Scholar

    [211]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [212]

    Regan E C, Wang D, Jin C, Bakti Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [213]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [214]

    Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J, Mak K F 2021 Nature 600 641Google Scholar

    [215]

    Huang M, Wu Z, Hu J, Cai X, Li E, An L, Feng X, Ye Z, Lin N, Law K T, Wang N 2022 National Sci. Rev. DOI: 10.1093/nsr/nwac232Google Scholar

    [216]

    Tong Q, Yu H, Zhu Q, Wang Y, Xu X, Yao W 2017 Nat. Phys. 13 356Google Scholar

    [217]

    Wu F, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402Google Scholar

    [218]

    Wu F, Lovorn T, Tutuc E, Martin I, MacDonald A H 2019 Phys. Rev. Lett. 122 086402Google Scholar

    [219]

    Pan H, Xie M, Wu F, Das Sarma S 2022 Phys. Rev. Lett. 129 056804Google Scholar

    [220]

    Xu Y, Ray A, Shao Y T, Jiang S, Lee K, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Muller D A, Mak K F, Shan J 2022 Nat. Nanotechnol. 17 143Google Scholar

    [221]

    Song T, Sun Q C, Anderson E, et al. 2021 Science 374 1140Google Scholar

    [222]

    Xiao F, Chen K, Tong Q 2021 Phys. Rev. Res. 3 013027Google Scholar

    [223]

    Tong Q, Liu F, Xiao J, Yao W 2018 Nano Lett. 18 7194Google Scholar

    [224]

    Hu J X, Zhang C P, Xie Y M, Law K T 2022 Commun. Phys. 5 255Google Scholar

    [225]

    Tao Z, Shen B, Jiang S, Li T, Li L, Ma L, Zhao W, Hu J, Pistunova K, Watanabe K, Taniguchi T, Heinz T F, Mak K F, Shan J 2022 arXiv: 2208.07452 [cond-mat.mes-hall]

  • 图 1  (a)转角双层石墨烯和(b)转角双层-双层石墨烯体系的莫尔晶格结构的图示. (c)转角石墨烯体系的布里渊区, 其中红色和蓝色六角分别代表底部多层石墨烯和顶部多层石墨烯的布里渊区, 而小黑色六角代表着转角石墨烯超晶格的莫尔布里渊区. (d)魔角双层石墨烯的能带. (e)魔角双层石墨烯平带赝朗道能级表示的示意图[37,45]. (f), (g)魔角双层石墨烯K谷平带贡献的实空间电流密度分布[37], 子晶格势能分别为(f)${\varDelta} _{\rm{M}}$ = 0 meV和(g)${\varDelta} _{\rm{M}}$ = 15 meV

    Fig. 1.  Schematic illustration of the moiré lattice structures of (a) twisted bilayer graphene and (b) twisted double bilayer graphene. (c) Brillouin zone of the twisted graphene systems: the blue and red hexagons represent the atomic Brillouin zones of the bottom and top layers, and the small black hexagon denotes the mini-Brillouin zone of the moiré superlattices. (d) Energy bands of magic-angle twisted bilayer graphene. (e) Schematic illustration of the pseudo-Landau-level representation of the flat bands in magic-angle twisted bilayer graphene (TBG)[37,45]. The real-space current density distribution contributed by flat bands in the K valley of magic-angle TBG with the staggered sublattice potential ${\varDelta} _{\rm{M}}$ = 0 meV in (f), and ${\varDelta} _{\rm{M}}$ = 15 meV in (g)[37]

    图 2  (a)交错转角多层石墨烯体系的晶格结构示意图; (b)手性近似下A-ABA-A体系的能带[56], 存在两套平带, 其中实线为K能谷的能带, 虚线为$K'$能谷的能带

    Fig. 2.  (a) Schematic illustration of the lattice structure of alternating twist multilayer graphene; (b) band structures of A-ABA-A system which include two sets of flat bands[56]. The solid and dashed blue lines denote the bands from the K and $K'$ valleys, respectively

    图 3  (a)两层都与hBN对齐的魔角双层石墨烯y方向电极化关于应变分量$u_{xx}$的变化[81]; (b)由价带平带(红色三角)和导带平带(蓝色圆点)贡献的压电响应$\gamma_{yxx}$关于转角θ的变化[81], 其中实心点代表连续模型的结果, 空心点代表紧束缚模型的结果, 而水平虚线代表理想的量子化值

    Fig. 3.  (a) Plots of polarization along y direction vs. strain $u_{xx}$ for hBN-aligned magic-angle TBG[81]; (b) twist-angle (θ) dependence of $\gamma_{yxx}$ contributed by the valence (red triangles) and conduction (blue circles) flat bands, where the solid ones are the results from continuum model and the hollow ones are the results from tight-binding model[81]. The horizontal-dashed lines in panel (b) mark the ideal quantized values

    图 4  A-AB堆垛转角单层-双层石墨烯的(a)压电响应和(c)谷陈数, 以及AB-BA堆垛双层-双层转角石墨烯的(b)压电响应和(d)谷陈数[81]. 这里$U_{\rm{d}}$为位移电场. 在图(a)和(b)中, $\gamma_{yxx}$的值显示为$|4\gamma_{yxx}^0 |=1127\;\rm{pC/m}$的倍数. 空白格子代表过于接近拓扑相变而无法准确计算压电响应和陈数的区域

    Fig. 4.  (a), (b) Piezoelectric tensor and (c), (d) valley Chern numbers of all flat bands in (a), (c) twisted monolayer-bilayer graphene and (b), (d) twisted double bilayer systems[81]. $U_{\rm{d}}$ is displacement field here. In panels (a) and (b), the values of $\gamma_{yxx}$ are shown in the units of $|4\gamma_{yxx}^0 |=1127\;\rm{pC/m}$. The blank patches indicate points, which are too close to gap closures

    图 5  (a)魔角双层石墨烯的非相互作用能带; (b)包含高能子空间库仑势能效应的平带色散[82]; (c)考虑库仑屏蔽效应后介电常数随波矢的变化[82]; (d)上图为ν = 3填充处的相互作用单粒子能谱, 下图为ν = –3填充处的相互作用单粒子能谱[82]; (e) $\nu=1$时密度波态的实空间电荷分布[82]; (f)不同自发对称性破缺态下的非线性光学响应[82]

    Fig. 5.  (a) Non-interacting energy bands of magic-angle twisted bilayer graphene; (b) flat-band dispersions including remote-band Hartree-Fock potentials[82]; (c) wave vector dependence of the effective dielectric constant[82]; (d) single-particle excitation spectra at ν = 3 filling (upper panel) and at ν = –3 filling (lower panel)[82]; (e) real-space distributions of charge density at ν = 1 filling[82]; (f) nonlinear optical response of different symmetry-breaking states[82]

    图 6  (a)转角多层石墨烯体系在半填充时自旋极化和谷极化态的竞争关系. “SP”和“VP”分别代表自旋极化态和谷极化态; (b)转角双层-双层石墨烯半填充处的实空间电荷分布[83]; (c)—(e)转角双层-单层石墨烯体系在不同Hubbard参数和磁场下衍生出的不同陈数的绝缘态, 用红线标记[83]

    Fig. 6.  (a) Competition between spin polarized and valley polarized states in twisted multilayer graphene system at half filling. “SP” and “VP” stand for “spin polarized” and “valley polarized” respectively; (b) charge density distribution in real space at half filling for twisted double bilayer graphene[83]; (c)–(e) calculated gapped states with different Chern numbers remarked by red lines under magnetic fields in the twisted bilayer-monolayer graphene system[83]

    图 7  (a)魔角双层石墨烯的声子态密度, 蓝色线条为$0—2.4$THz的低频声子的声子态密度[85]; (b)魔角双层石墨烯在Γ点的声子软模, 莫尔原胞用黑色六边形标注出[85]; (c)魔角双层石墨烯在K点的声子极化, 其中$\sqrt{3}\times\sqrt{3}$超胞用黑色虚线标注[85]; (d)魔角双层石墨烯在M点的声子模, 双倍莫尔超胞用黑色虚线标注[85]

    Fig. 7.  (a) Phonon density of states (DOS) of magic-angle TBG (MATBG)[85], where the blue line shows the low-frequency DOS from 0 to 2.4 THz; (b) soft phonon modes in the MATBG at the Γ point, where the black hexagon marks the moiré primitive cell[85]; (c) phonon polarizations at K point in the MATBG, in which the $\sqrt{3}\times\sqrt{3}$ moiré supercell are marked with dashed black lines[85]; (d) phonon modes at M point in the MATBG, in which the double moiré supercell are marked with dashed black lines[85]

    图 8  (a)八极矩声子模式被冻结后在魔角双层石墨烯电中性点打开能隙[85] (b)能带间隙随声子振幅线性增加[85]. (c)魔角双层石墨烯中八极矩声子的电声耦合强度随费米能级的变化[85]; (d)四极矩声子被冻结后产生四极矩的电荷序[85]

    Fig. 8.  (a) Flat bands of magic-angle TBG with the octupolar-type phonon modes under frozen mode approximation[85]; (b) increasing bandgap as a function of average displacement amplitudes[85]; (c) strength of electron-phonon coupling verse Fermi level in the magic-angle TBG[85]; (d) charge order with the quadrupolar-type phonon modes under frozen mode approximation[85]

    图 9  (a)单层石墨烯与绝缘衬底上的长程电荷序耦合; (b)电子转移从石墨烯转移到衬底中形成的长程电荷序产生超晶格势场反作用于石墨烯的电子上, 进而在电子间相互作用的驱动下, 在狄拉克点打开能隙并大大增强在其附近的费米速度[86]

    Fig. 9.  (a) Coupling between graphene and long-range charge order within insulating substrate; (b) long-range charge order in the substrate with the charge transfer from graphene to substrate, can provide superlattice potential on the graphene’s electron and open a gap at the Dirac point driven bt electron interaction. And the Fermi velocity near the Dirac point is enhanced[86]

    表 1  手性分解规则的例子. 在${{K}}_{\mu}({{K}}^{\prime}_{\mu})$点有m条色散为$E({\boldsymbol{k}})\sim{\boldsymbol{k}}^{n}$的能带, 记为$(m, n)$

    Table 1.  Typical cases for generic partition rules. $(m, n)$ represents that there are m energy bands with $E({\boldsymbol{k}})\sim{\boldsymbol{k}}^{n}$ dispersion at the ${{K}}_{\mu}({{K}}^{\prime}_{\mu})$ point.

    手性分解平带数量K点能带${{K}}^{\prime}$点能带
    A-AB+A2(1, 1)0
    A-AB+AB2(1, 2)0
    A-A-A2(1, 1)0
    A-A-AB+AC2(1, 1), (1, 2)0
    AB-A-BA2(1, 1)0
    A-AB+A-A400
    A-ABC-A2//
    A-AB+ABC-A400
    下载: 导出CSV

    表 2  具有非零的非线性光学响应的对称破缺相

    Table 2.  Three types of ordered states with non-vanishing nonlinear optical responses

    序参量对称性允许的非线性光导率分量
    ${\boldsymbol{\tau}}_z$ $\sigma_{xx}^{x} = -\sigma_{xy}^{y} = -\sigma_{yx}^{y} = -\sigma^{x}_{yy}$
    $({\boldsymbol{\tau}}_z{\boldsymbol{\sigma}}_x, {\boldsymbol{\sigma}}_y)$$\begin{array}{c} \sigma^{x}_{xx, x} = \sigma_{xy, x}^{y}+\sigma_{yx, x}^{y}+\sigma_{yy, x}^{x},\quad \sigma^{y}_{yy, y} = \sigma_{xx, y}^{y}+\sigma_{xy, y}^{x}+\sigma_{yx, y}^{x}, \\ \sigma^{x}_{xx, x} = -\sigma^{y}_{yy, y},\quad \sigma_{xy, x}^{y} = -\sigma_{yx, y}^{x},\quad \sigma_{yx, x}^{y} = -\sigma_{xy, y}^{x},\quad \sigma_{yy, x}^{x} = -\sigma_{xx, y}^{y}\end{array}$
    ${\boldsymbol{\sigma}}_z$$\sigma_{xx}^{x} = -\sigma_{xy}^{y} = -\sigma_{yx}^{y} = -\sigma^{x}_{yy},~~\sigma_{xx}^{y} = \sigma_{xy}^{x} = \sigma_{yx}^{x} = -\sigma^{y}_{yy}$
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [3]

    Du X, Skachko I, Duerr F, Luican A, Andrei E Y 2009 Nature 462 192Google Scholar

    [4]

    Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [5]

    Kotov V N, Uchoa B, Pereira V M, Guinea F, Neto A C 2012 Rev. Mod. Phys. 84 1067Google Scholar

    [6]

    Tran T T, Bray K, Ford M J, Toth M, Aharonovich I 2016 Nat. Nanotechnol. 11 37Google Scholar

    [7]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [8]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [9]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [10]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [11]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [12]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [13]

    Bistritzer R, MacDonald A H 2011 PNAS 108 12233Google Scholar

    [14]

    Cao Y, Fatemi V, Demir A, et al. 2018 Nature 556 80Google Scholar

    [15]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [16]

    Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [17]

    Kerelsky A, McGilly L J, Kennes D M, et al. 2019 Nature 572 95Google Scholar

    [18]

    Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, Andrei E Y 2019 Nature 573 91Google Scholar

    [19]

    Xie Y, Lian B, Jäck B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2019 Nature 572 101Google Scholar

    [20]

    Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J, Refael G, von Oppen F, Watanabe K, Taniguchi T, Nadj-Perge S 2019 Nat. Phys. 15 1174Google Scholar

    [21]

    Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A 2020 Science 367 900Google Scholar

    [22]

    Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L, Efetov D K 2020 Nature 583 375Google Scholar

    [23]

    Saito Y, Ge J, Watanabe K, Taniguchi T, Young A F 2020 Nat. Phys. 16 926Google Scholar

    [24]

    Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O, Li J 2021 Science 371 1261Google Scholar

    [25]

    Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [26]

    Codecido E, Wang Q, Koester R, Che S, Tian H, Lv R, Tran S, Watanabe K, Taniguchi T, Zhang F, Bockrath M, Lau C N 2019 Sci. Adv. 5 eaaw9770Google Scholar

    [27]

    Cao Y, Rodan-Legrain D, Park J M, Yuan N F, Watanabe K, Taniguchi T, Fernandes R M, Fu L, Jarillo-Herrero P 2021 Science 372 264Google Scholar

    [28]

    Balents L, Dean C R, Efetov D K, Young A F 2020 Nat. Phys. 16 725Google Scholar

    [29]

    Andrei E Y, Efetov D K, Jarillo-Herrero P, MacDonald A H, Mak K F, Senthil T, Tutuc E, Yazdani A, Young A F 2021 Nat. Rev. Mater. 6 201Google Scholar

    [30]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [31]

    Stepanov P, Xie M, Taniguchi T, Watanabe K, Lu X, MacDonald A H, Bernevig B A, Efetov D K 2021 Phys. Rev. Lett. 127 197701Google Scholar

    [32]

    Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 588 610Google Scholar

    [33]

    Wu S, Zhang Z, Watanabe K, Taniguchi T, Andrei E Y 2021 Nat. Mater. 20 488Google Scholar

    [34]

    Das I, Lu X, Herzog-Arbeitman J, Song Z D, Watanabe K, Taniguchi T, Bernevig B A, Efetov D K 2021 Nat. Phys. 17 710Google Scholar

    [35]

    Pierce A T, Xie Y, Park J M, et al. 2021 Nat. Phys. 17 1210Google Scholar

    [36]

    Shen C, Ying J, Liu L, Liu J, Li N, Wang S, Tang J, Zhao Y, Chu Y, Watanabe K, Taniguchi T, Yang R, Shi D, Qu F, Lu L, Yang W, Zhang G 2021 Chin. Phys. Lett. 38 047301Google Scholar

    [37]

    Liu J, Dai X 2021 Nat. Rev. Phys. 3 367Google Scholar

    [38]

    Tschirhart C L, Serlin M, Polshyn H, Shragai A, Xia Z, Zhu J, Zhang Y, Watanabe K, Taniguchi T, Huber M E, Young A F 2021 Science 372 1323Google Scholar

    [39]

    Diez-Merida J, Díez-Carlón A, Yang S, Xie Y M, Gao X J, Watanabe K, Taniguchi T, Lu X, Law K T, Efetov D K 2021 arXiv: 2110.01067 [cond-mat.supr-con]

    [40]

    Xie Y, Pierce A T, Park J M, Parker D E, Khalaf E, Ledwith P, Cao Y, Lee S H, Chen S, Forrester P R, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P, Yacoby A 2021 Nature 600 439Google Scholar

    [41]

    Song Z, Wang Z, Shi W, Li G, Fang C, Bernevig B A 2019 Phys. Rev. Lett. 123 036401Google Scholar

    [42]

    Ahn J, Park S, Yang B J 2019 Phys. Rev. X 9 021013Google Scholar

    [43]

    Po H C, Zou L, Senthil T, Vishwanath A 2019 Phys. Rev. B 99 195455Google Scholar

    [44]

    Tarnopolsky G, Kruchkov A J, Vishwanath A 2019 Phys. Rev. Lett. 122 106405Google Scholar

    [45]

    Liu J, Liu J, Dai X 2019 Phys. Rev. B 99 155415Google Scholar

    [46]

    Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P, Senthil T 2019 Phys. Rev. B 99 075127Google Scholar

    [47]

    Liu J, Ma Z, Gao J, Dai X 2019 Phys. Rev. X 9 031021Google Scholar

    [48]

    Chittari B L, Chen G, Zhang Y, Wang F, Jung J 2019 Phys. Rev. Lett. 122 016401Google Scholar

    [49]

    Chebrolu N R, Chittari B L, Jung J 2019 Phys. Rev. B 99 235417Google Scholar

    [50]

    Koshino M 2019 Phys. Rev. B 99 235406Google Scholar

    [51]

    Lee J Y, Khalaf E, Liu S, Liu X, Hao Z, Kim P, Vishwanath A 2019 Nat. Commun. 10 5333Google Scholar

    [52]

    Khalaf E, Kruchkov A J, Tarnopolsky G, Vishwanath A 2019 Phys. Rev. B 100 085109Google Scholar

    [53]

    Li X, Wu F, MacDonald A H 2019 arXiv: 1907.12338 [cond-mat.mtrl-sci]

    [54]

    Ma Z, Li S, Zheng Y W, Xiao M M, Jiang H, Gao J H, Xie X 2021 Science Bulletin 66 18Google Scholar

    [55]

    Zhang S, Xie B, Wu Q, Liu J, Yazyev O V 2020 arXiv: 2012.11964 [cond-mat.mes-hall]

    [56]

    Xie B, Peng R, Zhang S, Liu J 2022 npj Comput. Mater. 8 110Google Scholar

    [57]

    Ledwith P J, Vishwanath A, Khalaf E 2022 Phys. Rev. Lett. 128 176404Google Scholar

    [58]

    Wang J, Liu Z 2022 Phys. Rev. Lett. 128 176403Google Scholar

    [59]

    Liu Z, Shi W, Yang T, Zhang Z 2022 J. Mater. Sci. Technol. 111 28Google Scholar

    [60]

    Tong L H, Tong Q, Yang L Z, Zhou Y Y, Wu Q, Tian Y, Zhang L, Zhang L, Qin Z, Yin L J 2022 Phys. Rev. Lett. 128 126401Google Scholar

    [61]

    Polshyn H, Zhu J, Kumar M, et al. 2020 Nature 588 66Google Scholar

    [62]

    He M, Zhang Y H, Li Y, Fei Z, Watanabe K, Taniguchi T, Xu X, Yankowitz M 2021 Nat. Commun. 12 4727Google Scholar

    [63]

    Li S Y, Wang Z, Xue Y, Wang Y, Zhang S, Liu J, Zhu Z, Watanabe K, Taniguchi T, Gao H j, Jiang Y, Mao J 2022 Nat. Commun. 13 4225Google Scholar

    [64]

    Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R, Yankowitz M 2021 Nat. Phys. 17 374Google Scholar

    [65]

    Xu S, Al Ezzi M M, Balakrishnan N, Garcia-Ruiz A, Tsim B, Mullan C, Barrier J, Xin N, Piot B A, Taniguchi T, Watanabe K, Carvalho A, Mishchenko A, Geim A K, Fal'ko V I, Adam S, Neto A H C, Novoselov K S, Shi Y 2021 Nat. Phys. 17 619Google Scholar

    [66]

    Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2020 Nature 583 221Google Scholar

    [67]

    Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215Google Scholar

    [68]

    Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520Google Scholar

    [69]

    Burg G W, Zhu J, Taniguchi T, Watanabe K, MacDonald A H, Tutuc E 2019 Phys. Rev. Lett. 123 197702Google Scholar

    [70]

    Rubio-Verdú C, Turkel S, Song Y, Klebl L, Samajdar R, Scheurer M S, Venderbos J W F, Watanabe K, Taniguchi T, Ochoa H, Xian L, Kennes D M, Fernandes R M, Rubio Á, Pasupathy A N 2022 Nat. Phys. 18 196Google Scholar

    [71]

    Li Q, Cheng B, Chen M, Xie B, Xie Y, Wang P, Chen F, Liu Z, Watanabe K, Taniguchi T, Liang S J, Wang D, Wang C, Wang Q H, Liu J, Miao F 2022 Nature 609 479Google Scholar

    [72]

    Li Y, Zhang S, Chen F, Wei L, Zhang Z, Xiao H, Gao H, Chen M, Liang S, Pei D, Xu L, Watanabe K, Taniguchi T, Yang L, Miao F, Liu J, Cheng B, Wang M, Chen Y, Liu Z 2022 Adv. Mater. 34 2205996Google Scholar

    [73]

    Kim H, Choi Y, Lewandowski C, Thomson A, Zhang Y, Polski R, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2021 arXiv: 2109.12127 [cond-mat.mes-hall]

    [74]

    Cao Y, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 595 526Google Scholar

    [75]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 590 249Google Scholar

    [76]

    Liu X, Zhang N J, Watanabe K, Taniguchi T, Li J I A 2022 Nat. Phys. 18 522Google Scholar

    [77]

    Sun X, Zhang S, Liu Z, Zhu H, Huang J, Yuan K, Wang Z, Watanabe K, Taniguchi T, Li X, Zhu M, Mao J, Yang T, Kang J, Liu J, Ye Y, Han Z V, Zhang Z 2021 Nat. Commun. 12 7196Google Scholar

    [78]

    Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y, Wang F 2019 Nat. Phys. 15 237Google Scholar

    [79]

    Chen G, Sharpe A L, Fox E J, et al. 2020 Nature 579 56Google Scholar

    [80]

    Xie B, Peng R, Zhang S, Liu J 2022 npj Comput. Mater. 8 1Google Scholar

    [81]

    Peng R, Liu J 2022 Phys. Rev. Res. 4 L032006Google Scholar

    [82]

    Zhang S, Lu X, Liu J 2022 Phys. Rev. Lett. 128 247402Google Scholar

    [83]

    Zhang S, Dai X, Liu J 2022 Phys. Rev. Lett. 128 026403Google Scholar

    [84]

    Liu L, Zhang S, Chu Y, Shen C, Huang Y, Yuan Y, Tian J, Tang J, Ji Y, Yang R, Watanabe K, Taniguchi T, Shi D, Liu J, Yang W, Zhang G 2022 Nat. Commun. 13 3292Google Scholar

    [85]

    Liu X, Peng R, Sun Z, Liu J 2022 Nano Lett. 22 7791Google Scholar

    [86]

    Lu X, Zhang S, Gao X, Yang K, Gao Y, Ye Y, Han Z V, Liu J 2022 arXiv: 2206.05659 [cond-mat.mes-hall]

    [87]

    Wang Y, Gao X, Yang K, Gu P, Lu X, Zhang S, Gao Y, Ren N, Dong B, Jiang Y, Watanabe K, Taniguchi T, Kang J, Lou W, Mao J, Liu J, Ye Y, Han Z, Chang K, Zhang J, Zhang Z 2022 Nat. Nanotechnol. 17 1272Google Scholar

    [88]

    Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2012 Phys. Rev. B 86 155449Google Scholar

    [89]

    Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K, Fu L 2018 Phys. Rev. X 8 031087Google Scholar

    [90]

    He M, Li Y, Cai J, Liu Y, Watanabe K, Taniguchi T, Xu X, Yankowitz M 2021 Nat. Phys. 17 26Google Scholar

    [91]

    Yuan N F Q, Fu L 2018 Phys. Rev. B 98 045103Google Scholar

    [92]

    刘健鹏, 戴希 2020 物理学报 69 147301Google Scholar

    Liu J P, Dai X 2020 Acta Phys. Sin. 69 147301Google Scholar

    [93]

    Liu J, Dai X 2021 Phys. Rev. B 103 035427Google Scholar

    [94]

    Zhu J, Su J J, MacDonald A H 2020 Phys. Rev. Lett. 125 227702Google Scholar

    [95]

    Li S Y, Zhang Y, Ren Y N, Liu J, Dai X, He L 2020 Phys. Rev. B 102 121406Google Scholar

    [96]

    He W Y, Goldhaber-Gordon D, Law K T 2020 Nat. Commun. 11 1650Google Scholar

    [97]

    Su Y, Lin S Z 2020 Phys. Rev. Lett. 125 226401Google Scholar

    [98]

    Huang C, Wei N, MacDonald A H 2021 Phys. Rev. Lett. 126 056801Google Scholar

    [99]

    Ying X, Ye M, Balents L 2021 Phys. Rev. B 103 115436Google Scholar

    [100]

    Min H, MacDonald A H 2008 Prog. Theor. Phys. Suppl. 176 227Google Scholar

    [101]

    Xie F, Regnault N, Călugăru D, Bernevig B A, Lian B 2021 Phys. Rev. B 104 115167Google Scholar

    [102]

    Bouhon A, Black-Schaffer A M, Slager R J 2019 Phys. Rev. B 100 195135Google Scholar

    [103]

    Zhang Y H, Mao D, Senthil T 2019 Phys. Rev. Res. 1 033126Google Scholar

    [104]

    Bultinck N, Chatterjee S, Zaletel M P 2020 Phys. Rev. Lett. 124 166601Google Scholar

    [105]

    King-Smith R, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar

    [106]

    Rabe K M, Ahn C H, Triscone J M 2007 Physics of Ferroelectrics: a Modern Perspective (Berlin: Springer-Verlag) pp31−68

    [107]

    Pereira V M, Castro Neto A H 2009 Phys. Rev. Lett. 103 046801Google Scholar

    [108]

    Yu J, Liu C 2020 Nat. Commun. 11 2290Google Scholar

    [109]

    Moon P, Koshino M 2014 Phys. Rev. B 90 155406Google Scholar

    [110]

    Jung J, Raoux A, Qiao Z, MacDonald A H 2014 Phys. Rev. B 89 205414Google Scholar

    [111]

    Nam N N T, Koshino M 2017 Phys. Rev. B 96 075311Google Scholar

    [112]

    Gupta R, Rost F, Fleischmann M, Sharma S, Shallcross S 2019 Phys. Rev. B 99 125407Google Scholar

    [113]

    Bultinck N, Khalaf E, Liu S, Chatterjee S, Vishwanath A, Zaletel M P 2020 Phys. Rev. X 10 031034Google Scholar

    [114]

    Zhang Y, Jiang K, Wang Z, Zhang F 2020 Phys. Rev. B 102 035136Google Scholar

    [115]

    Lian B, Song Z D, Regnault N, Efetov D K, Yazdani A, Bernevig B A 2021 Phys. Rev. B 103 205414Google Scholar

    [116]

    Bernevig B A, Song Z D, Regnault N, Lian B 2021 Phys. Rev. B 103 205413Google Scholar

    [117]

    Kwan Y H, Wagner G, Soejima T, Zaletel M P, Simon S H, Parameswaran S A, Bultinck N 2021 Phys. Rev. X 11 041063Google Scholar

    [118]

    Wagner G, Kwan Y H, Bultinck N, Simon S H, Parameswaran S A 2022 Phys. Rev. Lett. 128 156401Google Scholar

    [119]

    Kang J, Vafek O 2019 Phys. Rev. Lett. 122 246401Google Scholar

    [120]

    Po H C, Zou L, Vishwanath A, Senthil T 2018 Phys. Rev. X 8 031089Google Scholar

    [121]

    Rademaker L, Mellado P 2018 Phys. Rev. B 98 235158Google Scholar

    [122]

    Kang J, Vafek O 2018 Phys. Rev. X 8 031088Google Scholar

    [123]

    Xu X Y, Law K T, Lee P A 2018 Phys. Rev. B 98 121406Google Scholar

    [124]

    Huang T, Zhang L, Ma T 2019 Sci. Bull. 64 310Google Scholar

    [125]

    Liu C C, Zhang L D, Chen W Q, Yang F 2018 Phys. Rev. Lett. 121 217001Google Scholar

    [126]

    Venderbos J W F, Fernandes R M 2018 Phys. Rev. B 98 245103Google Scholar

    [127]

    Lu C, Zhang Y, Zhang Y, Zhang M, Liu C C, Wang Y, Gu Z C, Chen W Q, Yang F 2022 Phys. Rev. B 106 024518Google Scholar

    [128]

    Da Liao Y, Kang J, Breiø C N, Xu X Y, Wu H Q, Andersen B M, Fernandes R M, Meng Z Y 2021 Phys. Rev. X 11 011014Google Scholar

    [129]

    Seo K, Kotov V N, Uchoa B 2019 Phys. Rev. Lett. 122 246402Google Scholar

    [130]

    Isobe H, Yuan N F Q, Fu L 2018 Phys. Rev. X 8 041041Google Scholar

    [131]

    Chichinadze D V, Classen L, Chubukov A V 2020 Phys. Rev. B 102 125120Google Scholar

    [132]

    Hejazi K, Chen X, Balents L 2021 Phys. Rev. Res. 3 013242Google Scholar

    [133]

    Xie M, MacDonald A H 2020 Phys. Rev. Lett. 124 097601Google Scholar

    [134]

    Liu S, Khalaf E, Lee J Y, Vishwanath A 2021 Phys. Rev. Res. 3 013033Google Scholar

    [135]

    Kang J, Vafek O 2020 Phys. Rev. B 102 035161Google Scholar

    [136]

    Soejima T, Parker D E, Bultinck N, Hauschild J, Zaletel M P 2020 Phys. Rev. B 102 205111Google Scholar

    [137]

    Chen B B, Liao Y D, Chen Z, Vafek O, Kang J, Li W, Meng Z Y 2021 Nat. Commun. 12 5480Google Scholar

    [138]

    Lin X, Chen B B, Li W, Meng Z Y, Shi T 2022 Phys. Rev. Lett. 128 157201Google Scholar

    [139]

    Zhang X, Pan G, Zhang Y, Kang J, Meng Z Y 2021 Chin. Phys. Lett. 38 077305Google Scholar

    [140]

    Hofmann J S, Khalaf E, Vishwanath A, Berg E, Lee J Y 2022 Phys. Rev. X 12 011061Google Scholar

    [141]

    Pan G, Zhang X, Lu H, Li H, Chen B B, Sun K, Meng Z Y 2023 Phys. Rev. Lett. 130 016401Google Scholar

    [142]

    Xie F, Cowsik A, Song Z D, Lian B, Bernevig B A, Regnault N 2021 Phys. Rev. B 103 205416Google Scholar

    [143]

    Potasz P, Xie M, MacDonald A H 2021 Phys. Rev. Lett. 127 147203Google Scholar

    [144]

    Parker D E, Soejima T, Hauschild J, Zaletel M P, Bultinck N 2021 Phys. Rev. Lett. 127 027601Google Scholar

    [145]

    Shi H, Dai X 2022 Phys. Rev. B 106 245129Google Scholar

    [146]

    Hejazi K, Liu C, Shapourian H, Chen X, Balents L 2019 Phys. Rev. B 99 035111Google Scholar

    [147]

    Song Z D, Bernevig B A 2022 Phys. Rev. Lett. 129 047601Google Scholar

    [148]

    Kang J, Bernevig B A, Vafek O 2021 Phys. Rev. Lett. 127 266402Google Scholar

    [149]

    Vanhala T I, Pollet L 2020 Phys. Rev. B 102 035154Google Scholar

    [150]

    Wong D, Nuckolls K P, Oh M, Lian B, Xie Y, Jeon S, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 582 198Google Scholar

    [151]

    Zondiner U, Rozen A, Rodan-Legrain D, Cao Y, Queiroz R, Taniguchi T, Watanabe K, Oreg Y, von Oppen F, Stern A, Berg E, Jarillo-Herrero P, Ilani S 2020 Nature 582 203Google Scholar

    [152]

    Xie F, Kang J, Bernevig B A, Vafek O, Regnault N 2023 Phys. Rev. B 107 075156Google Scholar

    [153]

    Polshyn H, Zhang Y, Kumar M A, Soejima T, Ledwith P, Watanabe K, Taniguchi T, Vishwanath A, Zaletel M P, Young A F 2022 Nat. Phys. 18 42Google Scholar

    [154]

    Padhi B, Setty C, Phillips P W 2018 Nano Lett. 18 6175Google Scholar

    [155]

    Zhang K, Zhang Y, Fu L, Kim E A 2022 Commun. Phys. 5 250Google Scholar

    [156]

    Parker D, Ledwith P, Khalaf E, Soejima T, Hauschild J, Xie Y, Pierce A, Zaletel M P, Yacoby A, Vishwanath A 2021 arXiv:2112.13837 [cond-mat.str-el]

    [157]

    Liu J, Dai X 2020 npj Comput. Mater. 6 57Google Scholar

    [158]

    Yang F, Song W, Meng F, Luo F, Lou S, Lin S, Gong Z, Cao J, Barnard E S, Chan E, Yang L, Yao J 2020 Matter 3 1361Google Scholar

    [159]

    Torre A d l, Seyler K L, Zhao L, Matteo S D, Scheurer M S, Li Y, Yu B, Greven M, Sachdev S, Norman M R, Hsieh D 2021 Nat. Phys. 17 777Google Scholar

    [160]

    Zhao L, Torchinsky D H, Chu H, Ivanov V, Lifshitz R, Flint R, Qi T, Cao G, Hsieh D 2016 Nat. Phys. 12 32Google Scholar

    [161]

    Hong J P, Soejima T, Zaletel M P 2022 Phys. Rev. Lett. 129 147001Google Scholar

    [162]

    Călugăru D, Regnault N, Oh M, Nuckolls K P, Wong D, Lee R L, Yazdani A, Vafek O, Bernevig B A 2022 Phys. Rev. Lett. 129 117602Google Scholar

    [163]

    Rademaker L, Protopopov I V, Abanin D A 2020 Phys. Rev. Res. 2 033150Google Scholar

    [164]

    Hofstadter D R 1976 Phys. Rev. B 14 2239Google Scholar

    [165]

    Song Z, Sun S, Xu Y, Nie S, Weng H, Fang Z, Dai X 2022 Memorial Volume for Shoucheng Zhang (Singapore: World Scientific) pp263–281

    [166]

    Koshino M 2011 Phys. Rev. B 84 125427Google Scholar

    [167]

    Wu Q, Liu J, Guan Y, Yazyev O V 2021 Phys. Rev. Lett. 126 056401Google Scholar

    [168]

    Sun S, Song Z, Weng H, Dai X 2020 Phys. Rev. B 101 125118Google Scholar

    [169]

    Streda P 1982 J. Phys. C: Solid State Phys. 15 L717Google Scholar

    [170]

    Xiao D, Shi J, Niu Q 2005 Phys. Rev. Lett. 95 137204Google Scholar

    [171]

    Polshyn H, Yankowitz M, Chen S, Zhang Y, Watanabe K, Taniguchi T, Dean C R, Young A F 2019 Nat. Phys. 15 1011Google Scholar

    [172]

    Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O, Watanabe K, Taniguchi T, Senthil T, Jarillo-Herrero P 2020 Phys. Rev. Lett. 124 076801Google Scholar

    [173]

    Wu F, MacDonald A H, Martin I 2018 Phys. Rev. Lett. 121 257001Google Scholar

    [174]

    Lian B, Wang Z, Bernevig B A 2019 Phys. Rev. Lett. 122 257002Google Scholar

    [175]

    Wu F, Hwang E, Das Sarma S 2019 Phys. Rev. B 99 165112Google Scholar

    [176]

    Lamparski M, Troeye B V, Meunier V 2020 2D Mater. 7 025050Google Scholar

    [177]

    Sharma G, Yudhistira I, Chakraborty N, Ho D Y H, Ezzi M M A, Fuhrer M S, Vignale G, Adam S 2021 Nat. Commun. 12 5737Google Scholar

    [178]

    Cocemasov A I, Nika D L, Balandin A A 2013 Phys. Rev. B 88 035428Google Scholar

    [179]

    Choi Y W, Choi H J 2018 Phys. Rev. B 98 241412Google Scholar

    [180]

    Angeli M, Tosatti E, Fabrizio M 2019 Phys. Rev. X 9 041010Google Scholar

    [181]

    Eliel G S N, Moutinho M V O, Gadelha A C, Righi A, Campos L C, Ribeiro H B, Chiu P W, Watanabe K, Taniguchi T, Puech P, Paillet M, Michel T, Venezuela P, Pimenta M A 2018 Nat. Commun. 9 1221Google Scholar

    [182]

    Koshino M, Son Y W 2019 Phys. Rev. B 100 075416Google Scholar

    [183]

    Koshino M, Nam N N T 2020 Phys. Rev. B 101 195425Google Scholar

    [184]

    Choi Y W, Choi H J 2021 Phys. Rev. Lett. 127 167001Google Scholar

    [185]

    Zhang L, Han J, Wang H, Car R, E W 2018 Phys. Rev. Lett. 120 143001Google Scholar

    [186]

    Miao W, Li C, Pan D, Dai X 2022 arXiv: 2210.02026 [cond-mat.mes-hall]

    [187]

    Wigner E 1934 Phys. Rev. 46 1002Google Scholar

    [188]

    Andrei E Y, Deville G, Glattli D C, Williams F I B, Paris E, Etienne B 1988 Phys. Rev. Lett. 60 2765Google Scholar

    [189]

    Li H, Li S, Regan E C, Wang D, Zhao W, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Crommie M F, Wang F 2021 Nature 597 650Google Scholar

    [190]

    Altvater M A, Hung S H, Tilak N, Won C J, Li G, Cheong S W, Chung C H, Jeng H T, Andrei E Y 2022 arXiv: 2201.09195 [cond-mat.mes-hall]

    [191]

    Tseng C C, Song T, Jiang Q, Lin Z, Wang C, Suh J, Watanabe K, Taniguchi T, McGuire M A, Xiao D, Chu J H, Cobden D H, Xu X, Yankowitz M 2022 Nano Lett. 22 8495Google Scholar

    [192]

    Drummond N D, Needs R J 2009 Phys. Rev. Lett. 102 126402Google Scholar

    [193]

    Gamayun O V, Gorbar E V, Gusynin V P 2010 Phys. Rev. B 81 075429Google Scholar

    [194]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30Google Scholar

    [195]

    Herzog-Arbeitman J, Song Z D, Regnault N, Bernevig B A 2020 Phys. Rev. Lett. 125 236804Google Scholar

    [196]

    Wu F, Das Sarma S 2020 Phys. Rev. Lett. 124 046403Google Scholar

    [197]

    Bernevig B A, Lian B, Cowsik A, Xie F, Regnault N, Song Z D 2021 Phys. Rev. B 103 205415Google Scholar

    [198]

    Khalaf E, Bultinck N, Vishwanath A, Zaletel M P 2020 arXiv: 2009.14827 [cond-mat.mes-hall]

    [199]

    Vafek O, Kang J 2020 Phys. Rev. Lett. 125 257602Google Scholar

    [200]

    Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y, Wang F 2019 Nature 572 215Google Scholar

    [201]

    Xu C, Balents L 2018 Phys. Rev. Lett. 121 087001Google Scholar

    [202]

    Wu F 2019 Phys. Rev. B 99 195114Google Scholar

    [203]

    Qin W, MacDonald A H 2021 Phys. Rev. Lett. 127 097001Google Scholar

    [204]

    Hsu Y T, Wu F, Das Sarma S 2020 Phys. Rev. B 102 085103Google Scholar

    [205]

    Khalaf E, Chatterjee S, Bultinck N, Zaletel M P, Vishwanath A 2021 Sci. Adv. 7 eabf5299Google Scholar

    [206]

    Yu J, Xie M, Bernevig B A, Sarma S D 2023 arXiv: 2301.04171 [cond-mat.mes-hall]

    [207]

    Tran K, Moody G, Wu F, et al. 2019 Nature 567 71Google Scholar

    [208]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [209]

    Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [210]

    Alexeev E M, Ruiz-Tijerina D A, Danovich M, et al,. 2019 Nature 567 81Google Scholar

    [211]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [212]

    Regan E C, Wang D, Jin C, Bakti Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [213]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [214]

    Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J, Mak K F 2021 Nature 600 641Google Scholar

    [215]

    Huang M, Wu Z, Hu J, Cai X, Li E, An L, Feng X, Ye Z, Lin N, Law K T, Wang N 2022 National Sci. Rev. DOI: 10.1093/nsr/nwac232Google Scholar

    [216]

    Tong Q, Yu H, Zhu Q, Wang Y, Xu X, Yao W 2017 Nat. Phys. 13 356Google Scholar

    [217]

    Wu F, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402Google Scholar

    [218]

    Wu F, Lovorn T, Tutuc E, Martin I, MacDonald A H 2019 Phys. Rev. Lett. 122 086402Google Scholar

    [219]

    Pan H, Xie M, Wu F, Das Sarma S 2022 Phys. Rev. Lett. 129 056804Google Scholar

    [220]

    Xu Y, Ray A, Shao Y T, Jiang S, Lee K, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Muller D A, Mak K F, Shan J 2022 Nat. Nanotechnol. 17 143Google Scholar

    [221]

    Song T, Sun Q C, Anderson E, et al. 2021 Science 374 1140Google Scholar

    [222]

    Xiao F, Chen K, Tong Q 2021 Phys. Rev. Res. 3 013027Google Scholar

    [223]

    Tong Q, Liu F, Xiao J, Yao W 2018 Nano Lett. 18 7194Google Scholar

    [224]

    Hu J X, Zhang C P, Xie Y M, Law K T 2022 Commun. Phys. 5 255Google Scholar

    [225]

    Tao Z, Shen B, Jiang S, Li T, Li L, Ma L, Zhao W, Hu J, Pistunova K, Watanabe K, Taniguchi T, Heinz T F, Mak K F, Shan J 2022 arXiv: 2208.07452 [cond-mat.mes-hall]

  • [1] 刘钊. 莫尔超晶格中的分数化拓扑量子态. 物理学报, 2024, 73(20): 207303. doi: 10.7498/aps.73.20241029
    [2] 施洪潮, 唐炳, 刘超飞. 双层蜂窝状海森伯铁磁体中层间交换耦合相互作用对拓扑相的影响. 物理学报, 2024, 73(13): 137501. doi: 10.7498/aps.73.20240437
    [3] 刘恩克. 磁序与拓扑的耦合: 从基础物理到拓扑磁电子学. 物理学报, 2024, 73(1): 017103. doi: 10.7498/aps.73.20231711
    [4] 吴泽飞, 黄美珍, 王宁. 二维莫尔超晶格中的非线性霍尔效应. 物理学报, 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [5] 汤衍浩. 转角半导体过渡金属硫族化物莫尔超晶格中的新奇物态. 物理学报, 2023, 72(2): 027802. doi: 10.7498/aps.72.20222080
    [6] 王振宇, 李志雄, 袁怀洋, 张知之, 曹云姗, 严鹏. 磁子学中的拓扑物态与量子效应. 物理学报, 2023, 72(5): 057503. doi: 10.7498/aps.72.20221997
    [7] 熊枫, 彭志敏, 丁艳军, 杜艳君. NO紫外宽带吸收光谱的非线性响应及实验. 物理学报, 2022, 71(20): 203302. doi: 10.7498/aps.71.20220975
    [8] 詹真, 张亚磊, 袁声军. 石墨烯莫尔超晶格的晶格弛豫与衬底效应. 物理学报, 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [9] 欧阳昊, 胡思扬, 申曼玲, 张晨希, 程湘爱, 江天. GeSe2中强各向异性偏振相关的非线性光学响应. 物理学报, 2020, 69(18): 184212. doi: 10.7498/aps.69.20200443
    [10] 叶鹏. 具有全局对称性的强关联拓扑物态的规范场论. 物理学报, 2020, 69(7): 077102. doi: 10.7498/aps.69.20200197
    [11] 陈恒杰, 薛航, 李邵雄, 王镇. 一种通过约瑟夫森结非线性频率响应确定微波耗散的方法. 物理学报, 2019, 68(11): 118501. doi: 10.7498/aps.68.20190167
    [12] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 物理学报, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [13] 刘艺舟, 臧佳栋. 磁性斯格明子的研究现状和展望. 物理学报, 2018, 67(13): 131201. doi: 10.7498/aps.67.20180619
    [14] 卢晓波, 张广宇. 石墨烯莫尔超晶格. 物理学报, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [15] 高潮, 肖奇, 邱少君, 侯超奇, 许培培, 刘建群. 一种侧链共轭聚噻吩衍生物薄膜的三阶非线性光学响应. 物理学报, 2009, 58(5): 3578-3583. doi: 10.7498/aps.58.3578
    [16] 易文辉, 徐友龙, 封 伟, 吴洪才, 高 潮. 可溶性聚噻吩甲烯包覆碳纳米管的三阶非线性光学响应. 物理学报, 2006, 55(7): 3736-3742. doi: 10.7498/aps.55.3736
    [17] 顾利萍, 高 雷. 弱非线性复合体中的高阶非线性响应. 物理学报, 2005, 54(2): 987-992. doi: 10.7498/aps.54.987
    [18] 初瑞清, 徐志军, 李国荣, 曾华荣, 余寒峰, 邵 鑫, 罗豪甦, 殷庆瑞. 钛酸钡单晶沿垂直解理面方向的超高压电响应的研究. 物理学报, 2005, 54(2): 935-938. doi: 10.7498/aps.54.935
    [19] 王维镛, 林中衡, 苏肇冰, 郝柏林. 闭路格林函数和非线性响应理论(Ⅱ). 物理学报, 1982, 31(11): 1493-1500. doi: 10.7498/aps.31.1493
    [20] 王维镛, 林中衡, 苏肇冰, 郝柏林. 闭路格林函数和非线性响应理论(Ⅰ). 物理学报, 1982, 31(11): 1483-1492. doi: 10.7498/aps.31.1483
计量
  • 文章访问数:  7990
  • PDF下载量:  653
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-30
  • 修回日期:  2023-03-13
  • 上网日期:  2023-03-22
  • 刊出日期:  2023-03-20

/

返回文章
返回