搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

骨架中空对泡沫铜内融化过程的影响

杨浩 张销杰 黄荣宗

引用本文:
Citation:

骨架中空对泡沫铜内融化过程的影响

杨浩, 张销杰, 黄荣宗

Effects of hollow skeleton on melting process in copper foam

Yang Hao, Zhang Xiao-Jie, Huang Rong-Zong
PDF
HTML
导出引用
  • 将多孔介质和相变材料复合是提高固液相变储能系统传热性能的有效措施. 本文通过微型计算机断层扫描(micro computed tomography, Micro CT)三维重构得到泡沫铜的数值结构, 采用格子Boltzmann方法对填充泡沫铜复合相变材料的方腔融化过程进行孔隙尺度模拟研究, 讨论不同Rayleigh数以及热导率下, 泡沫铜骨架中空对泡沫铜内融化过程的影响. 结果表明, 中空骨架泡沫铜相比实心骨架泡沫铜, 融化前期换热强度更低、相变材料的融化更慢、储能效率η更高. 与泡沫铜骨架相比, 通过骨架中空区进入方腔的热流量可以忽略不计; 随Fourier数的增大, 泡沫铜的传热增强效率ζ会因为导热和自然对流的竞争而出现先上升后下降然后再上升的现象; 当Rayleigh数减小时, 储能效率η提高, 传热增强效率ζ随Fourier数的变化趋于平缓, 中空骨架泡沫铜和实心骨架泡沫铜对应的传热增强效率ζ的差距减小; 泡沫铜骨架和相变材料热导率之比越大, 融化结束时刻储能效率η越低, 中空骨架泡沫铜和实心骨架泡沫铜对应的传热增强效率ζ的差距越小.
    The compositing of porous medium and phase change material is an effective way to improve the heat transfer performance of solid-liquid phase change energy storage system. In this paper, we reconstruct the three-dimensional numerical structure of the copper foam by using the micro computed tomography, and then conduct the pore-scale numerical simulation of the melting process in a cubic cavity filled with the phase change material comprised of the copper foam via the lattice Boltzmann method. The effects of the hollow skeleton on the melting process are discussed in detail under different Rayleigh numbers and ratios of thermal conductivity of the copper foam to that of the phase change material. The results show that the hollow skeleton copper foam possesses a lower average Nusselt number along the left wall at the early stage of the melting process, a slower melting rate, and a higher energy storage efficiency than the solid skeleton copper foam. Comparing with the skeleton region of the copper foam, the heat transfer rate entering the cubic cavity through the hollow region of the skeleton is almost negligible. Because of the competition between heat conduction and natural convection, the heat transfer enhancement efficiency of copper foam first increases, then decreases, and then increases again with the increase of the Fourier number. When the Rayleigh number decreases, the energy storage efficiency increases, and the natural convection also weakens. Meanwhile, the fluctuation of the heat transfer enhancement efficiency decreases as the Fourier number increases, and the gap of the heat transfer enhancement efficiency between the hollow skeleton copper foam and the solid skeleton copper foam becomes smaller. When the ratio of the thermal conductivity of the copper foam skeleton to that of the phase change material increases, the energy storage efficiency is relatively high at the early stage of the melting process but becomes relatively low when the melting process is completed. With a larger thermal conductivity ratio, the heat transfer rate entering the cubic cavity through the skeleton region of the copper foam becomes dominant, which reduces the effect of the hollow skeleton on heat transfer, and thus the gap of the heat transfer enhancement efficiency between the hollow skeleton copper foam and the solid skeleton copper foam becomes relatively small.
      通信作者: 黄荣宗, rongzong.huang@csu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 52006244)资助的课题.
      Corresponding author: Huang Rong-Zong, rongzong.huang@csu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 52006244).
    [1]

    Zhang N, Yuan Y P, Cao X L, Du Y X, Zhang Z L, Gui Y W 2018 Adv. Eng. Mater. 20 1700753Google Scholar

    [2]

    Vélez C, Khayet M, Ortiz de Zárate J M 2015 Appl. Energy 143 383Google Scholar

    [3]

    Su W G, Darkwa J, Kokogiannakis G 2015 Renew. Sust. Energ. Rev. 48 373Google Scholar

    [4]

    Ren Q L, Chan C L 2016 Int. J. Heat Mass Transfer 100 522Google Scholar

    [5]

    Arıcı M, Tütüncü E, Kan M, Karabay H 2017 Int. J. Heat Mass Transfer 104 7Google Scholar

    [6]

    Luo K, Yao F J, Yi H L, Tan H P 2015 Appl. Therm. Eng. 86 238Google Scholar

    [7]

    龚玮, 杨震, 段远源 2014 太阳能学报 35 1682Google Scholar

    Gong W, Yang Z, Duan Y Y 2014 Acta Energ. Sol. Sin. 35 1682Google Scholar

    [8]

    Ren Q L, Wang Z X, Lai T, Zhang J F, Qu Z G 2021 Appl. Therm. Eng. 189 116618Google Scholar

    [9]

    Yang X H, Bai Q S, Guo Z X, Niu Z Y, Yang C, Jin L W, Lu T J, Yan J Y 2018 Appl. Energy 229 700Google Scholar

    [10]

    冯妍卉, 冯黛丽, 褚福强, 邱琳, 孙方远, 林林, 张欣欣 2022 物理学报 71 016501Google Scholar

    Feng Y H, Feng D L, Chu F Q, Qiu L, Sun F Y, Lin L, Zhang X X 2022 Acta Phys. Sin. 71 016501Google Scholar

    [11]

    李静, 李绍伟, 蔡迪, 廖燕宁 2021 物理学报 70 040503Google Scholar

    Li J, Li S W, Cai D, Liao Y N 2021 Acta Phys. Sin. 70 040503Google Scholar

    [12]

    Xiao X, Zhang P, Li M 2013 Appl. Energy 112 1357Google Scholar

    [13]

    张贝豪, 郑林 2020 物理学报 69 164401Google Scholar

    Zhang B H, Zheng L 2020 Acta Phys. Sin. 69 164401Google Scholar

    [14]

    Huang X P, Sun C, Chen Z Q, Han Y S 2021 Int. J. Therm. Sci. 170 107151Google Scholar

    [15]

    Zhang Z Q, He X D 2017 Appl. Therm. Eng. 113 298Google Scholar

    [16]

    Ghahremannezhad A, Xu H, Salimpour M R, Wang P, Vafai K 2020 Appl. Therm. Eng. 179 115731Google Scholar

    [17]

    Li X Y, Zhu Z L, Xu Z R, Ma T, Zhang H, Liu J, Wang X, Wang Q W 2019 Appl. Energy 254 113507Google Scholar

    [18]

    张士卫 2016 粉末冶金技术 34 222Google Scholar

    Zhang S W 2016 Powder Metall. Technol. 34 222Google Scholar

    [19]

    张秋利, 杨志懋, 丁秉钧 2009 有色金属 61 30Google Scholar

    Zhang Q L, Yang Z M, Ding B J 2009 Nonferrous Met. 61 30Google Scholar

    [20]

    He Y L, Liu Q, Li Q, Tao W Q 2019 Int. J. Heat Mass Transfer 129 160Google Scholar

    [21]

    Huang R Z, Wu H Y, Adams N A 2021 Phys. Rev. Lett. 126 244501Google Scholar

    [22]

    娄钦, 黄一帆, 李凌 2019 物理学报 68 214702Google Scholar

    Lou Q, Huang Y F, Li L 2019 Acta Phys. Sin. 68 214702Google Scholar

    [23]

    黄荣宗 2017 博士学位论文 (上海: 上海交通大学)

    Huang R Z 2017 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)

    [24]

    d’Humières D 2002 Philos. Trans. R. Soc. London, Ser. A 360 437Google Scholar

    [25]

    Huang R Z, Wu H Y 2016 J. Comput. Phys. 315 65Google Scholar

  • 图 1  (a) 泡沫铜的实物图; (b) SEM图; (c) 骨架中空区局部放大SEM图

    Fig. 1.  (a) Physical image of copper foam; (b) SEM image; (c) enlarged SEM image of the hollow skeleton.

    图 2  泡沫铜Micro CT图阈值分区处理

    Fig. 2.  Threshold partition processing of Micro CT image of copper foam.

    图 3  (a) 泡沫铜的真实数值结构; (b) 骨架中空区域分布

    Fig. 3.  (a) Actual numerical structure; (b) distribution of hollow regions in the skeleton of copper foam.

    图 4  填充泡沫铜复合相变材料的三维方腔左壁面加热融化示意图

    Fig. 4.  Schematic of melting in a three-dimensional cubic cavity filled with phase change material embedded with copper foam and heated by the left wall.

    图 5  融化过程中固液相界面(紫色曲面)位置, 以及右壁面($x = 1$)、后壁面($y = 1$)、下壁面($z = 0$)和骨架表面的温度分布 (a) SSCF; (b) HSCF

    Fig. 5.  Evolution of the solid-liquid phase interface (the purple surface), the temperature distributions on the right ($x = 1$), back ($y = 1$), bottom ($z = 0$) walls and skeleton surface during the melting process: (a) SSCF; (b) HSCF.

    图 6  $Fo = 0.061$时, 方腔左壁面的热流密度分布 (a) SSCF; (b) HSCF

    Fig. 6.  Heat flux distribution on the left wall of the cubic cavity at $Fo = 0.061$: (a) SSCF; (b) HSCF.

    图 7  不同因素随Fourier数Fo的变化 (a) 左壁面平均Nusselt数$N{u_{{\text{ave}}}}$; (b) 方腔内平均液相率${f_{{\text{l, ave}}}}$; (c) 储能效率η

    Fig. 7.  Variations of different factors with the Fourier number Fo: (a) Average Nusselt number $N{u_{{\text{ave}}}}$ along the left wall; (b) average liquid fraction over the whole cavity ${f_{{\text{l, ave}}}}$; (c) energy storage efficiency η.

    图 8  SSCF (a)和HSCF (b)对应左壁面不同区域的热流量Φ; (c) 泡沫铜传热增强效率ζ随Fourier数Fo的变化

    Fig. 8.  Variations of the heat transfer rate Φ of different regions of the left wall corresponding to SSCF (a) and HSCF (b); (c) heat transfer enhancement efficiency of copper foam ζ with the Fourier number Fo.

    图 9  不同Ra时, 不同因素随Fourier数Fo的变化 (a) 左壁面平均Nusselt数; (b) 方腔内平均液相率${f_{{\text{l, ave}}}}$; (c) 储能效率η; (d)泡沫铜传热增强效率ζ

    Fig. 9.  Variations of different factors with the Fourier number Fo at different Ra: (a) Average Nusselt number along the left wall; (b) average liquid fraction over the whole cavity ${f_{{\text{l,ave}}}}$; (c) energy storage efficiency η; (d) heat transfer enhancement efficiency of copper foam ζ .

    图 10  不同${k_\lambda }$时, 不同因素随Fourier数Fo的变化 (a) 左壁面平均Nusselt数$N{u_{{\text{ave}}}}$; (b) 方腔内平均液相率${f_{{\text{l,ave}}}}$; (c) 储能效率η; (d) 泡沫铜传热增强效率ζ

    Fig. 10.  Variations of different factors with the Fourier number Fo at different ${k_\lambda }$: (a) Average Nusselt number along the left wall $N{u_{{\text{ave}}}}$; (b) average liquid fraction over the whole cavity ${f_{{\text{l, ave}}}}$; (c) energy storage efficiency η; (d) heat transfer enhancement efficiency of copper foam ζ.

  • [1]

    Zhang N, Yuan Y P, Cao X L, Du Y X, Zhang Z L, Gui Y W 2018 Adv. Eng. Mater. 20 1700753Google Scholar

    [2]

    Vélez C, Khayet M, Ortiz de Zárate J M 2015 Appl. Energy 143 383Google Scholar

    [3]

    Su W G, Darkwa J, Kokogiannakis G 2015 Renew. Sust. Energ. Rev. 48 373Google Scholar

    [4]

    Ren Q L, Chan C L 2016 Int. J. Heat Mass Transfer 100 522Google Scholar

    [5]

    Arıcı M, Tütüncü E, Kan M, Karabay H 2017 Int. J. Heat Mass Transfer 104 7Google Scholar

    [6]

    Luo K, Yao F J, Yi H L, Tan H P 2015 Appl. Therm. Eng. 86 238Google Scholar

    [7]

    龚玮, 杨震, 段远源 2014 太阳能学报 35 1682Google Scholar

    Gong W, Yang Z, Duan Y Y 2014 Acta Energ. Sol. Sin. 35 1682Google Scholar

    [8]

    Ren Q L, Wang Z X, Lai T, Zhang J F, Qu Z G 2021 Appl. Therm. Eng. 189 116618Google Scholar

    [9]

    Yang X H, Bai Q S, Guo Z X, Niu Z Y, Yang C, Jin L W, Lu T J, Yan J Y 2018 Appl. Energy 229 700Google Scholar

    [10]

    冯妍卉, 冯黛丽, 褚福强, 邱琳, 孙方远, 林林, 张欣欣 2022 物理学报 71 016501Google Scholar

    Feng Y H, Feng D L, Chu F Q, Qiu L, Sun F Y, Lin L, Zhang X X 2022 Acta Phys. Sin. 71 016501Google Scholar

    [11]

    李静, 李绍伟, 蔡迪, 廖燕宁 2021 物理学报 70 040503Google Scholar

    Li J, Li S W, Cai D, Liao Y N 2021 Acta Phys. Sin. 70 040503Google Scholar

    [12]

    Xiao X, Zhang P, Li M 2013 Appl. Energy 112 1357Google Scholar

    [13]

    张贝豪, 郑林 2020 物理学报 69 164401Google Scholar

    Zhang B H, Zheng L 2020 Acta Phys. Sin. 69 164401Google Scholar

    [14]

    Huang X P, Sun C, Chen Z Q, Han Y S 2021 Int. J. Therm. Sci. 170 107151Google Scholar

    [15]

    Zhang Z Q, He X D 2017 Appl. Therm. Eng. 113 298Google Scholar

    [16]

    Ghahremannezhad A, Xu H, Salimpour M R, Wang P, Vafai K 2020 Appl. Therm. Eng. 179 115731Google Scholar

    [17]

    Li X Y, Zhu Z L, Xu Z R, Ma T, Zhang H, Liu J, Wang X, Wang Q W 2019 Appl. Energy 254 113507Google Scholar

    [18]

    张士卫 2016 粉末冶金技术 34 222Google Scholar

    Zhang S W 2016 Powder Metall. Technol. 34 222Google Scholar

    [19]

    张秋利, 杨志懋, 丁秉钧 2009 有色金属 61 30Google Scholar

    Zhang Q L, Yang Z M, Ding B J 2009 Nonferrous Met. 61 30Google Scholar

    [20]

    He Y L, Liu Q, Li Q, Tao W Q 2019 Int. J. Heat Mass Transfer 129 160Google Scholar

    [21]

    Huang R Z, Wu H Y, Adams N A 2021 Phys. Rev. Lett. 126 244501Google Scholar

    [22]

    娄钦, 黄一帆, 李凌 2019 物理学报 68 214702Google Scholar

    Lou Q, Huang Y F, Li L 2019 Acta Phys. Sin. 68 214702Google Scholar

    [23]

    黄荣宗 2017 博士学位论文 (上海: 上海交通大学)

    Huang R Z 2017 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)

    [24]

    d’Humières D 2002 Philos. Trans. R. Soc. London, Ser. A 360 437Google Scholar

    [25]

    Huang R Z, Wu H Y 2016 J. Comput. Phys. 315 65Google Scholar

  • [1] 王蓬, 孔平, 李然, 华云松, 厚美瑛, 孙其诚. 准二维湿颗粒体系融化过程中的结构与缺陷. 物理学报, 2021, 70(11): 116401. doi: 10.7498/aps.70.20202037
    [2] 席晓琦, 韩玉, 李磊, 闫镔. 螺旋锥束计算机断层成像倾斜扇束反投影滤波局部重建算法. 物理学报, 2019, 68(8): 088701. doi: 10.7498/aps.68.20190055
    [3] 王林元, 刘宏奎, 李磊, 闫镔, 张瀚铭, 蔡爱龙, 陈建林, 胡国恩. 基于稀疏优化的计算机断层成像图像不完全角度重建综述. 物理学报, 2014, 63(20): 208702. doi: 10.7498/aps.63.208702
    [4] 徐爽, 郭雅芳. 纳米铜薄膜塑性变形中空位型缺陷形核与演化的分子动力学研究. 物理学报, 2013, 62(19): 196201. doi: 10.7498/aps.62.196201
    [5] 张品, 梁艳梅, 常胜江, 范海伦. 基于能量最小化的肾脏计算断层扫描图像分割方法. 物理学报, 2013, 62(20): 208701. doi: 10.7498/aps.62.208701
    [6] 代秋声, 漆玉金. 针孔单光子发射计算机断层成像的空间分辨率研究. 物理学报, 2010, 59(2): 1357-1365. doi: 10.7498/aps.59.1357
    [7] 王冬一, 薛春瑜, 仲崇立. 金属-有机骨架材料二聚铜-苯-1,3,5-三羧酸酯中烷烃扩散机理的分子模拟研究. 物理学报, 2009, 58(8): 5552-5559. doi: 10.7498/aps.58.5552
    [8] 汪 敏, 岑豫皖, 胡小方, 余晓流, 朱佩平. 同步辐射计算机断层技术光源误差机理分析. 物理学报, 2008, 57(10): 6202-6206. doi: 10.7498/aps.57.6202
    [9] 张 耘. 极化子荧光及其断层扫描对Ti:LiNbO3光波导表征研究. 物理学报, 2007, 56(1): 280-284. doi: 10.7498/aps.56.280
    [10] 汪 敏, 胡小方. 衍射增强计算机断层技术研究. 物理学报, 2007, 56(8): 4989-4993. doi: 10.7498/aps.56.4989
    [11] 孙贤明, 韩一平, 史小卫. 降雨融化层后向散射的蒙特卡罗仿真. 物理学报, 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [12] 汪 敏, 胡小方, 伍小平. 同步辐射计算机断层技术衬度误差机理分析. 物理学报, 2006, 55(8): 4065-4069. doi: 10.7498/aps.55.4065
    [13] 舒 航, 朱佩平, 王寯越, 高 欣, 伊红霞, 刘 波, 袁清习, 黄万霞, 罗述谦, 高秀来, 吴自玉, 方守贤. 衍射增强成像方法在计算机断层成像中的应用. 物理学报, 2006, 55(3): 1099-1106. doi: 10.7498/aps.55.1099
    [14] 郭焕银, 刘 宁, 蔡之让, 张裕恒. Mn位W掺杂对La0.3Ca0.7MnO3体系磁结构的影响. 物理学报, 2006, 55(2): 865-872. doi: 10.7498/aps.55.865
    [15] 郑小平, 张佩峰, 刘 军, 贺德衍, 马健泰. 薄膜外延生长的计算机模拟. 物理学报, 2004, 53(8): 2687-2693. doi: 10.7498/aps.53.2687
    [16] 陈丽娟, 侯柱锋, 朱梓忠, 杨 勇. LiAl中空位形成能的第一原理计算. 物理学报, 2003, 52(9): 2229-2234. doi: 10.7498/aps.52.2229
    [17] 陈宝玖, 秦伟平, 王海宇, 许 武, 黄世华. 能量传递过程的计算机模拟. 物理学报, 1999, 48(3): 545-549. doi: 10.7498/aps.48.545
    [18] 韩福生, 朱震刚, 石纯义, 王 月. 泡沫Al阻尼性能研究. 物理学报, 1998, 47(7): 1161-1170. doi: 10.7498/aps.47.1161
    [19] 王月霞, 王宝义, 荣周文, 王天民. NiAl中空位迁移机制的计算机模拟. 物理学报, 1998, 47(8): 1325-1331. doi: 10.7498/aps.47.1325
    [20] 王天民, 王顺花, 赖文生. Cu3Au中空位及其迁移机制的计算机模拟. 物理学报, 1995, 44(7): 1091-1100. doi: 10.7498/aps.44.1091
计量
  • 文章访问数:  2601
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-06
  • 修回日期:  2023-04-28
  • 上网日期:  2023-05-04
  • 刊出日期:  2023-07-05

/

返回文章
返回