搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空腔嵌入绝缘体上硅衬底制备技术

贾欣 刘强 母志强 周虹阳 俞文杰

引用本文:
Citation:

空腔嵌入绝缘体上硅衬底制备技术

贾欣, 刘强, 母志强, 周虹阳, 俞文杰

Fabrication technology of void embedded silicon-on-insulator substrate

Jia Xin, Liu Qiang, Mu Zhi-Qiang, Zhou Hong-Yang, Yu Wen-Jie
PDF
HTML
导出引用
  • 空腔嵌入绝缘体上硅(void embedded silicon on insulator, VESOI)衬底是一种面向新型互补金属氧化物半导体(complementary metal oxide semiconductor, CMOS)器件及集成技术的新型SOI衬底材料. 当采用离子剥离技术制备该衬底时, 由氢气形成的板状气泡会聚集在衬底剥离界面, 对空腔结构产生挤压作用, 并有可能造成空腔结构的破损, 因而有必要对VESOI衬底制备过程中的应力机制和工艺稳定性进行深入研究. 本文以单个矩形空腔结构为研究对象, 借助固支梁理论分析了其在工艺制备过程中的力学状态, 并利用有限元工具构建了其三维几何模型. 通过应力仿真, 找到了该空腔结构的破裂失效原因, 并确认了其脆弱位点. 结果表明, 矩形空腔结构短边长度w、顶硅薄膜厚度t以及氢气泡压力是影响顶硅薄膜应力状态的主要因素. 当w/t值超过4—5时, 硅薄膜将因应力过大而破裂, 破裂位点分布于空腔结构长边方向. 通过优化顶层硅厚度t, 以及内嵌空腔结构、尺寸, 本工作成功制备了符合CMOS产线要求的高质量8 in (1 in = 2.54 cm) VESOI衬底. 该工作对基于VESOI衬底的集成技术具有较好参考价值.
    Void embedded silicon-on-insulator (VESOI) substrate is a newly developed silicon-on-insulator (SOI) substrate for advanced complementary metal oxide semiconductor (CMOS) devices and integration technology. However, in the ion-cutting process for preparing the substrate, numerous hydrogen bubbles aggregate at the cut interface, which compresses the cavity structure and might cause the thin film above the cavity to be damaged and delaminated. Therefore, it is necessary to conduct in-depth research on the stress mechanism and process stability in the preparation of VESOI substrates. This study focuses on a single rectangular cavity structure and uses the fixed-supported beam theory to analyze its mechanical behavior during fabrication, and a three-dimensional model of cavity structure is constructed by using the finite element analysis tool. Through stress simulation, the failure mechanism of the cavity structure is identified, and the weak points are confirmed. The results show that the short side length (w), top silicon film thickness (t), and hydrogen bubble pressure are the main factors affecting the stress state of the top silicon film. When the w/t ratio exceeds 4–5, the silicon film will fracture owing to excessive tensile stress, and the fracture site is along the long side of the rectangular cavity. By increasing the thickness of the top silicon film slightly and adding support structures inside the cavity (to reduce w), this work successfully prepares high-quality 8-inch VESOI substrates that meet the requirements for the CMOS production line. The present study is expected to provide valuable idea for the development of integrated technologies relying on VESOI substrates.
      通信作者: 刘强, qiangliu@mail.sim.ac.cn ; 俞文杰, casan@mail.sim.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFB4401700)和上海市超级博士后激励计划(批准号: 2022677)资助的课题.
      Corresponding author: Liu Qiang, qiangliu@mail.sim.ac.cn ; Yu Wen-Jie, casan@mail.sim.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB4401700) and the Shanghai Post-doctoral Excellence Program, China (Grant No. 2022677).
    [1]

    王阳元 2018 集成电路产业全书(下卷) (北京: 电子工业出版社) 第1543—1562页

    Wang Y Y 2018 Integrated Circuit Industry (Vol. 2) (Beijing: Electronic Industry Press) pp1543–1562 (in Chinese)

    [2]

    Kononchuk O, Nguyen B Y 2014 Silicon-on-Insulator (SOI) Technology: Manufacture and Applications (Britain: Woodhead Publishing) pp395–435

    [3]

    Liu Q, Mu Z Q, Liua C H, Zhao L T, Yu W J 2021 IEEE Electron Dev. Lett. 42 657Google Scholar

    [4]

    金成吉, 张苗苗, 李开轩, 刘宁, 玉虓, 韩根全 2021 微纳电子与智能制造 3 32

    Jin C J, Zhang M M, Li K X, Liu N, Yu X, Han G Q 2021 Micro/Nano Electron. Intell. Manuf. 3 32

    [5]

    张彦伟 2014 硕士学位论文 (湖南: 湘潭大学)

    Zhang Y Y 2014 M. S. Thesis (Hunan: Xiangtan University) (in Chinese)

    [6]

    贺琪, 顾祥, 纪旭明, 李金航, 赵晓松 2020 微处理机 41 41Google Scholar

    He Q, Gu X, Ji X M, Li J H, Zhao X S 2020 Microprocessors 41 41Google Scholar

    [7]

    林青 2004 博士学位论文 (上海: 中国科学院上海微系统与信息技术研究所)

    Lin Q 2004 Ph. D. Dissertation (Shanghai: Shanghai Institute of Microsystem and Information Technology) (in Chinese)

    [8]

    Nguyen B Y, Celler G, Mazuré C 2009 JICS 4 51Google Scholar

    [9]

    Palkuti L, Alles M, Hughes H 2014 SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S) Millbrae, CA, USA, October 6–9 2014 p1

    [10]

    Qing D Z, Jian W W, Jin H L, Shuai S, Xu M J, Xiang G, Gen S H, Bing L 2021 At. Energy Sci. Technol. 55 2151

    [11]

    古美良 胡明 2006 压电与声光 28 236

    Gu M L, Hu M 2006 Piezoelectr. Acoustoopt. 28 236

    [12]

    林成鲁 2003 半导体技术 9 39Google Scholar

    Lin C L 2003 Semicond. Technol. 9 39Google Scholar

    [13]

    刘强 2021 博士学位论文 (上海: 中国科学院上海微系统与信息技术研究所)

    Lin Q 2021 Ph. D. Dissertation (Shanghai: Shanghai Institute of Microsystem and Information Technology) (in Chinese)

    [14]

    Liu Q, Zhou H Y, Jia X, Yang Y M, Mu Z Q, Wei X, Yu W J 2022 IEEE Electron Dev. Lett. 43 1814Google Scholar

    [15]

    Zhao L T, Liu Q, Liu C H, Chen L L, Yang Y M, Wei X, Mu Z Q, Yu W J 2021 IEEE Electron Dev. Lett. 42 1428Google Scholar

    [16]

    刘恩科, 朱秉升, 罗晋生 2008 半导体物理学(第7版) (北京: 电子工业出版社) 第204—235页

    Liu E K, Zhu B S, Luo J S 2008 Semiconductor Physics (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp204–235 (in Chinese)

    [17]

    Roundy D, Cohen M L 2001 Phys. Rev. B 64 212103

    [18]

    Dubois M M, Rignanese G M, Pardoen T, Charlier J C 2006 Phys. Rev. B 74 235203Google Scholar

    [19]

    Umeno Y, Kushima A, Kitamura T, Gumbsch P, Li J 2005 Phys. Rev. B 72 165431Google Scholar

    [20]

    Moriceau H, Mazen F, Braley C, Rieutord F, Tauzin A, Deguet C 2012 Nucl. Instrum. Methods Phys. Res. 277 84Google Scholar

    [21]

    Daval N, Schwarzenbach W, Moulin C, Bonnin O, Maleville C 2013 VLSI Technology, Systems, and Applications (VLSI-TSA), 2013 International Symposium Hsinchu, Taiwan, China, April 22–24, 2013 p1

    [22]

    Wang B, Gu B, Zhang H, Feng X 2016 Acta Mech. Solida Sin. 29 111Google Scholar

    [23]

    Lagahe-Blanchard C, Sousbie N, Sartori S, Moriceau H, Blondeau B 2003 Proc. Electrochem. Soc. 19 346

    [24]

    Hchbauer T 2001 Ph. D. Dissertation (Germany: University of Marburg)

    [25]

    Radu I 2022 Ph. D. Dissertation (Germany: Martin-Luther-Universität Halle-Wittenberg)

    [26]

    Yun C H, Cheung N W 2000 J. Microelectromech. Syst. 9 474Google Scholar

    [27]

    范钦珊, 殷雅俊, 唐靖林 2014 材料力学 (第3版) (北京: 清华大学出版社) 第126—204页

    Fan Q S, Yin Y J, Tang J L 2014 Material Mechanics (3rd Ed.) (Beijing: Tsinghua University Press) pp126–204 (in Chinese)

    [28]

    Craig Jr R R, Taleff E M 2020 Mechanics of Materials (State of New Jersey: John Wiley & Sons) pp286–293

    [29]

    Franssila S 2005 Introduction to Microfabrication (England: Wiley publication) pp174–182

    [30]

    Schmidt B, Wetzig K 2012 Ion Beams in Materials Processing and Analysis (Vienna: Springer) pp117–235

    [31]

    Nguyen P, Cayrefourcq I, Bourdelle K K, Boussagol A, Guiot E, Mohamed N B, Sousbie N, Akatsu T 2005 J. Appl. Phys. 97 083527

  • 图 1  (a) VESOI衬底制备工艺流程; (b)基于VESOI衬底可构造的10种内嵌空腔结构

    Fig. 1.  (a) Fabrication process of VESOI substrate; (b) ten types of embedded void structures based on VESOI substrates.

    图 2  (a)基于VESOI衬底可制备无背栅SOI器件和GAA器件; (b)无背栅SOI器件和VESOI GAA器件的转移特性曲线; (c)两种器件的亚阈值斜率随漏极电流变化情况

    Fig. 2.  (a) Backgate-free SOI and GAA devices based on VESOI substrates; (b) transfer characteristics of backgate-free SOI and GAA devices; (c) subthreshold swing vs. drain current for backgate-free SOI and GAA devices.

    图 3  (a)不同掺杂浓度对应的最大耗尽层宽度(顶层硅厚度); (b)硅材料应力应变曲线[17-19]

    Fig. 3.  (a) The maximum depletion layer width (the thickness of top silicon) $ {X}_{{\rm{D}}{\rm{m}}} $ vs. doping concentrations $ {N}_{{\rm{A}}} $; (b) stress vs. strain under tensile load for silicon[17-19].

    图 4  (a)离子剥离试验中硅衬底表面的氢气泡剥离现象; (b)氢气泡与内嵌空腔可能存在的位置关系; (c), (d)简化的顶层硅受力示意图

    Fig. 4.  (a) Hydrogen blistering phenomenon on the silicon substrate surface during ion-cutting experiment; (b) possible positions of the hydrogen blister with respect to the embedded void structure; (c), (d) simplified schematic of splitting force on top silicon.

    图 5  (a), (b)简支梁受力模型及其弯矩分布图; (c), (d)固支梁受力模型及其弯矩分布图

    Fig. 5.  (a), (b) Schematic diagram of simply supported beam structure and the related bending moment distribution curve; (c), (d) schematic diagram of fixed beam structure and the related bending moment distribution curve.

    图 6  空腔宽度变化对空腔结构破损行为的影响

    Fig. 6.  Effect of variations in chamber width on the breakage behavior of embedded void structure.

    图 7  (a)空腔结构几何模型(空腔区域); (b)空腔结构几何模型(固定约束区域)

    Fig. 7.  (a) Geometric model of VESOI void structure (the area of chambers); (b) geometric model of VESOI void structure (the area of fixed constraint).

    图 8  正方形空腔和长方形空腔在均布载荷下的有限元应力仿真

    Fig. 8.  Finite element stress simulation of square and rectangular voids under uniformly distributed load.

    图 9  顶硅薄膜上表面与下表面最大应力大小随空腔宽度w和薄膜厚度t的变化趋势 (a) t = 0.1 μm; (b) t = 0.25 μm; (c) t = 1 μm

    Fig. 9.  Variation trend of the maximum stress magnitude on top/bottom surfaces of top silicon with different chamber widths and the top silicon thicknesses: (a) t = 0.1 μm; (b) t = 0.25 μm; (c) t = 1 μm.

    图 10  空腔上方顶层硅的上下表面第一主应力随空腔宽度$ w $的变化趋势(L表示矩形空腔一边的长度) (a) L = 4, w = 0.8 μm; (b) L = 4 μm, w = 1.2 μm; (c) L = 4 μm, w = 2.1 μm

    Fig. 10.  Trend of the first principal stress on the top/bottom surfaces of the top silicon layer with respect to the chamber width $ w $: (a) L = 4 μm, w = 0.8 μm; (b) L = 4 μm, w = 1.2 μm; (c) L = 4 μm, w = 2.1 μm.

    图 11  空腔上方顶层硅应力极值随空腔结构参数变化的趋势

    Fig. 11.  Stress level of top silicon layer with different thicknesses and chamber widths.

    图 12  剥离厚度对空腔上方顶层硅破损行为的影响 (a)不同氢离子注入能量下的顶层硅剥离厚度; (b)不同剥离厚度下的顶层硅破损情况

    Fig. 12.  Influence of ion-cutting thickness on the top silicon breakage behavior: (a) Relationship between top silicon thickness and hydrogen ion implantation energy; (b) impact of different peel thicknesses on the top silicon layer damage.

    图 13  内嵌空腔结构对空腔上方顶层硅应力分布状态的影响 (a)正方形空腔; (b) 带支撑结构的正方形空腔; (c) 圆形空腔; (d)带支撑结构的圆形空腔

    Fig. 13.  Impact of chamber structures on the stress distribution within top silicon: (a) Square chamber configuration; (b) square chamber configuration with an additional support pillar; (c) circular chamber configuration; (d) circular chamber configuration with an additional support pillar.

    图 14  (a) 8 in高质量VESOI衬底; (b)内含支撑柱结构, 边长为54.5 μm的正方形内嵌空腔; (c)面向高密度集成的密排内嵌空腔阵列

    Fig. 14.  (a) High quality 8-in VESOI substrate; (b) the scanning electron microscope image of a square embedded void with 54.5 μm side length, where supporting pillars were set inside the chamber; (c) dense array of embedded void chambers for possible high-density integration.

    图 15  (a) Spacer掩膜法制备纳米级空腔型VESOI衬底; (b)各向异性湿法腐蚀制备纳米级空腔型VESOI衬底

    Fig. 15.  (a) Fabrication of VESOI substrate with nano-meter voids using spacer pattern; (b) the fabrication of VESOI substrate with nano-meter voids using anisotropic wet etching method.

    表 1  空腔结构几何模型材料与结构参数

    Table 1.  Geometric and materials’ parameters of the VESOI void structure.

    参数名称数值
    空腔宽度 w/μm参数化扫描(0.1—10, 步长0.3)
    空腔长度 L/μm10, 4
    顶层硅厚度 t/μm参数化扫描(0.1—1, 步长0.1)
    杨氏模量E/GPa170
    泊松比 ν0.28
    密度$ \rho $/(kg·m–3)2329
    下载: 导出CSV
  • [1]

    王阳元 2018 集成电路产业全书(下卷) (北京: 电子工业出版社) 第1543—1562页

    Wang Y Y 2018 Integrated Circuit Industry (Vol. 2) (Beijing: Electronic Industry Press) pp1543–1562 (in Chinese)

    [2]

    Kononchuk O, Nguyen B Y 2014 Silicon-on-Insulator (SOI) Technology: Manufacture and Applications (Britain: Woodhead Publishing) pp395–435

    [3]

    Liu Q, Mu Z Q, Liua C H, Zhao L T, Yu W J 2021 IEEE Electron Dev. Lett. 42 657Google Scholar

    [4]

    金成吉, 张苗苗, 李开轩, 刘宁, 玉虓, 韩根全 2021 微纳电子与智能制造 3 32

    Jin C J, Zhang M M, Li K X, Liu N, Yu X, Han G Q 2021 Micro/Nano Electron. Intell. Manuf. 3 32

    [5]

    张彦伟 2014 硕士学位论文 (湖南: 湘潭大学)

    Zhang Y Y 2014 M. S. Thesis (Hunan: Xiangtan University) (in Chinese)

    [6]

    贺琪, 顾祥, 纪旭明, 李金航, 赵晓松 2020 微处理机 41 41Google Scholar

    He Q, Gu X, Ji X M, Li J H, Zhao X S 2020 Microprocessors 41 41Google Scholar

    [7]

    林青 2004 博士学位论文 (上海: 中国科学院上海微系统与信息技术研究所)

    Lin Q 2004 Ph. D. Dissertation (Shanghai: Shanghai Institute of Microsystem and Information Technology) (in Chinese)

    [8]

    Nguyen B Y, Celler G, Mazuré C 2009 JICS 4 51Google Scholar

    [9]

    Palkuti L, Alles M, Hughes H 2014 SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S) Millbrae, CA, USA, October 6–9 2014 p1

    [10]

    Qing D Z, Jian W W, Jin H L, Shuai S, Xu M J, Xiang G, Gen S H, Bing L 2021 At. Energy Sci. Technol. 55 2151

    [11]

    古美良 胡明 2006 压电与声光 28 236

    Gu M L, Hu M 2006 Piezoelectr. Acoustoopt. 28 236

    [12]

    林成鲁 2003 半导体技术 9 39Google Scholar

    Lin C L 2003 Semicond. Technol. 9 39Google Scholar

    [13]

    刘强 2021 博士学位论文 (上海: 中国科学院上海微系统与信息技术研究所)

    Lin Q 2021 Ph. D. Dissertation (Shanghai: Shanghai Institute of Microsystem and Information Technology) (in Chinese)

    [14]

    Liu Q, Zhou H Y, Jia X, Yang Y M, Mu Z Q, Wei X, Yu W J 2022 IEEE Electron Dev. Lett. 43 1814Google Scholar

    [15]

    Zhao L T, Liu Q, Liu C H, Chen L L, Yang Y M, Wei X, Mu Z Q, Yu W J 2021 IEEE Electron Dev. Lett. 42 1428Google Scholar

    [16]

    刘恩科, 朱秉升, 罗晋生 2008 半导体物理学(第7版) (北京: 电子工业出版社) 第204—235页

    Liu E K, Zhu B S, Luo J S 2008 Semiconductor Physics (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp204–235 (in Chinese)

    [17]

    Roundy D, Cohen M L 2001 Phys. Rev. B 64 212103

    [18]

    Dubois M M, Rignanese G M, Pardoen T, Charlier J C 2006 Phys. Rev. B 74 235203Google Scholar

    [19]

    Umeno Y, Kushima A, Kitamura T, Gumbsch P, Li J 2005 Phys. Rev. B 72 165431Google Scholar

    [20]

    Moriceau H, Mazen F, Braley C, Rieutord F, Tauzin A, Deguet C 2012 Nucl. Instrum. Methods Phys. Res. 277 84Google Scholar

    [21]

    Daval N, Schwarzenbach W, Moulin C, Bonnin O, Maleville C 2013 VLSI Technology, Systems, and Applications (VLSI-TSA), 2013 International Symposium Hsinchu, Taiwan, China, April 22–24, 2013 p1

    [22]

    Wang B, Gu B, Zhang H, Feng X 2016 Acta Mech. Solida Sin. 29 111Google Scholar

    [23]

    Lagahe-Blanchard C, Sousbie N, Sartori S, Moriceau H, Blondeau B 2003 Proc. Electrochem. Soc. 19 346

    [24]

    Hchbauer T 2001 Ph. D. Dissertation (Germany: University of Marburg)

    [25]

    Radu I 2022 Ph. D. Dissertation (Germany: Martin-Luther-Universität Halle-Wittenberg)

    [26]

    Yun C H, Cheung N W 2000 J. Microelectromech. Syst. 9 474Google Scholar

    [27]

    范钦珊, 殷雅俊, 唐靖林 2014 材料力学 (第3版) (北京: 清华大学出版社) 第126—204页

    Fan Q S, Yin Y J, Tang J L 2014 Material Mechanics (3rd Ed.) (Beijing: Tsinghua University Press) pp126–204 (in Chinese)

    [28]

    Craig Jr R R, Taleff E M 2020 Mechanics of Materials (State of New Jersey: John Wiley & Sons) pp286–293

    [29]

    Franssila S 2005 Introduction to Microfabrication (England: Wiley publication) pp174–182

    [30]

    Schmidt B, Wetzig K 2012 Ion Beams in Materials Processing and Analysis (Vienna: Springer) pp117–235

    [31]

    Nguyen P, Cayrefourcq I, Bourdelle K K, Boussagol A, Guiot E, Mohamed N B, Sousbie N, Akatsu T 2005 J. Appl. Phys. 97 083527

  • [1] 邢海英, 郑智健, 张子涵, 吴文静, 郭志英. 应力调控BlueP/X Te2 (X = Mo, W)范德瓦耳斯异质结电子结构及光学性质理论研究. 物理学报, 2021, 70(6): 067101. doi: 10.7498/aps.70.20201728
    [2] 张金帅, 黄秋实, 蒋励, 齐润泽, 杨洋, 王风丽, 张众, 王占山. 低温退火的X射线W/Si多层膜应力和结构性能. 物理学报, 2016, 65(8): 086101. doi: 10.7498/aps.65.086101
    [3] 郭子政, 邓海东, 黄佳声, 熊万杰, 徐初东. 应力调制的自旋转矩临界电流. 物理学报, 2014, 63(13): 138501. doi: 10.7498/aps.63.138501
    [4] 李细莲, 刘刚, 杜桃园, 赵晶, 吴木生, 欧阳楚英, 徐波. 应力对硅烯上锂吸附的影响. 物理学报, 2014, 63(21): 217101. doi: 10.7498/aps.63.217101
    [5] 李佳, 房奇, 罗炳池, 周民杰, 李恺, 吴卫东. Be薄膜应力的X射线掠入射侧倾法分析. 物理学报, 2013, 62(14): 140701. doi: 10.7498/aps.62.140701
    [6] 郭子政, 胡旭波. 应力对铁磁薄膜磁滞损耗和矫顽力的影响. 物理学报, 2013, 62(5): 057501. doi: 10.7498/aps.62.057501
    [7] 王程, 王冠宇, 张鹤鸣, 宋建军, 杨晨东, 毛逸飞, 李永茂, 胡辉勇, 宣荣喜. 单轴、双轴应变Si拉曼谱应力模型. 物理学报, 2012, 61(4): 047203. doi: 10.7498/aps.61.047203
    [8] 孙云, 王圣来, 顾庆天, 许心光, 丁建旭, 刘文洁, 刘光霞, 朱胜军. 利用高分辨X射线衍射研究磷酸二氢钾晶体晶格应变应力. 物理学报, 2012, 61(21): 210203. doi: 10.7498/aps.61.210203
    [9] 袁文佳, 章岳光, 沈伟东, 马群, 刘旭. 离子束溅射制备Nb2O5光学薄膜的特性研究. 物理学报, 2011, 60(4): 047803. doi: 10.7498/aps.60.047803
    [10] 刘红婕, 黄进, 王凤蕊, 周信达, 蒋晓东, 吴卫东. 熔石英表面热致应力对激光损伤行为影响的研究. 物理学报, 2010, 59(2): 1308-1313. doi: 10.7498/aps.59.1308
    [11] 谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华. 高场应力及栅应力下AlGaN/GaN HEMT器件退化研究. 物理学报, 2009, 58(1): 511-517. doi: 10.7498/aps.58.511
    [12] 熊传兵, 江风益, 方文卿, 王 立, 莫春兰. 硅衬底GaN蓝色发光材料转移前后应力变化研究. 物理学报, 2008, 57(5): 3176-3181. doi: 10.7498/aps.57.3176
    [13] 李荣斌. 掺杂CVD金刚石薄膜的应力分析. 物理学报, 2007, 56(6): 3428-3434. doi: 10.7498/aps.56.3428
    [14] 朱振业, 王 彪, 郑 跃, 王 海, 李青坤, 李晨亮. 应力作用下铁电超晶格BaTiO3/SrTiO3的结构和极化的第一性原理研究. 物理学报, 2007, 56(10): 5986-5989. doi: 10.7498/aps.56.5986
    [15] 靳惠明, Felix Adriana, Aroyave Majorri. 离子注钇对镍900℃高温氧化行为及氧化膜性能的影响研究. 物理学报, 2006, 55(11): 6157-6162. doi: 10.7498/aps.55.6157
    [16] 陶永梅, 蒋 青, 曹海霞. 用横场伊辛模型研究应力对铁电薄膜的热力学性质的影响. 物理学报, 2005, 54(1): 274-279. doi: 10.7498/aps.54.274
    [17] 孙贤开, 林碧霞, 朱俊杰, 张 杨, 傅竹西. LP-MOCVD异质外延ZnO薄膜中的应力及对缺陷的影响. 物理学报, 2005, 54(6): 2899-2903. doi: 10.7498/aps.54.2899
    [18] 关庆丰, 安春香, 秦 颖, 邹建新, 郝胜志, 张庆瑜, 董 闯, 邹广田. 强流脉冲电子束应力诱发的微观结构. 物理学报, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [19] 徐波, 余庆选, 吴气虹, 廖源, 王冠中, 方容川. 应力和掺杂对Mg:GaN薄膜光致发光光谱影响的研究. 物理学报, 2004, 53(1): 204-209. doi: 10.7498/aps.53.204
    [20] 方志军, 夏义本, 王林军, 张伟丽, 马哲国, 张明龙. Al2O3陶瓷衬底碳离子预注入对金刚石薄膜应力的影响研究. 物理学报, 2003, 52(4): 1028-1033. doi: 10.7498/aps.52.1028
计量
  • 文章访问数:  4000
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-14
  • 修回日期:  2023-04-01
  • 上网日期:  2023-04-18
  • 刊出日期:  2023-06-20

/

返回文章
返回