搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离散波导热扩散耦合机理及其应用

孟令知 苑立波

引用本文:
Citation:

离散波导热扩散耦合机理及其应用

孟令知, 苑立波

Thermal diffusion coupling mechanism and its application of discrete waveguide

Meng Ling-Zhi, Yuan Li-Bo
PDF
HTML
导出引用
  • 对于集成在光纤中的离散光学系统来说, 各个分立波导的光场会相互耦合和关联. 本文研究了如何通过热扩散对离散波导的折射率进行调控来加强离散波导之间的耦合. 文中构建了离散波导热扩散模型和双芯、三芯光纤的热扩散耦合模型. 使用氢氧焰对多芯光纤进行不同时间的高温加热, 同时监测纤端的出射光场. 通过对热扩散后多芯光纤三维折射率分布的测量结果, 验证了热扩散技术改变离散波导的折射率进行耦合的可行性. 热扩散技术可应用于制备多芯光纤耦合器, 借助于该耦合器, 结合多芯光纤和逐芯刻写光纤布拉格光栅技术, 实现了多光栅的单通道传感测量. 热扩散对离散波导的折射率调控方法具有高集成度、高稳定性和可批量化制造的优点. 对离散波导热扩散的研究有助于促进多芯光纤器件制备能力的发展, 有益于促进离散波导结构光纤在光通信、光感测、生物医学、人工智能等领域的广泛应用.
    For discrete optical systems integrated into optical fibers, the optical fields of the individual waveguides are coupled and correlated with each other. This paper studies how to adjust the refractive index of discrete waveguides by thermal diffusion, so as to enhance the coupling between discrete waveguides, and also constructs the discrete waveguide thermally diffused model and the thermally diffused coupling model of twin-core and three-core fibers. The multicore fiber is heated different times by a hydrogen-oxygen flame, and the outgoing light field at the end face of the optical fiber is monitored at the same time. Then, the three-dimensional refractive index measurement results of the thermally diffused multicore fiber verify the feasibility of thermal diffusion technology to change the refractive index of discrete waveguides for coupling. Thermal diffusion technology can be used to fabricate multicore fiber couplers. By combining multicore fiber and core-by-core inscribed fiber Bragg grating technology and by using thermal diffusion technology, the single-channel sensing measurement can be realized. The method of changing the refractive index of discrete waveguides through thermal diffusion has the advantages of high integration, high stability, and mass fabrication. The research on the thermal diffusion of discrete waveguides can improve the application potential of multicore fiber sensing systems, and promote the broad application of discrete waveguide structure optical fiber in the fields of optical communication, optical sensing, biomedicine, and artificial intelligence.
      通信作者: 苑立波, lbyuan@vip.sina.com
    • 基金项目: 国家自然科学基金(批准号: 61827819)和广西八桂学者资助专项(批准号: 2019A38)资助的课题.
      Corresponding author: Yuan Li-Bo, lbyuan@vip.sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61827819) and the Bagui Scholars Program of Guangxi Zhuang Autonomous Region, China (Grant No. 2019A38).
    [1]

    Slussarenko S, Pryde G J 2019 Appl. Phys. Rev. 6 041303Google Scholar

    [2]

    Xiong Y F, Xu F 2020 Adv. Photonics 2 064001Google Scholar

    [3]

    Zhang Z W, Guo Y Y, Bescond M, Chen J, Nomura M, Volz S 2022 Phys. Rev. Lett. 128 015901Google Scholar

    [4]

    Yuan L B, Dai Q, Tian F J, Zhang T, Guan C Y, Zhu X L 2009 Opt. Lett. 34 1531Google Scholar

    [5]

    Meng L Z, Chen G D, Wang D H, Yuan L B 2021 J. Light. Technol. 39 3638Google Scholar

    [6]

    Huo Y M, Cheo P K, King G G 2004 Opt. Express 12 6230Google Scholar

    [7]

    Wrage M, Glas P, Fischer D, Leitner M, Elkin N N, Vysotsky D V, Napartovich A P, Troshchieva V N 2002 Opt. Commun. 205 367Google Scholar

    [8]

    Hayashi T, Taru T, Shimakawa O, Sasaki T, Sasaoka E 2012 J. Light. Technol. 30 583Google Scholar

    [9]

    Hayashi T, Taru T, Shimakawa O, Sasaki T, Sasaoka E 2011 Opt. Express 19 16576Google Scholar

    [10]

    苑立波, 张新平, 苑婷婷, 徐飞, 刘艳格, 龚元, 彭伟, 郭团, 王鹏飞, 王义平, 王东宁 2023 怎样在光纤上构建实验室 (北京: 清华大学出版社) 第81页

    Yuan L B, Zhang X P, Yuan T T, Xu F, Liu Y G, Guo Y, Peng W, Guo T, Wang P F, Wang Y P, Wang D N 2023 How to Bulid a-Lab-on/in-Fiber (Beijing: Tsinghua Unisiverty Press) p81

    [11]

    Mills A F 1995 Heat and Mass Transfer (Boca Raton: CRC Press) p811

    [12]

    Shiraishi K, Aizawa Y, Kawakami S 1990 J. Light. Technol. 8 1151Google Scholar

    [13]

    Crank J 1979 The Mathematics of Diffusion (Oxford: Clarendon Press) p69

    [14]

    Barenblatt G I 1996 Scaling, self-similarity, and intermediate asymptotics (Cambridge: Cambridge University Press) p64

    [15]

    Kliros G S, Tsironikos N 2005 Optik 116 365Google Scholar

    [16]

    Zhu X L, Yuan L B, Liu Z H, Yang J, Guan C Y 2009 J. Light. Technol. 27 5235Google Scholar

    [17]

    Kliros G 2011 Optoelectron. Adv. Mater.-Rapid Commun. 5 193

    [18]

    Snyder A W, Love J D 1984 Optical Waveguide Theory (New York: Springer) p568

    [19]

    Yablon A D 2013 Opt. Lett. 38 4393Google Scholar

    [20]

    Yablon A D 2005 Optical Fiber Fusion Splicing (Berlin: Springer-Verlag) p74

    [21]

    Yuan L B, Liu Z H, Yang J 2006 Opt. Lett. 31 3237Google Scholar

    [22]

    Zhang H J, Healy N, Dasgupta S, Hayes J R, Petrovich M N, Richardson D J, Peacock A C 2017 IEEE Photonics Technol. Lett. 29 591Google Scholar

    [23]

    Zhang F M, Liu Z Y X, Du H Z, Shao Y H, Shen L, Yang L B, Yan C K, Zhao Z Y, Tang M 2022 Opt. Express 30 19042Google Scholar

    [24]

    Zhao Y J, Zhou A, Ouyang X W, Ouyang Y, Zhou C M, Yuan L B 2017 J. Light. Technol. 35 5473Google Scholar

    [25]

    Bao W J, Sahoo N, Sun Z Y, Wang C L, Liu S, Wang Y P, Zhang L 2020 Opt. Express 28 26461Google Scholar

    [26]

    Zhao Z Y, Dang Y L, Tang M 2022 Photonics 9 381Google Scholar

  • 图 1  典型的线性分布离散波导[10] (a) 多个离散波导按线性分布在一个包层中的光纤; (b) 线性阵列多芯光纤的横截面显微图; (c) 线性阵列多芯光纤的折射率剖面示意图

    Fig. 1.  A typical linear distributed discrete waveguide[10]: (a) Optical fiber with multiple discrete waveguides linearly distributed in the same cladding; (b) micrograph of the cross-section of the linear array multicore fiber; (c) schematic diagram of the refractive index profile of the linear array multicore fiber.

    图 2  (a) 用于热扩散的实验装置示意图; (b) 双芯、(c) 三芯、(d) 四芯和 (e) 七芯光纤加热不同时间后的端面强度分布

    Fig. 2.  (a) Schematic diagram of the experimental setup for thermal diffusion; (b)–(e) the end face light intensity distribution of the (b) twin-core, (c) three-core, (d) four-core, and (e) seven-core optical fiber after heating at different times.

    图 3  折射率分布测量系统的示意图

    Fig. 3.  Schematic diagram of the refractive index distribution measurement system.

    图 4  加热时间分别为 (a) 0, (b) 30, (c) 60, (d) 90 min时, 双芯光纤热扩散区y-z方向的折射率分布; 加热时间分别为 (e) 0, (f) 30, (g) 60 , (h) 90 min时, 双芯光纤热扩散区的三维折射率分布

    Fig. 4.  Refractive index distribution in the y-z direction of the thermally diffused zone of the twin-core fiber when the heating time is (a) 0, (b) 30, (c) 60 and (d) 90 min, respectively. The three-dimensional refractive index distribution of the thermally diffused zone of the twin-core fiber when the heating time is (e) 0, (f) 30, (g) 60 and (h) 90 min.

    图 5  加热时间分别为 (a) 0, (b) 30, (c) 60, (d) 90 min时, 三芯光纤热扩散区y-z方向的折射率分布; 加热时间分别为 (e) 0, (f) 30, (g) 60, (h) 90 min时, 三芯光纤热扩散区的三维折射率分布

    Fig. 5.  Refractive index distribution in the y-z direction of the thermally diffused zone of the three-core fiber when the heating time is (a) 0, (b) 30, (c) 60 and (d) 90 min, respectively. The three-dimensional refractive index distribution of the thermally diffused zone of the three-core fiber when the heating time is (e) 0, (f) 30, (g) 60 and (h) 90 min.

    图 6  加热时间分别为 (a) 0, (b) 30, (c) 60, (d) 90 min时, 四芯光纤热扩散区y-z方向的折射率分布; 加热时间分别为 (e) 0, (f) 30, (g) 60, (h) 90 min时, 四芯光纤热扩散区的三维折射率分布

    Fig. 6.  Refractive index distribution in the y-z direction of the thermally diffused zone of the four-core fiber when the heating time is (a) 0, (b) 30, (c) 60 and (d) 90 min, respectively. The three-dimensional refractive index distribution of the thermally diffused zone of the four-core fiber when the heating time is (e) 0, (f) 30, (g) 60 and (h) 90 min.

    图 7  加热时间分别为 (a) 0, (b) 30, (c) 60, (d) 90 min时, 七芯光纤热扩散区y-z方向的折射率分布; 加热时间分别为 (e) 0, (f) 30, (g) 60, (h) 90 min时, 七芯光纤热扩散区的三维折射率分布

    Fig. 7.  Rfractive index distribution in the y-z direction of the thermally diffused zone of the seven-core fiber when the heating time is (a) 0, (b) 30, (c) 60 and (d) 90 min, respectively. The three-dimensional refractive index distribution of the thermally diffused zone of the seven-core fiber when the heating time is (e) 0, (f) 30, (g) 60 and (h) 90 min.

    图 8  (a) 热扩散制备的三芯光纤耦合器的示意图; 不同加热时间的三芯光纤端面的强度分布, 其中(b) 0 min; (c) 30 min; (d) 60 min; (e) 90 min

    Fig. 8.  (a) Schematic diagram of a three-core fiber fabricated by thermal diffusion. The intensity distribution at the end face of the three-core fiber coupler with different heating times: (b) 0 min; (c) 30 min; (d) 60 min; (e) 90 min.

    图 9  (a) 应用热扩散技术的弯曲传感器的示意图; (b) 不同弯曲方向(从0°到360°)对应的双芯光纤两个纤芯中FBGs的差分的弯曲灵敏度

    Fig. 9.  (a) Schematic diagram of the bending sensor structure using thermal diffusion technology; (b) differential bending sensitivity of FBGs in the two cores of a twin-core fiber plotted for various bending directions (from 0° to 360°)

  • [1]

    Slussarenko S, Pryde G J 2019 Appl. Phys. Rev. 6 041303Google Scholar

    [2]

    Xiong Y F, Xu F 2020 Adv. Photonics 2 064001Google Scholar

    [3]

    Zhang Z W, Guo Y Y, Bescond M, Chen J, Nomura M, Volz S 2022 Phys. Rev. Lett. 128 015901Google Scholar

    [4]

    Yuan L B, Dai Q, Tian F J, Zhang T, Guan C Y, Zhu X L 2009 Opt. Lett. 34 1531Google Scholar

    [5]

    Meng L Z, Chen G D, Wang D H, Yuan L B 2021 J. Light. Technol. 39 3638Google Scholar

    [6]

    Huo Y M, Cheo P K, King G G 2004 Opt. Express 12 6230Google Scholar

    [7]

    Wrage M, Glas P, Fischer D, Leitner M, Elkin N N, Vysotsky D V, Napartovich A P, Troshchieva V N 2002 Opt. Commun. 205 367Google Scholar

    [8]

    Hayashi T, Taru T, Shimakawa O, Sasaki T, Sasaoka E 2012 J. Light. Technol. 30 583Google Scholar

    [9]

    Hayashi T, Taru T, Shimakawa O, Sasaki T, Sasaoka E 2011 Opt. Express 19 16576Google Scholar

    [10]

    苑立波, 张新平, 苑婷婷, 徐飞, 刘艳格, 龚元, 彭伟, 郭团, 王鹏飞, 王义平, 王东宁 2023 怎样在光纤上构建实验室 (北京: 清华大学出版社) 第81页

    Yuan L B, Zhang X P, Yuan T T, Xu F, Liu Y G, Guo Y, Peng W, Guo T, Wang P F, Wang Y P, Wang D N 2023 How to Bulid a-Lab-on/in-Fiber (Beijing: Tsinghua Unisiverty Press) p81

    [11]

    Mills A F 1995 Heat and Mass Transfer (Boca Raton: CRC Press) p811

    [12]

    Shiraishi K, Aizawa Y, Kawakami S 1990 J. Light. Technol. 8 1151Google Scholar

    [13]

    Crank J 1979 The Mathematics of Diffusion (Oxford: Clarendon Press) p69

    [14]

    Barenblatt G I 1996 Scaling, self-similarity, and intermediate asymptotics (Cambridge: Cambridge University Press) p64

    [15]

    Kliros G S, Tsironikos N 2005 Optik 116 365Google Scholar

    [16]

    Zhu X L, Yuan L B, Liu Z H, Yang J, Guan C Y 2009 J. Light. Technol. 27 5235Google Scholar

    [17]

    Kliros G 2011 Optoelectron. Adv. Mater.-Rapid Commun. 5 193

    [18]

    Snyder A W, Love J D 1984 Optical Waveguide Theory (New York: Springer) p568

    [19]

    Yablon A D 2013 Opt. Lett. 38 4393Google Scholar

    [20]

    Yablon A D 2005 Optical Fiber Fusion Splicing (Berlin: Springer-Verlag) p74

    [21]

    Yuan L B, Liu Z H, Yang J 2006 Opt. Lett. 31 3237Google Scholar

    [22]

    Zhang H J, Healy N, Dasgupta S, Hayes J R, Petrovich M N, Richardson D J, Peacock A C 2017 IEEE Photonics Technol. Lett. 29 591Google Scholar

    [23]

    Zhang F M, Liu Z Y X, Du H Z, Shao Y H, Shen L, Yang L B, Yan C K, Zhao Z Y, Tang M 2022 Opt. Express 30 19042Google Scholar

    [24]

    Zhao Y J, Zhou A, Ouyang X W, Ouyang Y, Zhou C M, Yuan L B 2017 J. Light. Technol. 35 5473Google Scholar

    [25]

    Bao W J, Sahoo N, Sun Z Y, Wang C L, Liu S, Wang Y P, Zhang L 2020 Opt. Express 28 26461Google Scholar

    [26]

    Zhao Z Y, Dang Y L, Tang M 2022 Photonics 9 381Google Scholar

  • [1] 孙家程, 王婷婷, 戴洋, 常建华, 柯炜. 基于无芯光纤的多参数测量传感器. 物理学报, 2021, 70(6): 064202. doi: 10.7498/aps.70.20201474
    [2] 靳文星, 任国斌, 裴丽, 姜有超, 吴越, 谌亚, 杨宇光, 任文华, 简水生. 环绕空气孔结构的双模大模场面积多芯光纤的特性分析. 物理学报, 2017, 66(2): 024210. doi: 10.7498/aps.66.024210
    [3] 肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明. 基于少模光纤的全光纤熔融模式选择耦合器的设计及实验研究. 物理学报, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [4] 徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫. 具有四模式的低串扰及大群时延多芯微结构光纤的设计. 物理学报, 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [5] 周建忠, 陈抱雪, 李家韡, 王关德, 浜中广见. 光波导脉冲耦合器研究. 物理学报, 2014, 63(1): 014211. doi: 10.7498/aps.63.014211
    [6] 谢蒂旎, 彭洪尚, 黄世华, 由芳田, 王小卉. 水热法促进EuVO4@YVO4核壳结构纳米颗粒中Eu3+的扩散及其对发光性能的影响. 物理学报, 2014, 63(14): 147801. doi: 10.7498/aps.63.147801
    [7] 姜子伟, 白晋军, 侯宇, 王湘晖, 常胜江. 太赫兹双空芯光纤定向耦合器. 物理学报, 2013, 62(2): 028702. doi: 10.7498/aps.62.028702
    [8] 郑斯文, 林桢, 任国斌, 简水生. 一种新型多芯-双模-大模场面积光纤的设计和分析. 物理学报, 2013, 62(4): 044224. doi: 10.7498/aps.62.044224
    [9] 裴丽, 赵瑞峰. 统一非对称光波导横向耦合模理论分析. 物理学报, 2013, 62(18): 184213. doi: 10.7498/aps.62.184213
    [10] 王立文, 娄淑琴, 陈卫国, 鹿文亮, 王鑫. 一种覆盖全通信波段的新型宽带偏振无关双芯光纤定向耦合器的研究. 物理学报, 2012, 61(15): 154207. doi: 10.7498/aps.61.154207
    [11] 白晋军, 王昌辉, 侯宇, 范飞, 常胜江. 太赫兹双芯光子带隙光纤定向耦合器. 物理学报, 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [12] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [13] 江微微, 范林勇, 赵瑞峰, 卫延, 裴丽, 简水生. 基于双芯光纤耦合器的梳状滤波器及其CO2激光调节. 物理学报, 2011, 60(4): 044214. doi: 10.7498/aps.60.044214
    [14] 贾维国, 周严勇, 韩永明, 包红梅, 扬盛际. 光子晶体光纤耦合器中的标量调制不稳定性. 物理学报, 2009, 58(9): 6323-6329. doi: 10.7498/aps.58.6323
    [15] 李齐良, 谢玉永, 朱殷芳, 赵知劲, 王天枢, 钱 胜, 林理彬. 具有高阶耦合色散系数三芯光纤耦合器非线性光开关特性的研究. 物理学报, 2008, 57(9): 5651-5661. doi: 10.7498/aps.57.5651
    [16] 孙一翎, 潘剑侠. 多模干涉耦合器中重叠像相干相消现象分析. 物理学报, 2007, 56(6): 3300-3305. doi: 10.7498/aps.56.3300
    [17] 余有龙, 曹 雪, 刘盛春, 陈雪峰. 熔锥型光纤反射器特性研究. 物理学报, 2007, 56(11): 6490-6495. doi: 10.7498/aps.56.6490
    [18] 董小伟, 裴 丽, 简水生. 非对称熔锥法制作光纤光栅辅助耦合器型上下话路滤波器. 物理学报, 2006, 55(9): 4739-4743. doi: 10.7498/aps.55.4739
    [19] 肖金标, 马长峰, 张明德, 孙小菡. InGaAs/InAlAs多量子阱脊形波导及定向耦合器光波特性准矢量分析. 物理学报, 2006, 55(1): 254-260. doi: 10.7498/aps.55.254
    [20] 俞重远, 张晓光, 刘秀敏. 三芯非线性光纤耦合器中的短脉冲光开关. 物理学报, 2001, 50(5): 904-909. doi: 10.7498/aps.50.904
计量
  • 文章访问数:  2497
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 修回日期:  2023-08-25
  • 上网日期:  2023-09-15
  • 刊出日期:  2023-12-20

/

返回文章
返回