-
面对宽幅地形测绘和空基大气测量等应用的需求,迫切需要发展能够适应机载平台的低功耗的小型化单光子探测系统。超导纳米线单光子探测器(SNSPD)具有量子效率高,暗计数低,探测速度快等优点,已被应用到量子信息、生物成像、深空通信和远程激光雷达等领域。然而,常规SNSPD通常工作在2.1 K甚至更低的温度下,所需低温系统的体积和重量均较大,不易于应用到机载平台。截至目前,国际上还未出现应用于机载平台的SNSPD的相关报道。如何将SNSPD应用于机载平台是亟待解决的问题。本文设计并制备出了工作温度为4.2 K的SNSPD。超导探测器芯片是光敏面积为60 μm×60 μm的四通道光子数可分辨器件,通过光束压缩系统耦合到直径200 μm的光纤,在温度4.2 K时量子效率为50%@1064 nm。最后,测试了单个通道的时间特性,在不同光子数响应的情况下得到了不同的时间抖动,其中四光子响应时的时间抖动最小,半高宽为110 ps。该工作不仅可支撑机载应用,而且对于推动发展通用的小型化SNSPD系统及其应用具有积极意义。
-
关键词:
- 超导纳米线单光子探测器 /
- 液氦温区 /
- 光子数分辨 /
- 机载平台
Facing the demand for applications such as wide-area terrain mapping and space-based atmospheric measurements, there is an urgent need to develop miniaturized single-photon detection systems with low power consumption that can be adapted to airborne platforms. Superconducting nanowire single-photon detectors (SNSPDs) have been applied to quantum information, bioimaging, deep space communication and long-range lidar with the advantages of high quantum efficiency, low dark count rate and fast detection rate. However, traditional SNSPD usually operate at 2.1 K or even lower, and the required cryogenic systems are large in size and weight, which are not easy to be applied to airborne platforms. Up to now, there is no international report on SNSPD applied to airborne platforms. How to apply SNSPD to airborne platforms is an urgent problem to be solved. In this paper, we designed and prepared a SNSPD with an operating temperature of 4.2 K. The superconducting detector chip is a four-channel photon number resolvable device with a photosensitive area of 60 μm×60 μm, which is coupled to a 200 μm diameter fiber by a beam compression system with a quantum efficiency of 50% @1064 nm at a temperature of 4.2 K. Finally, the time characteristics of a single channel were tested in response to different photon numbers. The timing jitter of four-photon response is the smallest, and the half-height width is 110 ps. This work not only supports airborne applications, but also has positive implications for promoting the development of general-purpose miniaturized SNSPD systems and their applications.-
Keywords:
- superconducting nanowire single photon detector /
- liquid helium temperature zone /
- photon number resolution /
- airborne platform
-
[1] Henriksson M 2018 Optical Engineering 57
[2] Kong H J, Kim T H, Jo S E, Oh M S 2011 Opt Express 1919323
[3] Kong H J, Kim T H, Jo S E, Oh M S 2011 Opt Express 1919323
[4] Cohen L, Matekole E S, Sher Y, Istrati D, Eisenberg H S, Dowling J P 2019 Phys Rev Lett 123203601
[5] Cohen L, Matekole E S, Sher Y, Istrati D, Eisenberg H S, Dowling J P 2019 Phys Rev Lett 123203601
[6] Chang J, Los J W N, Tenorio-Pearl J O, Noordzij N, Gourgues R, Guardiani A, Zichi J R, Pereira S F, Urbach H P, Zwiller V, Dorenbos S N, Esmaeil Zadeh I 2021 APL Photonics 6
[7] Chang J, Los J W N, Tenorio-Pearl J O, Noordzij N, Gourgues R, Guardiani A, Zichi J R, Pereira S F, Urbach H P, Zwiller V, Dorenbos S N, Esmaeil Zadeh I 2021 APL Photonics 6
[8] Korzh B, Zhao Q-Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M, Crouch G M, Dane A E, Gerrits T, Lita A E, Marsili F, Moody G, Peña C, Ramirez E, Rezac J D, Sinclair N, Stevens M J, Velasco A E, Verma V B, Wollman E E, Xie S, Zhu D, Hale P D, Spiropulu M, Silverman K L, Mirin R P, Nam S W, Kozorezov A G, Shaw M D, Berggren K K 2020 Nature Photonics 14250
[9] Korzh B, Zhao Q-Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M, Crouch G M, Dane A E, Gerrits T, Lita A E, Marsili F, Moody G, Peña C, Ramirez E, Rezac J D, Sinclair N, Stevens M J, Velasco A E, Verma V B, Wollman E E, Xie S, Zhu D, Hale P D, Spiropulu M, Silverman K L, Mirin R P, Nam S W, Kozorezov A G, Shaw M D, Berggren K K 2020 Nature Photonics 14250
[10] Reddy DV, Nerem R R, Nam S W, Mirin R P, Verma V B 2020 Optica 7
[11] Reddy DV, Nerem R R, Nam S W, Mirin R P, Verma V B 2020 Optica 7
[12] Shibata H, Shimizu K, Takesue H, Tokura Y 2015 Opt Lett 403428
[13] Shibata H, Shimizu K, Takesue H, Tokura Y 2015 Opt Lett 403428
[14] Zhang W, Huang J, Zhang C, You L, Lv C, Zhang L, Li H, Wang Z, Xie X 2019 IEEE Transactions on Applied Superconductivity 291
[15] Zhang W, Huang J, Zhang C, You L, Lv C, Zhang L, Li H, Wang Z, Xie X 2019 IEEE Transactions on Applied Superconductivity 291
[16] Cahall C, Nicolich K L, Islam N T, Lafyatis G P, Miller A J, Gauthier D J, Kim J 2017 Optica 4
[17] Cahall C, Nicolich K L, Islam N T, Lafyatis G P, Miller A J, Gauthier D J, Kim J 2017 Optica 4
[18] Divochiy A, Marsili F, Bitauld D, Gaggero A, Leoni R, Mattioli F, Korneev A, Seleznev V, Kaurova N, Minaeva O, Gol'tsman G, Lagoudakis K G, Benkhaoul M, Lévy F, Fiore A 2008 Nature Photonics 2302
[19] Divochiy A, Marsili F, Bitauld D, Gaggero A, Leoni R, Mattioli F, Korneev A, Seleznev V, Kaurova N, Minaeva O, Gol'tsman G, Lagoudakis K G, Benkhaoul M, Lévy F, Fiore A 2008 Nature Photonics 2302
[20] Mattioli F, Zhou Z, Gaggero A, Gaudio R, Leoni R, Fiore A 2016 Opt Express 249067[1] Henriksson M 2018 Optical Engineering 57
[21] Mattioli F, Zhou Z, Gaggero A, Gaudio R, Leoni R, Fiore A 2016 Opt Express 249067
[22] Zhu D, Zhao Q Y, Choi H, Lu T J, Dane A E, Englund D, Berggren K K 2018 Nat Nanotechnol 13596
[23] Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, Ren J G, Yin J, Shen Q, Cao Y, Li Z P, Li F Z, Chen X W, Sun L H, Jia J J, Wu J C, Jiang X J, Wang J F, Huang Y M, Wang Q, Zhou Y L, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen Y A, Liu N L, Wang X B, Zhu Z C, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Nature 54943
[24] Guan Y, Li H, Xue L, Yin R, Zhang L, Wang H, Zhu G, Kang L, Chen J, Wu P 2022 Optics and Lasers in Engineering 156
[25] Borst J W, A Visser 2010 MEASUREMENT SCIENCE AND TECHNOLOGY 21
[26] Sprengers J P, Gaggero A, Sahin D, Jahanmirinejad S, Frucci G, Mattioli F, Leoni R, Beetz J, Lermer M, Kamp M, Hofling S, Sanjines R, Fiore A 2011 Appl. Phys. Lett 99
[27] Korner C 2007 Trends Ecol Evol 22569
[28] Pobell F 2013 Springer
[29] Caloz M, Perrenoud M, Autebert C, Korzh B, Weiss M, Schonenberger C, Warburton R J, Zbinden H, Bussieres F 2018 Appl. Phys. Lett 112
[30] Chen Q, Ge R, Zhang L, Li F, Zhang B, Jin F, Han H, Dai Y, He G, Fei Y, Wang X, Wang H, Jia X, Zhao Q, Tu X, Kang L, Chen J, Wu P 2021 Science Bulletin 66965
[31] Kuzanyan A A, V R Nikoghosyan, A S Kuzanyan 2017 Spie Optics + Optoelectronics 10229.
[32] Velasco A E, Cunnane D P, Frasca S, Melbourne T, Acharya N, Briggs R, Beyer A D, Shaw M D, Karasik B S, Wolak M A, Verma V B, Lita A E, Shibata H, Ohkubo M, Zen N, Ukibe M, Xi X X, Marsili F 2017 Cleo: Qelsfundamental Science
[33] Salvoni D, Ejrnaes M, Parlato L, Yang X Y, You L X, Wang Z, Pepe G P, Cristiano R 2020 Journal of Physics: Conference Series 1559
[34] Gourgues R, Los J W N, Zichi J, Chang J, Kalhor N, Bulgarini G, Dorenbos S N, Zwiller V, Zadeh I E 2019 Opt Express 2724601
[35] Wollman E E, Verma V B, Beyer A D, Briggs R M, Korzh B, Allmaras J P, Marsili F, Lita A E, Mirin R P, Nam S W, Shaw M D 2017 Opt Express 2526792
[36] Gemmell N R, Hills M, Bradshaw T, Rawlings T, Green B, Heath R M, Tsimvrakidis K, Dobrovolskiy S, Zwiller V, Dorenbos S. N, Crook M, Hadfield R H 2017 Superconductor Science and Technology 30
[37] Hofherr M, Rall D, Ilin K, Siegel M, Semenov A, Hubers H W, Gippius N A 2010 Journal of Applied Physics 108
[38] Marsili F, Najafi F, Dauler E, Bellei F, Hu X L, Csete M, Molnar R J, Berggren K K 2011 Nano letters 112053
[39] Li F, Han H, Chen Q, Zhang B, Bao H, Dai Y, Ge R, Guo S, He G, Fei Y, Yang S, Wang X, Wang H, Jia X, Zhao Q, Zhang L, Kang L, Wu P 2021 Photonics Research 9
[40] Kozorezov A G, Lambert C, Marsili F, Stevens M J, Verma V B, Allmaras J P, Shaw M D, Mirin R P, Nam S W 2017 Physical Review B 96.
计量
- 文章访问数: 144
- PDF下载量: 13
- 被引次数: 0