搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向机载平台的小型超导单光子探测系统

何广龙 薛莉 吴诚 李慧 印睿 董大兴 王昊 徐迟 黄慧鑫 涂学凑 康琳 贾小氢 赵清源 陈健 夏凌昊 张蜡宝 吴培亨

引用本文:
Citation:

面向机载平台的小型超导单光子探测系统

何广龙, 薛莉, 吴诚, 李慧, 印睿, 董大兴, 王昊, 徐迟, 黄慧鑫, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 夏凌昊, 张蜡宝, 吴培亨

Miniaturized superconducting single photon detection system for airborne platform

He Guang-Long, Xue Li, Wu Cheng, Li Hui, Yin Rui, Dong Da-Xing, Wang Hao, Xu Chi, Huang Hui-Xin, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Xia Ling-Hao, Zhang La-Bao, Wu Pei-Heng
PDF
导出引用
  • 面对宽幅地形测绘和空基大气测量等应用的需求,迫切需要发展能够适应机载平台的低功耗的小型化单光子探测系统。超导纳米线单光子探测器(SNSPD)具有量子效率高,暗计数低,探测速度快等优点,已被应用到量子信息、生物成像、深空通信和远程激光雷达等领域。然而,常规SNSPD通常工作在2.1 K甚至更低的温度下,所需低温系统的体积和重量均较大,不易于应用到机载平台。截至目前,国际上还未出现应用于机载平台的SNSPD的相关报道。如何将SNSPD应用于机载平台是亟待解决的问题。本文设计并制备出了工作温度为4.2 K的SNSPD。超导探测器芯片是光敏面积为60 μm×60 μm的四通道光子数可分辨器件,通过光束压缩系统耦合到直径200 μm的光纤,在温度4.2 K时量子效率为50%@1064 nm。最后,测试了单个通道的时间特性,在不同光子数响应的情况下得到了不同的时间抖动,其中四光子响应时的时间抖动最小,半高宽为110 ps。该工作不仅可支撑机载应用,而且对于推动发展通用的小型化SNSPD系统及其应用具有积极意义。
    Facing the demand for applications such as wide-area terrain mapping and space-based atmospheric measurements, there is an urgent need to develop miniaturized single-photon detection systems with low power consumption that can be adapted to airborne platforms. Superconducting nanowire single-photon detectors (SNSPDs) have been applied to quantum information, bioimaging, deep space communication and long-range lidar with the advantages of high quantum efficiency, low dark count rate and fast detection rate. However, traditional SNSPD usually operate at 2.1 K or even lower, and the required cryogenic systems are large in size and weight, which are not easy to be applied to airborne platforms. Up to now, there is no international report on SNSPD applied to airborne platforms. How to apply SNSPD to airborne platforms is an urgent problem to be solved. In this paper, we designed and prepared a SNSPD with an operating temperature of 4.2 K. The superconducting detector chip is a four-channel photon number resolvable device with a photosensitive area of 60 μm×60 μm, which is coupled to a 200 μm diameter fiber by a beam compression system with a quantum efficiency of 50% @1064 nm at a temperature of 4.2 K. Finally, the time characteristics of a single channel were tested in response to different photon numbers. The timing jitter of four-photon response is the smallest, and the half-height width is 110 ps. This work not only supports airborne applications, but also has positive implications for promoting the development of general-purpose miniaturized SNSPD systems and their applications.
  • [1]

    Henriksson M 2018 Optical Engineering 57

    [2]

    Kong H J, Kim T H, Jo S E, Oh M S 2011 Opt Express 1919323

    [3]

    Kong H J, Kim T H, Jo S E, Oh M S 2011 Opt Express 1919323

    [4]

    Cohen L, Matekole E S, Sher Y, Istrati D, Eisenberg H S, Dowling J P 2019 Phys Rev Lett 123203601

    [5]

    Cohen L, Matekole E S, Sher Y, Istrati D, Eisenberg H S, Dowling J P 2019 Phys Rev Lett 123203601

    [6]

    Chang J, Los J W N, Tenorio-Pearl J O, Noordzij N, Gourgues R, Guardiani A, Zichi J R, Pereira S F, Urbach H P, Zwiller V, Dorenbos S N, Esmaeil Zadeh I 2021 APL Photonics 6

    [7]

    Chang J, Los J W N, Tenorio-Pearl J O, Noordzij N, Gourgues R, Guardiani A, Zichi J R, Pereira S F, Urbach H P, Zwiller V, Dorenbos S N, Esmaeil Zadeh I 2021 APL Photonics 6

    [8]

    Korzh B, Zhao Q-Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M, Crouch G M, Dane A E, Gerrits T, Lita A E, Marsili F, Moody G, Peña C, Ramirez E, Rezac J D, Sinclair N, Stevens M J, Velasco A E, Verma V B, Wollman E E, Xie S, Zhu D, Hale P D, Spiropulu M, Silverman K L, Mirin R P, Nam S W, Kozorezov A G, Shaw M D, Berggren K K 2020 Nature Photonics 14250

    [9]

    Korzh B, Zhao Q-Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M, Crouch G M, Dane A E, Gerrits T, Lita A E, Marsili F, Moody G, Peña C, Ramirez E, Rezac J D, Sinclair N, Stevens M J, Velasco A E, Verma V B, Wollman E E, Xie S, Zhu D, Hale P D, Spiropulu M, Silverman K L, Mirin R P, Nam S W, Kozorezov A G, Shaw M D, Berggren K K 2020 Nature Photonics 14250

    [10]

    Reddy DV, Nerem R R, Nam S W, Mirin R P, Verma V B 2020 Optica 7

    [11]

    Reddy DV, Nerem R R, Nam S W, Mirin R P, Verma V B 2020 Optica 7

    [12]

    Shibata H, Shimizu K, Takesue H, Tokura Y 2015 Opt Lett 403428

    [13]

    Shibata H, Shimizu K, Takesue H, Tokura Y 2015 Opt Lett 403428

    [14]

    Zhang W, Huang J, Zhang C, You L, Lv C, Zhang L, Li H, Wang Z, Xie X 2019 IEEE Transactions on Applied Superconductivity 291

    [15]

    Zhang W, Huang J, Zhang C, You L, Lv C, Zhang L, Li H, Wang Z, Xie X 2019 IEEE Transactions on Applied Superconductivity 291

    [16]

    Cahall C, Nicolich K L, Islam N T, Lafyatis G P, Miller A J, Gauthier D J, Kim J 2017 Optica 4

    [17]

    Cahall C, Nicolich K L, Islam N T, Lafyatis G P, Miller A J, Gauthier D J, Kim J 2017 Optica 4

    [18]

    Divochiy A, Marsili F, Bitauld D, Gaggero A, Leoni R, Mattioli F, Korneev A, Seleznev V, Kaurova N, Minaeva O, Gol'tsman G, Lagoudakis K G, Benkhaoul M, Lévy F, Fiore A 2008 Nature Photonics 2302

    [19]

    Divochiy A, Marsili F, Bitauld D, Gaggero A, Leoni R, Mattioli F, Korneev A, Seleznev V, Kaurova N, Minaeva O, Gol'tsman G, Lagoudakis K G, Benkhaoul M, Lévy F, Fiore A 2008 Nature Photonics 2302

    [20]

    Mattioli F, Zhou Z, Gaggero A, Gaudio R, Leoni R, Fiore A 2016 Opt Express 249067[1] Henriksson M 2018 Optical Engineering 57

    [21]

    Mattioli F, Zhou Z, Gaggero A, Gaudio R, Leoni R, Fiore A 2016 Opt Express 249067

    [22]

    Zhu D, Zhao Q Y, Choi H, Lu T J, Dane A E, Englund D, Berggren K K 2018 Nat Nanotechnol 13596

    [23]

    Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, Ren J G, Yin J, Shen Q, Cao Y, Li Z P, Li F Z, Chen X W, Sun L H, Jia J J, Wu J C, Jiang X J, Wang J F, Huang Y M, Wang Q, Zhou Y L, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen Y A, Liu N L, Wang X B, Zhu Z C, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Nature 54943

    [24]

    Guan Y, Li H, Xue L, Yin R, Zhang L, Wang H, Zhu G, Kang L, Chen J, Wu P 2022 Optics and Lasers in Engineering 156

    [25]

    Borst J W, A Visser 2010 MEASUREMENT SCIENCE AND TECHNOLOGY 21

    [26]

    Sprengers J P, Gaggero A, Sahin D, Jahanmirinejad S, Frucci G, Mattioli F, Leoni R, Beetz J, Lermer M, Kamp M, Hofling S, Sanjines R, Fiore A 2011 Appl. Phys. Lett 99

    [27]

    Korner C 2007 Trends Ecol Evol 22569

    [28]

    Pobell F 2013 Springer

    [29]

    Caloz M, Perrenoud M, Autebert C, Korzh B, Weiss M, Schonenberger C, Warburton R J, Zbinden H, Bussieres F 2018 Appl. Phys. Lett 112

    [30]

    Chen Q, Ge R, Zhang L, Li F, Zhang B, Jin F, Han H, Dai Y, He G, Fei Y, Wang X, Wang H, Jia X, Zhao Q, Tu X, Kang L, Chen J, Wu P 2021 Science Bulletin 66965

    [31]

    Kuzanyan A A, V R Nikoghosyan, A S Kuzanyan 2017 Spie Optics + Optoelectronics 10229.

    [32]

    Velasco A E, Cunnane D P, Frasca S, Melbourne T, Acharya N, Briggs R, Beyer A D, Shaw M D, Karasik B S, Wolak M A, Verma V B, Lita A E, Shibata H, Ohkubo M, Zen N, Ukibe M, Xi X X, Marsili F 2017 Cleo: Qelsfundamental Science

    [33]

    Salvoni D, Ejrnaes M, Parlato L, Yang X Y, You L X, Wang Z, Pepe G P, Cristiano R 2020 Journal of Physics: Conference Series 1559

    [34]

    Gourgues R, Los J W N, Zichi J, Chang J, Kalhor N, Bulgarini G, Dorenbos S N, Zwiller V, Zadeh I E 2019 Opt Express 2724601

    [35]

    Wollman E E, Verma V B, Beyer A D, Briggs R M, Korzh B, Allmaras J P, Marsili F, Lita A E, Mirin R P, Nam S W, Shaw M D 2017 Opt Express 2526792

    [36]

    Gemmell N R, Hills M, Bradshaw T, Rawlings T, Green B, Heath R M, Tsimvrakidis K, Dobrovolskiy S, Zwiller V, Dorenbos S. N, Crook M, Hadfield R H 2017 Superconductor Science and Technology 30

    [37]

    Hofherr M, Rall D, Ilin K, Siegel M, Semenov A, Hubers H W, Gippius N A 2010 Journal of Applied Physics 108

    [38]

    Marsili F, Najafi F, Dauler E, Bellei F, Hu X L, Csete M, Molnar R J, Berggren K K 2011 Nano letters 112053

    [39]

    Li F, Han H, Chen Q, Zhang B, Bao H, Dai Y, Ge R, Guo S, He G, Fei Y, Yang S, Wang X, Wang H, Jia X, Zhao Q, Zhang L, Kang L, Wu P 2021 Photonics Research 9

    [40]

    Kozorezov A G, Lambert C, Marsili F, Stevens M J, Verma V B, Allmaras J P, Shaw M D, Mirin R P, Nam S W 2017 Physical Review B 96.

  • [1] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨. 5-10微米波段超导单光子探测器设计与研制. 物理学报, doi: 10.7498/aps.72.20221594
    [2] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨. 5—10 µm波段超导单光子探测器设计与研制. 物理学报, doi: 10.7498/aps.71.20221594
    [3] 马璐瑶, 张兴雨, 舒志运, 肖游, 张天柱, 李浩, 尤立星. 自差分交流偏置超导纳米线单光子探测器. 物理学报, doi: 10.7498/aps.71.20220373
    [4] 张笑, 吕嘉煜, 管焰秋, 李慧, 王锡明, 张蜡宝, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 吴培亨. 超大面积超导纳米线阵列单光子探测器设计与制备. 物理学报, doi: 10.7498/aps.71.20221569
    [5] 黄典, 戴万霖, 王轶文, 贺青, 韦联福. 超导动态电感单光子探测器的噪声处理. 物理学报, doi: 10.7498/aps.70.20210185
    [6] 张文英, 胡鹏, 肖游, 李浩, 尤立星. 高效、偏振不敏感超导纳米线单光子探测器. 物理学报, doi: 10.7498/aps.70.20210486
    [7] 张彪, 陈奇, 管焰秋, 靳飞飞, 王昊, 张蜡宝, 涂学凑, 赵清源, 贾小氢, 康琳, 陈健, 吴培亨. 超导纳米线单光子探测器光子响应机制研究进展. 物理学报, doi: 10.7498/aps.70.20210652
    [8] 张海燕, 汪琳莉, 吴琛怡, 王煜蓉, 杨雷, 潘海峰, 刘巧莉, 郭霞, 汤凯, 张忠萍, 吴光. 高时间稳定性的雪崩光电二极管单光子探测器. 物理学报, doi: 10.7498/aps.69.20191875
    [9] 闫夏超, 朱江, 张蜡宝, 邢强林, 陈亚军, 朱宏权, 李舰艇, 康琳, 陈健, 吴培亨. 基于超导纳米线单光子探测器深空激光通信模型及误码率研究. 物理学报, doi: 10.7498/aps.66.198501
    [10] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响. 物理学报, doi: 10.7498/aps.65.188501
    [11] 郑丽霞, 吴金, 张秀川, 涂君虹, 孙伟锋, 高新江. InGaAs单光子探测器传感检测与淬灭方式. 物理学报, doi: 10.7498/aps.63.104216
    [12] 张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜. 超导转变边沿单光子探测器原理与研究进展. 物理学报, doi: 10.7498/aps.63.200303
    [13] 王进, 魏正军, 王赓, 郭莉, 王金东, 张智明, 郭健平, 郭邦红, 刘颂豪. 数字平均对红外单光子探测器中温度控制系统信噪改善比的影响. 物理学报, doi: 10.7498/aps.62.014203
    [14] 徐晋, 谢品华, 司福祺, 李昂, 周海金, 吴丰成, 王杨, 刘建国, 刘文清. 基于机载平台的NO2 垂直廓线反演灵敏度研究. 物理学报, doi: 10.7498/aps.62.104214
    [15] 王红培, 王广龙, 倪海桥, 徐应强, 牛智川, 高凤岐. 新型量子点场效应增强型单光子探测器. 物理学报, doi: 10.7498/aps.62.194205
    [16] 周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨. 超导纳米线多光子响应特性研究. 物理学报, doi: 10.7498/aps.61.208501
    [17] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器. 物理学报, doi: 10.7498/aps.60.038501
    [18] 程楠, 黄刚锋, 王金东, 魏正军, 郭健平, 廖常俊, 刘颂豪. 同轴电缆反射方案单光子探测器的特性研究. 物理学报, doi: 10.7498/aps.59.5338
    [19] 米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪. 诱惑态在“双探测器”准单光子光源量子密钥分发系统中的应用. 物理学报, doi: 10.7498/aps.57.678
    [20] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器. 物理学报, doi: 10.7498/aps.56.5790
计量
  • 文章访问数:  144
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 上网日期:  2023-03-14

面向机载平台的小型超导单光子探测系统

  • 1 南京大学超导电子学研究所, 南京 210023;
  • 2 北京跟踪与通信技术研究所, 北京 100094;
  • 3 南京电子技术研究所, 南京 210039;
  • 4 南京航空航天大学, 南京 211106

摘要: 面对宽幅地形测绘和空基大气测量等应用的需求,迫切需要发展能够适应机载平台的低功耗的小型化单光子探测系统。超导纳米线单光子探测器(SNSPD)具有量子效率高,暗计数低,探测速度快等优点,已被应用到量子信息、生物成像、深空通信和远程激光雷达等领域。然而,常规SNSPD通常工作在2.1 K甚至更低的温度下,所需低温系统的体积和重量均较大,不易于应用到机载平台。截至目前,国际上还未出现应用于机载平台的SNSPD的相关报道。如何将SNSPD应用于机载平台是亟待解决的问题。本文设计并制备出了工作温度为4.2 K的SNSPD。超导探测器芯片是光敏面积为60 μm×60 μm的四通道光子数可分辨器件,通过光束压缩系统耦合到直径200 μm的光纤,在温度4.2 K时量子效率为50%@1064 nm。最后,测试了单个通道的时间特性,在不同光子数响应的情况下得到了不同的时间抖动,其中四光子响应时的时间抖动最小,半高宽为110 ps。该工作不仅可支撑机载应用,而且对于推动发展通用的小型化SNSPD系统及其应用具有积极意义。

English Abstract

目录

    /

    返回文章
    返回