-
X射线聚焦镜是一种对粒子污染物颗粒极其敏感的设备, 通常依靠控制地面各流程的污染物积累来限制其影响. 本文根据粒子污染物的特点, 结合Mie散射理论构建了聚焦镜片上的粒子污染颗粒物与入射X射线光子的相互作用模型. 在此基础上, 结合蒙特卡罗法进行光线追迹工作, 构建出爱因斯坦探针后随X射线聚焦镜的粒子污染仿真程序. 通过仿真计算得到入射X射线光子与粒子污染物相互作用时的反应截面与散射角分布函数. 这两个量与粒子污染物的尺度相关联, 本文将聚焦镜片样本上粒子污染颗粒尺度分布的测量结果进行拟合, 得到粒子污染尺度分布. 根据上述结果进行仿真计算, 得到粒子污染物密度与聚焦镜的有效面积和角分辨的关系, 并使用防污染监测数据和爱因斯坦探针后随X射线聚焦镜性能测试数据验证了仿真结果的可靠性. 对爱因斯坦探针后随X射线聚焦镜粒子污染的仿真实现了对粒子污染物影响的定量分析, 明确了粒子污染物对聚焦镜各方面性能的具体影响, 为防污染工作提供了理论支持.Particle contamination can greatly affect the performance of X-ray focusing mirror. In this paper, we analyze the influence of particle contamination on X-ray focusing mirror. The model of interaction between contaminant particles and incident light is established from Mie scattering theory in the wavelength range of X-ray. And the relationship between them is mainly influenced by the complex refractive index of the particles
$m$ and the scale factor$\alpha$ . Therefore, the reaction cross section and scattering function of particle contamination are calculated. Then, in order to obtain the effect of particle contamination on Einstein probe follow-up X-ray telescope (EP-FXT) focusing mirror, we carry out Monte Carlo simulation based on the design parameters of EP-FXT focusing mirror. Finally, the relationships among effective area, HEW, W90 and particle contamination density are calculated to characterize the influence of particle contamination on the performance of the focusing mirror. In this paper, structural and thermal model (STM) and qualification model (QM) are simulated simultaneously to make full use of their test data. By comparing the simulation results of STM effective area with the measured results, we find that the simulation results of STM effective area are accurate. When the EP-FXT is in orbit (the contamination amount is limited to less than 1.1 × 10–3), the effective area and angle resolution (HEW) meet the development requirements of EP-FXT. For the simulation of HEW, both QM and STM are in good agreement with the test results. The simulation results of HEW and effective area can be used to quantitatively analyze the effect of particle contamination on the performance of the focusing mirror. These quantitative analysis results provide a theoretical basis for the contamination prevention requirements of EP-FXT.-
Keywords:
- particle contamination /
- X-ray focusing mirror /
- Einstein probe /
- follow-up X-ray telescope
[1] Wolter H 1952 Ann. Phys. 445 94
[2] 袁为民, 张臣, 陈勇, 等 2018 中国科学: 物理 力学 天文学 48 039502
Yuan W M, Zhang C, Chen Y, et al. 2018 Sci. Sin.-Phys. Mech. As. 48 039502
[3] Chen Y, Cui W W, Han D W, et al. 2020 Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, December 13, 2020 p114445
[4] Yang Y J, Wang Y S, Han D W, et al. 2023 Exp. Astron. DOI: 10.1007/s10686-022-09870-9
[5] O'Dell S L, Elsner R F, Oosterbroek T 2010 Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray San Diego, California, USA, July 29, 2010 p77322V
[6] Elsner R F, Joy M K, O'Dell S L, Ramsey B D, Weisskopf M C 1994 Advances in Multilayer and Grazing Incidence X-Ray/EUV/FUV Optics San Diego, California, USA, November 11, 1994 p332
[7] Zhu Y X, Lu J B, Yang Y J, et al. 2021 Opt. Eng. 60 025102
[8] Mie G 1908 Ann. Phys. 25 377Google Scholar
[9] 柯熙政, 马冬冬, 刘佳妮 2009 光散射学报 21 104Google Scholar
Ke X J, Ma D D, Liu J N 2009 Chin. J. Light Scatt. 21 104Google Scholar
[10] 麻金继, 陈瑾 2005 原子与分子物理学报 22 701Google Scholar
Ma J J, Chen J 2005 J. Atom. Mol. Phys. 22 701Google Scholar
[11] Bedareva T V, Sviridenkov M A, Zhuravleva T B 2014 J. Quant. Spectrosc. Ra. 146 140
[12] Su M Y 1987 Inverse Problems in Optics Hague, Netherlands, September 10, 1987 p112
[13] Slane P O, McLaughlin E R, Schwartz D A, et al. 1989 Reflective Optics II Orlando, FL, USA, October 11, 1989 p12
[14] Weisskopf M C, O'Dell S L, van Speybroeck L P 1996 Multilayer and Grazing Incidence X-Ray/EUV Optics III Denver, CO, USA, July 19, 1996 p2
[15] Henke B L, Gullikson E M, Davis J C 1993 Atom Data Nucl. Data 54 181Google Scholar
[16] Aschenbach B 2005 Optics for EUV, X-Ray, and Gamma-Ray Astronomy II San Diego, California, USA, September 8, 2005 p59000
[17] O'Dell S L, Brissenden R J, Davis W N, et al. 2010 Adaptive X-Ray Optics San Diego, California, USA, October 22, 2010 p78030
[18] Wiscombe W J 1980 Appl. Opt. 19 1505Google Scholar
[19] 沈建琪 1999 博士学位论文 (上海: 上海理工大学)
Shen J Q 1999 Ph. D. Dissertation (Shanghai: University of Shanghai for Science and Technology) (in Chinese)
[20] Hagemann H J, Gudat W, Kunz C 1975 J. Opt. Soc. Am. B 65 742Google Scholar
[21] Friedrich P, Brauninger H, Budau B, et al. 2008 Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray Marseille, France, July 15, 2008 p70112
[22] 郑钢镖, 康天合, 柴肇云, 尹志宏 2006 太原理工大学学报 3 317Google Scholar
Zheng G B, Kang T H, Chai Z Y, Yin Z H 2006 J. Taiyuan Univ. Technol. 3 317Google Scholar
-
Energy/keV $Q_{\rm abs}$ 1.49 0.800 2.98 0.728 4.50 0.586 4.95 0.544 6.40 0.430 表 2 STM的污染物颗粒尺度分布
Table 2. Particle size distribution of contamination on STM
粒径范围/μm 颗粒数 < 25 220 25—50 156 50—100 71 100—150 59 150—200 37 200—400 12 400—600 4 600—1000 2 表 3 STM件有效面积的仿真与实测结果
Table 3. Simulation and measurement results of effective area on the STM
能量/keV 仿真结果/${\rm {cm^{2}}}$ 实测结果/${\rm {cm^{2}}}$ 0.277 $42.43\pm0.25$ $42.34\pm0.19$ 1.49 $41.57\pm0.24$ $41.11\pm0.55$ 8.04 $0.91\pm0.01$ $0.92\pm0.01$ -
[1] Wolter H 1952 Ann. Phys. 445 94
[2] 袁为民, 张臣, 陈勇, 等 2018 中国科学: 物理 力学 天文学 48 039502
Yuan W M, Zhang C, Chen Y, et al. 2018 Sci. Sin.-Phys. Mech. As. 48 039502
[3] Chen Y, Cui W W, Han D W, et al. 2020 Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, December 13, 2020 p114445
[4] Yang Y J, Wang Y S, Han D W, et al. 2023 Exp. Astron. DOI: 10.1007/s10686-022-09870-9
[5] O'Dell S L, Elsner R F, Oosterbroek T 2010 Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray San Diego, California, USA, July 29, 2010 p77322V
[6] Elsner R F, Joy M K, O'Dell S L, Ramsey B D, Weisskopf M C 1994 Advances in Multilayer and Grazing Incidence X-Ray/EUV/FUV Optics San Diego, California, USA, November 11, 1994 p332
[7] Zhu Y X, Lu J B, Yang Y J, et al. 2021 Opt. Eng. 60 025102
[8] Mie G 1908 Ann. Phys. 25 377Google Scholar
[9] 柯熙政, 马冬冬, 刘佳妮 2009 光散射学报 21 104Google Scholar
Ke X J, Ma D D, Liu J N 2009 Chin. J. Light Scatt. 21 104Google Scholar
[10] 麻金继, 陈瑾 2005 原子与分子物理学报 22 701Google Scholar
Ma J J, Chen J 2005 J. Atom. Mol. Phys. 22 701Google Scholar
[11] Bedareva T V, Sviridenkov M A, Zhuravleva T B 2014 J. Quant. Spectrosc. Ra. 146 140
[12] Su M Y 1987 Inverse Problems in Optics Hague, Netherlands, September 10, 1987 p112
[13] Slane P O, McLaughlin E R, Schwartz D A, et al. 1989 Reflective Optics II Orlando, FL, USA, October 11, 1989 p12
[14] Weisskopf M C, O'Dell S L, van Speybroeck L P 1996 Multilayer and Grazing Incidence X-Ray/EUV Optics III Denver, CO, USA, July 19, 1996 p2
[15] Henke B L, Gullikson E M, Davis J C 1993 Atom Data Nucl. Data 54 181Google Scholar
[16] Aschenbach B 2005 Optics for EUV, X-Ray, and Gamma-Ray Astronomy II San Diego, California, USA, September 8, 2005 p59000
[17] O'Dell S L, Brissenden R J, Davis W N, et al. 2010 Adaptive X-Ray Optics San Diego, California, USA, October 22, 2010 p78030
[18] Wiscombe W J 1980 Appl. Opt. 19 1505Google Scholar
[19] 沈建琪 1999 博士学位论文 (上海: 上海理工大学)
Shen J Q 1999 Ph. D. Dissertation (Shanghai: University of Shanghai for Science and Technology) (in Chinese)
[20] Hagemann H J, Gudat W, Kunz C 1975 J. Opt. Soc. Am. B 65 742Google Scholar
[21] Friedrich P, Brauninger H, Budau B, et al. 2008 Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray Marseille, France, July 15, 2008 p70112
[22] 郑钢镖, 康天合, 柴肇云, 尹志宏 2006 太原理工大学学报 3 317Google Scholar
Zheng G B, Kang T H, Chai Z Y, Yin Z H 2006 J. Taiyuan Univ. Technol. 3 317Google Scholar
计量
- 文章访问数: 2757
- PDF下载量: 51
- 被引次数: 0