搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

费曼路径积分强场动力学计算方法

刘希望 张宏丹 贲帅 杨士栋 任鑫 宋晓红 杨玮枫

引用本文:
Citation:

费曼路径积分强场动力学计算方法

刘希望, 张宏丹, 贲帅, 杨士栋, 任鑫, 宋晓红, 杨玮枫

Feynman path-integral strong-field dynamics calculation method

Liu Xi-Wang, Zhang Hong-Dan, Ben Shuai, Yang Shi-Dong, Ren Xin, Song Xiao-Hong, Yang Wei-Feng
PDF
HTML
导出引用
  • 超快超强激光及阿秒测量技术的诞生和发展, 使人们在阿秒时间和原子空间尺度内观测及控制电子的运动成为可能. 日益精密的实验测量技术对理论计算方法的精确性提出了更高的要求, 如何使用理论模型从实验结果中分辨提取超快时空动力学时间和空间信息面临极大的挑战. 相比于精确求解含时薛定谔方程, 费曼路径积分强场动力学计算方法模型简单计算效率更高, 电子波包被看作具有不同初始状态的粒子, 通过解析粒子的运动状态便能厘清各种强场非线性物理现象的产生原因. 本文从强场近似理论模型出发介绍了强场动力学计算中的鞍点近似, 进一步详细介绍了库仑修正强场近似、基于轨迹的库仑修正强场近似与库仑量子轨迹强场近似等方法. 本综述旨在为强场动力学理论计算的研究提供相关方法与文献参考, 为进一步开展新型算法提供思路.
    The emergence and development of ultrafast intense lasers and attosecond measurement techniques have made it possible to observe and control the motions of electrons on a timescale of attoseconds and a spatial scale of atoms. With the improvement of experimental measurement accuracy, higher requirements are put forward for the accuracy of theoretical calculation methods. Extracting temporal and spatial information about ultrafast dynamics from experimental results through using theoretical models presents a significant challenge. Compared with the exact solutions of the time-dependent Schrödinger equation, the Feynman path-integral method for strong-field dynamics calculations offers a simpler model and higher computational efficiency. The electronic wave packet is regarded as a particle with different initial states, and by analyzing the motion of the particle, the causes of various nonlinear physical phenomena in strong fields can be clarified. This work introduces the saddle point approximation into strong field dynamics calculations based on the strong field approximation theory. Furthermore, the Coulomb-corrected strong field approximation method, trajectory-based Coulomb-corrected strong field approximation method, and Coulomb quantum trajectory strong field approximation method are presented in detail. This review aims to provide relevant methods and literature references for studying strong field dynamics theoretical calculations and also to present some ideas for developing new algorithms.
      通信作者: 宋晓红, song_xiaohong@hainanu.edu.cn ; 杨玮枫, wfyang@hainanu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074240, 12374260, 12204135, 12264013, 12204136)、海南省自然科学基金(批准号: 122CXTD504, 123MS002, 123QN179, 123QN180, 122QN217)和中德合作交流项目(批准号: M-0031)资助的课题.
      Corresponding author: Song Xiao-Hong, song_xiaohong@hainanu.edu.cn ; Yang Wei-Feng, wfyang@hainanu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074240, 12374260, 12204135, 12264013, 12204136), the Natural Science Foundation of Hainan Province, China (Grant Nos. 122CXTD504, 123MS002, 123QN179, 123QN180, 122QN217), and the Sino-German Mobility Programme, China (Grant No. M-0031).
    [1]

    Schrödinger E 1926 Ann. Phys. 79 361

    [2]

    Born M, Jordan P 1925 Zeit. Phys. 34 858Google Scholar

    [3]

    Feynman R P 1948 Rev. Mod. Phys. 20 367Google Scholar

    [4]

    Feynman R P, Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York: McGraw Hill Press) p77

    [5]

    Maiman T H 1960 Nature 187 493Google Scholar

    [6]

    Voronov G S, Delone N B 1965 JETP Lett. 1 66

    [7]

    Agostini P, Barjot G, Bonnal J, Mainfray G, Manus C, Multiphoton J M 1968 IEEE J. Quantum Electron. 4 667Google Scholar

    [8]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127Google Scholar

    [9]

    Keldysh L V 1965 Sov. Phys. JETP. 20 1307

    [10]

    Faisal F H M 1973 J. Phys. B: At. Mol. Opt. Phys. 6 L89

    [11]

    Reiss H R 1980 Phys. Rev. A 22 1786Google Scholar

    [12]

    Perelomov A M, Popov V S, Terent’ev M V 1966 Sov. Phys. JETP. 23 924

    [13]

    Ammosov M V, Delone N B, Krainov V P 1986 Sov. Phys. JETP. 64 1191

    [14]

    Lewenstein M, Balcou P, Ivanov M Y, L’ Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [15]

    Mosert V, Bauer D 2016 Comput. Phys. Commun. 207 452Google Scholar

    [16]

    Tao L, Scrinzi A 2012 New J. Phys. 14 013021Google Scholar

    [17]

    Jain M, Tzoar N 1978 Phys. Rev. A 18 538Google Scholar

    [18]

    Duchateau G, Cormier E, Gayet R 2002 Phys. Rev. A 66 023412Google Scholar

    [19]

    Yu S G, Wang Y L, Lai X Y, Huang Y Y, Quan W, Liu X J 2016 Phys. Rev. A 94 033418Google Scholar

    [20]

    Yudin G L, Chelkowski S, Bandrauk A D 2006 J. Phys. B: At. Mol. Opt. Phys. 39 L17Google Scholar

    [21]

    Popruzhenko S V, Paulus G G, Bauer D 2008 Phys. Rev. A 77 053409Google Scholar

    [22]

    Popruzhenko S V, Bauer D 2008 J. Mod. Optic. 55 2573Google Scholar

    [23]

    Yan T M, Popruzhenko S V, Vrakking M J J, Bauer D 2010 Phys. Rev. Lett. 105 253002Google Scholar

    [24]

    Yan T M, Bauer D 2012 Phys. Rev. A 86 053403Google Scholar

    [25]

    Lai X Y, Poli C, Schomerus H, Figueira de Morisson Faria C 2015 Phys. Rev. A 92 043407Google Scholar

    [26]

    Lai X Y, Yu S G, Huang Y Y, Hua L Q, Gong C, Quan W, Figueira de Morisson Faria C, Liu X J 2017 Phys. Rev. A 96 013414Google Scholar

    [27]

    Corkum P B, Burnett N H, Brunel F 1989 Phys. Rev. Lett. 62 1259Google Scholar

    [28]

    Salières P, L’Huillier A, Lewenstein M 1995 Phys. Rev. Lett. 74 3776Google Scholar

    [29]

    Salières P, Carré B, Le Déroff L, Grasbon F, Paulus G G, Walther H, Kopold R, Becker W, Milosÿevic D B 2001 Science 292 902Google Scholar

    [30]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logan P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G,  Redlich B, Van Der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M,  Ivanov M Y U, Smirnova O, Bauer D, Porruzhenko S V, Vrakking M J J 2011 Science 331 61Google Scholar

    [31]

    Li M, Geng J W, Liu H, Deng Y, Wu C Y, Peng L Y, Gong Q H, Liu Y Q 2014 Phys. Rev. Lett. 112 113002Google Scholar

    [32]

    Hu B, Liu J, Chen S 1997 Phys. Lett. A. 236 533Google Scholar

    [33]

    Shvetsov-Shilovski N I, Lein M, Madsen L B, Räsänen E, Lemell C, Burgdörfer J, Arbó D G, Tókési K 2016 Phys. Rev. A 94 013415Google Scholar

    [34]

    Song X, Lin C, Sheng Z H, Liu P, Chen Z J, Yang W F, Hu S L, Lin C D, Chen J 2016 Sci. Rep. 6 28392Google Scholar

    [35]

    Liu M M, Li M, Wu C Y, Gong Q H, André Staudte, Liu Y Q 2016 Phys. Rev. Lett. 116 163004Google Scholar

    [36]

    Liu M M, Liu Y Q 2017 J. Phys. B: At. Mol. Opt. Phys. 50 105602Google Scholar

    [37]

    Gong X C, Lin C, He F, Song Q Y, Lin K, Ji Q Y, Zhang W B, Ma J Y, Lu P F, Liu Y Q, Zeng H P, Yang W F, Wu J 2017 Phys. Rev. Lett. 118 143203Google Scholar

    [38]

    Song X H, Shi G L, Zhang G J, Xu J W, Lin C, Chen J, Yang W F 2018 Phys. Rev. Lett. 121 103201Google Scholar

    [39]

    Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun. 9 2805Google Scholar

    [40]

    Trabert D, Brennecke S, Fehre K, Anders N, Geyer A, Grundmann S, Schöffler M S, Schmidt L Ph H, Jahnke T, Dörner R, Kunitski M, Eckart S 2021 Nat. Commun. 12 1697Google Scholar

    [41]

    Torlina L, Morales F, Kaushal J, Ivanov I, Kheifets A, Zielinski A, Scrinzi A, Muller H G, Sukiasyan S, Ivanov M Smirnova O 2015 Nat. Phys. 11 503Google Scholar

    [42]

    Tong J H, Liu X W, Dong W H, Jiang W Y, Zhu M, Xu Y D, Zuo Z T, Lu P F, Gong X C, Song X H, Yang W F, Wu J 2022 Phys. Rev. Lett. 129 173201Google Scholar

    [43]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp146–149

    [44]

    Bauer D, Milošević D B, Becker W 2005 Phys. Rev. A 72 023415Google Scholar

    [45]

    Bleistein N, Handelsman R A 1986 Asymptotic Expansions of Integrals (Dover: Dover Publications) p252

    [46]

    Booth A D 1949 J. Mech. Appl. Math. 2 460Google Scholar

    [47]

    Booth A D 1947 Nature 160 196Google Scholar

    [48]

    Huang L, Wu T 2018 Theor. Biol. Med. Modell. 15 22Google Scholar

    [49]

    Lai X Y, Figueira de Morisson Faria C 2013 Phys. Rev. A 88 013406Google Scholar

    [50]

    Maxwell A S 2019 Ph. D. Dissertation (London: University College London

    [51]

    Yang S D, Song X H, Liu X W, Zhang H D, Shi G L, Yu X H, Tang Y J, Chen J, Yang W F 2020 Laser Phys. Lett. 17 095301Google Scholar

    [52]

    Becker W, Grasbon F, Kopold R, Milošević D B, Paulus G G, Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35Google Scholar

    [53]

    Paul M, Gräfe S 2019 Phys. Rev. A 99 053414Google Scholar

    [54]

    Liu M M, Shao Y, Han M, Ge P P, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2018 Phys. Rev. Lett. 120 043201Google Scholar

    [55]

    Yan T M 2012 Ph. D. Dissertation (Germany: Universität Rostock

    [56]

    Arbó D G, Ishikawa K L, Persson E, Burgdörfer J 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 279 24Google Scholar

    [57]

    Milošević D B, Paulus G G, Bauer D, Becker W 2006 J. Phys. B: At. Mol. Opt. Phys. 39 R203Google Scholar

    [58]

    Becker A, Faisal F H M 2005 J. Phys. B: At. Mol. Opt. Phys. 38 R1Google Scholar

    [59]

    Popov V S 2004 Phys. Usp. 47 855Google Scholar

    [60]

    Xiao X R, Wang M X, Xiong W H, Peng L Y 2016 Phys. Rev. E 94 053310Google Scholar

    [61]

    李庆扬, 王能超, 易大义 2008 数值分析(第五版) (北京: 清华大学出版社) 第286页

    Li Q Y, Wang N C, Yi D Y 2008 Numerical Analysis (5th Ed.) (Beijing: Tsinghua University Press) p286

    [62]

    Shvetsov-Shilovski N I, Goreslavski S P, Popruzhenko S V, Becker W 2009 Laser Phys. 19 1550Google Scholar

    [63]

    Shvetsov-Shilovski N I, Dimitrovski D, Madsen L B 2012 Phys. Rev. A 85 023428Google Scholar

  • 图 1  遗传算法流程图

    Fig. 1.  Flowchart of genetic algorithm.

    图 2  牛顿迭代法图示. 蓝色曲线为方程$ f\left(x\right) $的解, 红色直线为蓝色曲线在自变量$ x $处的切线, $ {x}_{*} $为方程$ f\left(x\right)=0 $时需寻找的解

    Fig. 2.  Illustration of Newton’s method. Blue curve represents value of function $ f\left(x\right) $, and red lines represent tangent to blue curve at independent variable $ x $, which is solution $ {x}_{*} $ when $ f\left(x\right)=0 $.

    图 3  4个样本的$ \left|f\right| $随迭代次数的变化. 蓝线、橙线、黄线和紫线分别代表初始试探解为$ ({t}_{{\rm{r}}}=20.1, {t}_{{\rm{i}}}=80.1) $$ ({t}_{{\rm{r}}}= $$ 40.1, {t}_{{\rm{i}}}=80.1) $, $ ({t}_{{\rm{r}}}=60.1, {t}_{{\rm{i}}}=80.1) $$ ({t}_{{\rm{r}}}=120.1, {t}_{{\rm{i}}}= $$ 80.1) $时, 随迭代次数增加函数值$ \left|f\right| $的变化.

    Fig. 3.  Variation of $ \left|f\right| $ with the number of iterations n for four samples. The blue, orange, yellow, and purple lines represent the changes in function values $ \left|f\right| $ with increasing iteration times when the initial trial solutions are $ ({t}_{{\rm{r}}}=20.1, {t}_{{\rm{i}}}=80.1) $, $ ({t}_{{\rm{r}}}=40.1, {t}_{{\rm{i}}}=80.1) $, $ ({t}_{{\rm{r}}}=60.1, $$ {t}_{{\rm{i}}}= 80.1) $ and $ ({t}_{{\rm{r}}}=120.1, {t}_{{\rm{i}}}=80.1) $, respectively.

    图 4  复平面的路径积分. $ {I}_{1} $ 描述了沿虚时间轴的积分, 步长为 $ {\rm{i}}\Delta \tau $. $ {I}_{2} $ 描述了沿实时间轴的积分, 步长为$ \Delta \tau $

    Fig. 4.  Path integral on complex plane. $ {I}_{1} $ describes integration along imaginary time axis with a step size of $ {\rm{i}}\Delta \tau $, and $ {I}_{2} $ describes the integration along real time axis with a step size of $ \Delta \tau $.

    图 5  费曼路径积分思想示意图. AB分别为粒子的初始点与末点, 绿色虚线为粒子的可能路径 (a) 两个位置之间存在一个挡板双缝; (b) 两个位置间存在两个多缝挡板; (c) 两个位置存在无数个狭缝, 此时粒子可以从A点经历任意位置到达B

    Fig. 5.  Schematic diagram of Feynman’s path integral concept. A and B represent initial and final points of a particle, and the green dashed line represents the possible paths of particle: (a) There is a double-slit barrier between two positions; (b) there are multiple slit barriers between two positions; (c) there are infinite slits between two positions, and particle can reach point B from point A through any intermediate position.

    图 6  $ {p}_{z} $-$ {p}_{x} $平面内光电子动量分布图[24] (a) TDSE, (b) SFA, (c) TCSFA不考虑势垒下作用量; (d) TCSFA 考虑势垒下作用量

    Fig. 6.  Logarithmically scaled photoelectron momentum distribution in $ {p}_{z} $-$ {p}_{x} $ plane[24]: (a) TDSE, (b) SFA and (c) TCSFA without sub-CC; (d) TCSFA with sub-CC.

    图 7  氢原子二维光电子角度分布[26] (a) CQSFA; (b) SFA; (c) TDSE

    Fig. 7.  Two-dimensional photoelectron angular distributions of hydrogen atom[26]: (a) CQSFA; (b) SFA; (c) TDSE.

  • [1]

    Schrödinger E 1926 Ann. Phys. 79 361

    [2]

    Born M, Jordan P 1925 Zeit. Phys. 34 858Google Scholar

    [3]

    Feynman R P 1948 Rev. Mod. Phys. 20 367Google Scholar

    [4]

    Feynman R P, Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York: McGraw Hill Press) p77

    [5]

    Maiman T H 1960 Nature 187 493Google Scholar

    [6]

    Voronov G S, Delone N B 1965 JETP Lett. 1 66

    [7]

    Agostini P, Barjot G, Bonnal J, Mainfray G, Manus C, Multiphoton J M 1968 IEEE J. Quantum Electron. 4 667Google Scholar

    [8]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127Google Scholar

    [9]

    Keldysh L V 1965 Sov. Phys. JETP. 20 1307

    [10]

    Faisal F H M 1973 J. Phys. B: At. Mol. Opt. Phys. 6 L89

    [11]

    Reiss H R 1980 Phys. Rev. A 22 1786Google Scholar

    [12]

    Perelomov A M, Popov V S, Terent’ev M V 1966 Sov. Phys. JETP. 23 924

    [13]

    Ammosov M V, Delone N B, Krainov V P 1986 Sov. Phys. JETP. 64 1191

    [14]

    Lewenstein M, Balcou P, Ivanov M Y, L’ Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [15]

    Mosert V, Bauer D 2016 Comput. Phys. Commun. 207 452Google Scholar

    [16]

    Tao L, Scrinzi A 2012 New J. Phys. 14 013021Google Scholar

    [17]

    Jain M, Tzoar N 1978 Phys. Rev. A 18 538Google Scholar

    [18]

    Duchateau G, Cormier E, Gayet R 2002 Phys. Rev. A 66 023412Google Scholar

    [19]

    Yu S G, Wang Y L, Lai X Y, Huang Y Y, Quan W, Liu X J 2016 Phys. Rev. A 94 033418Google Scholar

    [20]

    Yudin G L, Chelkowski S, Bandrauk A D 2006 J. Phys. B: At. Mol. Opt. Phys. 39 L17Google Scholar

    [21]

    Popruzhenko S V, Paulus G G, Bauer D 2008 Phys. Rev. A 77 053409Google Scholar

    [22]

    Popruzhenko S V, Bauer D 2008 J. Mod. Optic. 55 2573Google Scholar

    [23]

    Yan T M, Popruzhenko S V, Vrakking M J J, Bauer D 2010 Phys. Rev. Lett. 105 253002Google Scholar

    [24]

    Yan T M, Bauer D 2012 Phys. Rev. A 86 053403Google Scholar

    [25]

    Lai X Y, Poli C, Schomerus H, Figueira de Morisson Faria C 2015 Phys. Rev. A 92 043407Google Scholar

    [26]

    Lai X Y, Yu S G, Huang Y Y, Hua L Q, Gong C, Quan W, Figueira de Morisson Faria C, Liu X J 2017 Phys. Rev. A 96 013414Google Scholar

    [27]

    Corkum P B, Burnett N H, Brunel F 1989 Phys. Rev. Lett. 62 1259Google Scholar

    [28]

    Salières P, L’Huillier A, Lewenstein M 1995 Phys. Rev. Lett. 74 3776Google Scholar

    [29]

    Salières P, Carré B, Le Déroff L, Grasbon F, Paulus G G, Walther H, Kopold R, Becker W, Milosÿevic D B 2001 Science 292 902Google Scholar

    [30]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logan P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G,  Redlich B, Van Der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M,  Ivanov M Y U, Smirnova O, Bauer D, Porruzhenko S V, Vrakking M J J 2011 Science 331 61Google Scholar

    [31]

    Li M, Geng J W, Liu H, Deng Y, Wu C Y, Peng L Y, Gong Q H, Liu Y Q 2014 Phys. Rev. Lett. 112 113002Google Scholar

    [32]

    Hu B, Liu J, Chen S 1997 Phys. Lett. A. 236 533Google Scholar

    [33]

    Shvetsov-Shilovski N I, Lein M, Madsen L B, Räsänen E, Lemell C, Burgdörfer J, Arbó D G, Tókési K 2016 Phys. Rev. A 94 013415Google Scholar

    [34]

    Song X, Lin C, Sheng Z H, Liu P, Chen Z J, Yang W F, Hu S L, Lin C D, Chen J 2016 Sci. Rep. 6 28392Google Scholar

    [35]

    Liu M M, Li M, Wu C Y, Gong Q H, André Staudte, Liu Y Q 2016 Phys. Rev. Lett. 116 163004Google Scholar

    [36]

    Liu M M, Liu Y Q 2017 J. Phys. B: At. Mol. Opt. Phys. 50 105602Google Scholar

    [37]

    Gong X C, Lin C, He F, Song Q Y, Lin K, Ji Q Y, Zhang W B, Ma J Y, Lu P F, Liu Y Q, Zeng H P, Yang W F, Wu J 2017 Phys. Rev. Lett. 118 143203Google Scholar

    [38]

    Song X H, Shi G L, Zhang G J, Xu J W, Lin C, Chen J, Yang W F 2018 Phys. Rev. Lett. 121 103201Google Scholar

    [39]

    Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J, Dudovich N 2018 Nat. Commun. 9 2805Google Scholar

    [40]

    Trabert D, Brennecke S, Fehre K, Anders N, Geyer A, Grundmann S, Schöffler M S, Schmidt L Ph H, Jahnke T, Dörner R, Kunitski M, Eckart S 2021 Nat. Commun. 12 1697Google Scholar

    [41]

    Torlina L, Morales F, Kaushal J, Ivanov I, Kheifets A, Zielinski A, Scrinzi A, Muller H G, Sukiasyan S, Ivanov M Smirnova O 2015 Nat. Phys. 11 503Google Scholar

    [42]

    Tong J H, Liu X W, Dong W H, Jiang W Y, Zhu M, Xu Y D, Zuo Z T, Lu P F, Gong X C, Song X H, Yang W F, Wu J 2022 Phys. Rev. Lett. 129 173201Google Scholar

    [43]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp146–149

    [44]

    Bauer D, Milošević D B, Becker W 2005 Phys. Rev. A 72 023415Google Scholar

    [45]

    Bleistein N, Handelsman R A 1986 Asymptotic Expansions of Integrals (Dover: Dover Publications) p252

    [46]

    Booth A D 1949 J. Mech. Appl. Math. 2 460Google Scholar

    [47]

    Booth A D 1947 Nature 160 196Google Scholar

    [48]

    Huang L, Wu T 2018 Theor. Biol. Med. Modell. 15 22Google Scholar

    [49]

    Lai X Y, Figueira de Morisson Faria C 2013 Phys. Rev. A 88 013406Google Scholar

    [50]

    Maxwell A S 2019 Ph. D. Dissertation (London: University College London

    [51]

    Yang S D, Song X H, Liu X W, Zhang H D, Shi G L, Yu X H, Tang Y J, Chen J, Yang W F 2020 Laser Phys. Lett. 17 095301Google Scholar

    [52]

    Becker W, Grasbon F, Kopold R, Milošević D B, Paulus G G, Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35Google Scholar

    [53]

    Paul M, Gräfe S 2019 Phys. Rev. A 99 053414Google Scholar

    [54]

    Liu M M, Shao Y, Han M, Ge P P, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2018 Phys. Rev. Lett. 120 043201Google Scholar

    [55]

    Yan T M 2012 Ph. D. Dissertation (Germany: Universität Rostock

    [56]

    Arbó D G, Ishikawa K L, Persson E, Burgdörfer J 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 279 24Google Scholar

    [57]

    Milošević D B, Paulus G G, Bauer D, Becker W 2006 J. Phys. B: At. Mol. Opt. Phys. 39 R203Google Scholar

    [58]

    Becker A, Faisal F H M 2005 J. Phys. B: At. Mol. Opt. Phys. 38 R1Google Scholar

    [59]

    Popov V S 2004 Phys. Usp. 47 855Google Scholar

    [60]

    Xiao X R, Wang M X, Xiong W H, Peng L Y 2016 Phys. Rev. E 94 053310Google Scholar

    [61]

    李庆扬, 王能超, 易大义 2008 数值分析(第五版) (北京: 清华大学出版社) 第286页

    Li Q Y, Wang N C, Yi D Y 2008 Numerical Analysis (5th Ed.) (Beijing: Tsinghua University Press) p286

    [62]

    Shvetsov-Shilovski N I, Goreslavski S P, Popruzhenko S V, Becker W 2009 Laser Phys. 19 1550Google Scholar

    [63]

    Shvetsov-Shilovski N I, Dimitrovski D, Madsen L B 2012 Phys. Rev. A 85 023428Google Scholar

  • [1] 麦均, 王钊, 袁畅, 肖杰, 马伟, 王旭. 多射频场驱动下鞍点移动的建模方法. 物理学报, 2025, 74(4): . doi: 10.7498/aps.74.20241552
    [2] 冯波, 徐文君, 蔡杰雄, 吴如山, 王华忠. 标量声波方程前向散射场的保相位理论及其线性化近似. 物理学报, 2023, 72(15): 159101. doi: 10.7498/aps.72.20230194
    [3] 臧雨宸, 苏畅, 吴鹏飞, 林伟军. 零阶Bessel驻波场中任意粒子声辐射力和力矩的Born近似. 物理学报, 2022, 71(10): 104302. doi: 10.7498/aps.71.20212251
    [4] 马闯, 杨晓龙, 陈含爽, 张海峰. 基于平均场近似的BP算法求解随机块模型. 物理学报, 2021, 70(22): 228901. doi: 10.7498/aps.70.20210511
    [5] 朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟. 热防护层覆盖弹体目标雷达散射截面的修正的等效电流近似法和图形计算电磁学法分析. 物理学报, 2014, 63(24): 244101. doi: 10.7498/aps.63.244101
    [6] 刘昊迪. Born-Oppenheimer近似下谐振子场驱动电磁模系统的Berry相和Hannay角. 物理学报, 2013, 62(10): 100302. doi: 10.7498/aps.62.100302
    [7] 焦小玉. 远场模型方程的同伦近似对称约化. 物理学报, 2011, 60(12): 120201. doi: 10.7498/aps.60.120201
    [8] 成春芝, 周效信, 李鹏程. 原子在红外激光场中产生高次谐波及阿秒脉冲随波长的变化规律. 物理学报, 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [9] 廖旭, 丛红璐, 姜道来, 任学藻. 非旋波近似下频率变化的光场对原子布居反转的调控. 物理学报, 2010, 59(8): 5508-5513. doi: 10.7498/aps.59.5508
    [10] 杨沛, 陈勇, 李志斌. 离散修正KdV方程的解析近似解. 物理学报, 2010, 59(6): 3668-3673. doi: 10.7498/aps.59.3668
    [11] 郭中华, 周效信. 基态分子波函数对N2分子在强激光场中产生高次谐波的影响. 物理学报, 2008, 57(3): 1616-1621. doi: 10.7498/aps.57.1616
    [12] 莫嘉琪, 张伟江, 何 铭. 强非线性发展方程孤波近似解. 物理学报, 2007, 56(4): 1843-1846. doi: 10.7498/aps.56.1843
    [13] 吴 晔, 肖井华, 占 萌. 强耦合混沌系统中的近似同步. 物理学报, 2007, 56(9): 5119-5123. doi: 10.7498/aps.56.5119
    [14] 贾 飞, 谢双媛, 羊亚平. 非旋波近似下频率变化的场与原子的相互作用. 物理学报, 2006, 55(11): 5835-5841. doi: 10.7498/aps.55.5835
    [15] 张程华, 千文甲, 冷文秀, 李君霞, 龙期威, 田恩科. 库仑程函近似下扭曲因子对散射振幅的影响. 物理学报, 2002, 51(10): 2225-2228. doi: 10.7498/aps.51.2225
    [16] 方卯发. 非旋波近似下Jaynes-Cummings模型中的场熵演化. 物理学报, 1994, 43(11): 1776-1786. doi: 10.7498/aps.43.1776
    [17] 李高翔, 彭金生. 旋波近似和非旋波近似下Jaynes-Cummings模型中光场位相涨落. 物理学报, 1992, 41(5): 766-773. doi: 10.7498/aps.41.766
    [18] 魏国柱, 聂惠权, 张开义. Hubbard模型的局域方法近似. 物理学报, 1988, 37(1): 87-94. doi: 10.7498/aps.37.87
    [19] 苏肇冰, 于渌, 周光召. 原子核费密多体系统平均场近似的推广. 物理学报, 1984, 33(7): 999-1007. doi: 10.7498/aps.33.999
    [20] 夏意诚. π-π P波共振的近似解. 物理学报, 1966, 22(4): 510-514. doi: 10.7498/aps.22.510
计量
  • 文章访问数:  4497
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-25
  • 修回日期:  2023-06-19
  • 上网日期:  2023-06-20
  • 刊出日期:  2023-10-05

/

返回文章
返回