-
多参量的动态检测对于隧道、桥梁和管道等结构疲劳损伤的预测具有重要意义, 开发一种高灵敏度、环境友好、低成本和易于操作的多参量动态检测技术一直是业界追求的目标. 为了克服目前基于光纤布拉格光栅(fiber Bragg grating, FBG)的多参量传感器结构和原理复杂、制作成本高等问题, 本文基于保偏光纤布拉格光栅(PM-FBG)设计并制作了一种结构简单且高灵敏度, 单点可同时测量多个参量的新型传感器. 该传感器通过传感臂可以同时测量某一点在两个垂直方向上的位移和扭转变化, 并具有温度自补偿功能. 实验结果表明: 该传感器的快轴和慢轴对于温度的响应不同, 其线性灵敏度分别为11.4 pm/℃和10.6 pm/℃, 温度补偿系数为0.8 pm/℃, 平均扭转灵敏度为0.20 dB/(°); 该传感器的快轴和慢轴对位移/弯曲的响应相同, 线性灵敏度为31.5 pm/mm. 当改变传感器周围的温度场, 其位移和扭转传感性能不受影响, 可实现3个参量的同时测量. 本文研制的PM-FBG新型多参量传感器可以保证高精度的温度、位移和扭转测量, 同时具有较低的制作成本, 有望为多参量动态检测提供一种新的手段.Dynamic multi-parameter detection is of great significance in predicting fatigue damage to structures such as tunnels, bridges, and pipelines. Developing a high-sensitivity, environmentally friendly, low-cost, and easy-to-operate multi-parameter dynamic detection technology has always been the goal of the industry. The polarization-maintaining fiber Bragg grating (PM-FBG) has a special grating structure composed of fiber Bragg grating (FBG) directly written into high birefringence and polarization-maintaining fiber, and it supports two distinct polarization eigenmodes with two effective refractive indices. The PM-FBG couples the light beams polarized along the two principal axes corresponding to slow axis and fast axis at two different Bragg wavelengths. The two peaks of PM-FBG have different responses to external changes, which may be used to solve the cross-sensitivity problem of FBG sensor and realize the simultaneous multi-parameter measurement of the temperature, longitudinal strain, transverse strain, or twist. In order to solve the problems of complex structure and principle and high production cost of FBG-based multi-parameter sensors, a novel multi-parameter fiber-optic sensor with high sensitivity and temperature independence is designed based on PM-FBG in this work. The PM-FBG sensor proposed can simultaneously measure the changes of displacement and twist in two vertical directions at a certain point and has the function of temperature self-compensation. The external structure of the sensor is fabricated by using three-dimensional printing technology through the fused deposition method and the raw material for creating different components through using polylactic acid. Experimental results show that the fast axis and slow axis of the sensor have different temperature responses, with linear sensitivities of 11.4 pm/℃ and 10.6 pm/℃, respectively, and the temperature compensation coefficient and average torsional sensitivity of the PM-FBG sensor are 0.8 pm/℃ and 0.20 dB/(°), respectively. The fast axis and slow axis of the PM-FBG sensor have the same response to displacement, with a sensitivity of 31.5 pm/mm and an adjustable range of 0–20 mm. The sensitivity to displacement, torsion, and temperature sensitivities of the sensor are all superior over those of commercial FBG sensors. By changing the temperature field around the sensor, its displacement- and torsion-sensing performances are not affected, thereby realizing the temperature self-compensation. Consequently, the proposed sensor has potential applications in the multi-parameter dynamic detection due to its simple structure, high sensitivity, good mechanical strength, and low cost.
-
Keywords:
- optical fiber sensor /
- polarization-maintaining Bragg grating /
- temperature compensation /
- multi-parameter sensing
[1] Yu B, Lin F, Wang M R, Ning H, Ling B D, Rao Y Y 2022 Sci. Rep. 12 18281Google Scholar
[2] Fan Z C, Diao X Z, Hu K J, Zhang Y, Huang Z Y, Kang Y B, Yan H, 2020 Sci. Rep. 10 12330Google Scholar
[3] Jinachandran S, Rajan G 2021 Mater. Des. 14 897Google Scholar
[4] Zhu C, Zhuang Y Y, Liu B, Huang J 2022 IEEE Trans. Instrum. Meas. 71 7008212Google Scholar
[5] Jinachandran, S, Li H, Xi J T, Prusty B G, Semenova Y, Farrell G, Rajan G 2018 IEEE Sens. J. 18 8739Google Scholar
[6] Fu D Y, Liu X J, Shang J Y, Sun W M, Liu Y J 2020 IEEE Photon. Technol. Lett. 32 747Google Scholar
[7] Wang F, Pang K B, Ma T, Wang X, Liu Y F 2020 Opt. Laser Technol. 130 106333Google Scholar
[8] Sempionatto J R, Lin M Y, Yin L, Ernesto D, Pei K X, Thitaporn S, Silva A, Ahmed A K, Zhang F Y, Tostado N, Xu S, Wang J 2021 Nat. Biomed. Eng. 5 737Google Scholar
[9] Caucheteur C, Guo T, Albert J 2017 J. Light. Technol. 35 3311Google Scholar
[10] Jiang C, Liu Y Q, Mou C B 2021 IEEE Photon. Technol. Lett. 33 358Google Scholar
[11] Ding Z H, Tan Z W, Gao Y S, Wu Y, Yin B 2020 Optik 221 165352Google Scholar
[12] Liu Q, Li Q, Sun Y D, Chai Q, Zhang B, Liu C, Sun T, Liu W, Sun J D, Ren Z H, Chu P K 2019 Opt. Commun. 452 185Google Scholar
[13] Huang J, Pham D T, Ji C Q, Wang Z C, Zhou Z D 2019 Measurement 134 226Google Scholar
[14] Leal-Junior A G, Theodosiou A, Min R, Casas J, Diaz C R, Dosantos W M, Pontes M J, Siqueira, Adriano A S, Marques C, Kalli C, Frizera A 2019 IEEE Sens. J. 19 4054Google Scholar
[15] Xu H B, Li F, Gao Y, Wang W 2020 IEEE Sens. J. 20 14857Google Scholar
[16] Lu L D, Xu Y G, Dong M L, Zhu L Q 2022 IEEE Sens. J. 22 338Google Scholar
[17] Liu C, Jiang Y J, Du B B, Wang T, Feng D Y, Jiang B Q, Yang D X 2019 Sens. Actuator A Phys. 290 172Google Scholar
[18] Barot D, Wang G, Duan L Z 2019 IEEE Photon. Technol. Lett. 31 709Google Scholar
[19] Yang F, Fang Z J, Pan Z Q, Ye Q, Cai H W, Qu R H 2012 Opt. Express 20 28839Google Scholar
[20] Chen G H, Liu L Y, Jia H Z, Yu J M, Xu L, Wang W C 2004 IEEE Photon. Technol. Lett. 16 221Google Scholar
[21] Guo T, Liu F, Du F, Zhang Z, Li C, Guan B O, Albert J 2013 Opt. Express 21 19097Google Scholar
-
图 6 PM-FBG传感器位移传感性能测试 (a)弯曲测量实验装置; (b)曲率为0—11 m–1的光谱响应; (c) 曲率-波长; (d) 位移-波长(快轴, 慢轴)
Fig. 6. Displacement sensing performance test of PM-FBG sensor: (a)Experimental setup for bending measurement; (b) spectral response of curvature over 0 to 11 m–1; (c) curvature versus wavelength; (d) displacement versus wavelength of the fast axis and slow axis.
-
[1] Yu B, Lin F, Wang M R, Ning H, Ling B D, Rao Y Y 2022 Sci. Rep. 12 18281Google Scholar
[2] Fan Z C, Diao X Z, Hu K J, Zhang Y, Huang Z Y, Kang Y B, Yan H, 2020 Sci. Rep. 10 12330Google Scholar
[3] Jinachandran S, Rajan G 2021 Mater. Des. 14 897Google Scholar
[4] Zhu C, Zhuang Y Y, Liu B, Huang J 2022 IEEE Trans. Instrum. Meas. 71 7008212Google Scholar
[5] Jinachandran, S, Li H, Xi J T, Prusty B G, Semenova Y, Farrell G, Rajan G 2018 IEEE Sens. J. 18 8739Google Scholar
[6] Fu D Y, Liu X J, Shang J Y, Sun W M, Liu Y J 2020 IEEE Photon. Technol. Lett. 32 747Google Scholar
[7] Wang F, Pang K B, Ma T, Wang X, Liu Y F 2020 Opt. Laser Technol. 130 106333Google Scholar
[8] Sempionatto J R, Lin M Y, Yin L, Ernesto D, Pei K X, Thitaporn S, Silva A, Ahmed A K, Zhang F Y, Tostado N, Xu S, Wang J 2021 Nat. Biomed. Eng. 5 737Google Scholar
[9] Caucheteur C, Guo T, Albert J 2017 J. Light. Technol. 35 3311Google Scholar
[10] Jiang C, Liu Y Q, Mou C B 2021 IEEE Photon. Technol. Lett. 33 358Google Scholar
[11] Ding Z H, Tan Z W, Gao Y S, Wu Y, Yin B 2020 Optik 221 165352Google Scholar
[12] Liu Q, Li Q, Sun Y D, Chai Q, Zhang B, Liu C, Sun T, Liu W, Sun J D, Ren Z H, Chu P K 2019 Opt. Commun. 452 185Google Scholar
[13] Huang J, Pham D T, Ji C Q, Wang Z C, Zhou Z D 2019 Measurement 134 226Google Scholar
[14] Leal-Junior A G, Theodosiou A, Min R, Casas J, Diaz C R, Dosantos W M, Pontes M J, Siqueira, Adriano A S, Marques C, Kalli C, Frizera A 2019 IEEE Sens. J. 19 4054Google Scholar
[15] Xu H B, Li F, Gao Y, Wang W 2020 IEEE Sens. J. 20 14857Google Scholar
[16] Lu L D, Xu Y G, Dong M L, Zhu L Q 2022 IEEE Sens. J. 22 338Google Scholar
[17] Liu C, Jiang Y J, Du B B, Wang T, Feng D Y, Jiang B Q, Yang D X 2019 Sens. Actuator A Phys. 290 172Google Scholar
[18] Barot D, Wang G, Duan L Z 2019 IEEE Photon. Technol. Lett. 31 709Google Scholar
[19] Yang F, Fang Z J, Pan Z Q, Ye Q, Cai H W, Qu R H 2012 Opt. Express 20 28839Google Scholar
[20] Chen G H, Liu L Y, Jia H Z, Yu J M, Xu L, Wang W C 2004 IEEE Photon. Technol. Lett. 16 221Google Scholar
[21] Guo T, Liu F, Du F, Zhang Z, Li C, Guan B O, Albert J 2013 Opt. Express 21 19097Google Scholar
计量
- 文章访问数: 3994
- PDF下载量: 117
- 被引次数: 0