搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相位迁移的超声平面波多层皮质骨成像

张芸芸 李义方 石勤振 许乐修 戴菲 邢文宇 他得安

引用本文:
Citation:

基于相位迁移的超声平面波多层皮质骨成像

张芸芸, 李义方, 石勤振, 许乐修, 戴菲, 邢文宇, 他得安

Phase shift migration based plane-wave imaging of cortical bone

Zhang Yun-Yun, Li Yi-Fang, Shi Qin-Zhen, Xu Le-Xiu, Dai Fei, Xing Wen-Yu, Ta De-An
PDF
HTML
导出引用
  • 皮质骨是一种高衰减、各向异性、高声阻抗的多层生物组织. 其结构和材料特性导致高频超声难以穿透其多层结构, 从而获取高质量图像. 传统超声动态聚焦成像以均匀声速假设为前提, 且受制于发射能量和帧率, 难以实现多层结构的准确、快速重建, 限制其临床应用的推广. 针对以上问题, 本文提出一种基于相位迁移的平面波骨成像方法(PSM-PW-VI), 实现了皮质骨多层结构的精确和快速重建. 首先利用超声走时反演估计成像区域的声速分布; 然后应用频域相位迁移平面波相干复合方法并行重建上下两个相控阵探头对应的超声图像; 最后将两幅图像融合得到完整的皮质骨超声图像. 仿真、仿体、离体实验共同验证了该方法的有效性. 无论是三层还是五层模型的皮质骨, 其厚度的平均误差均小于0.2 mm, 相对误差小于7%. 此外, 与基于相位迁移合成孔径(PSM-SA)方法相比, 在相同的工作频率下, 该方法具有更深的成像深度和更快的成像速度. 实验结果表明, 该方法是一种准确高效的皮质骨超声成像方法, 对超声骨成像技术的发展和临床研究具有一定的借鉴意义.
    Cortical bone, a highly attenuated, anisotropic, and multilayered biological medium with high acoustic impedance, presents significant challenges for high-frequency ultrasound to penetrate its complex structure and acquire high-quality images. The traditional method of using uniform sound velocity in ultrasonic dynamic focusing imaging is limited by emission energy and frame rate, which hinders the accurate and rapid reconstruction of multi-layer structures and clinical applications. In order to meet these challenges, this study proposes a novel method, called the phase shift migration-based plane-wave bone imaging via velocity inversion (PSM-PW-VI), that can accurately and quickly image the multi-layer structure of cortical bone. In the PSM-PW-VI method, two identical linear array probes are arranged in parallel on both sides of the cortical bone for data acquisition. First, the ultrasound velocity distribution in the imaging region is obtained by using ultrasound travel time inversion. Next, two images corresponding to the upper probe and lower probe are acquired in parallel in the frequency domain by employing a phase shift migration-based coherent plane-wave compounding method. Finally, the two images are merged to generate a complete ultrasound image of the cortical bone. Wave propagation in cortical bone is simulated by using the open source toolbox k-wave in MATLAB. Ex-vivo experiments are conducted on 2.5-mm-thick sawbones phantom and 2.45-mm-thick bovine bone plates to evaluate the feasibility of the proposed method, by using the Verasonics platform. Simulation, phantom (Sawbones), and ex-vivo experiments validate the effectiveness of the method. Notably, the average error of the thickness is less than 0.2 mm, and the relative error is less than 7% for both three-layer and five-layer cortical bone. The influence of the number of plane wave compounding angles on imaging quality is investigated, revealing that only 15 angles are sufficient to produce high-quality images. The influence of the velocity model on imaging accuracy is also examined since accurate sound velocity estimation is crucial for obtaining high-quality images of cortical bone. Finally, the performances of PSM-PW-VI and PSM-SA in imaging depth and efficiency are compared. The results demonstrate that the proposed PSM-PW-VI method offers significant improvements in temporal resolution, data storage and processing quantity, emission energy, and imaging depth. The experimental findings validate the effectiveness of the proposed method as an accurate and efficient ultrasound imaging tool for cortical bone, and its substantial role in promoting ultrasound bone imaging technology and clinical applications.
      通信作者: 李义方, yifangli@fudan.edu.cn ; 他得安, tda@fudan.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11827808, 12034005, 12274094)和中国博士后科学基金(批准号: 2022M720814)资助的课题.
      Corresponding author: Li Yi-Fang, yifangli@fudan.edu.cn ; Ta De-An, tda@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11827808, 12034005, 12274094) and the China Postdoctoral Science Foundation Project (Grant No. 2022M720814)
    [1]

    Compston J E, McClung M R, Leslie W D 2019 Lancet 393 364Google Scholar

    [2]

    杨慧林 2022 中华骨与关节外科杂志 15 652Google Scholar

    Yang H L 2022 Chin. J. Bone Joint Surg. 15 652Google Scholar

    [3]

    Langton C M, Njeh C F 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 1546Google Scholar

    [4]

    东蕊, 刘成成, 蔡勋兵, 邵留磊, 李博艺, 他得安 2019 物理学报 68 150Google Scholar

    Dong R, Liu C C, Cai X B, Shao L L, Li B Y, Ta D A 2019 Acta Phys. Sin. 68 150Google Scholar

    [5]

    Moilanen P, Nicholson Patrick H F, Kilappa V, Cheng, Timonen 2007 Ultrasound Med. Biol. 33 254Google Scholar

    [6]

    Minonzio J G, Talmant M, Laugier P 2010 J. Acoust. Soc. Am. 127 2913Google Scholar

    [7]

    Manes G, Tortoli P, Andreuccetti F, Avitabile G, Atzeni C 1988 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35 14Google Scholar

    [8]

    Adams R B 2022 Surg. Open Sci. 10 182Google Scholar

    [9]

    Weismann C, Mayr C, Egger H, Auer A 2011 Breast Care 6 98Google Scholar

    [10]

    Zu Siederdissen C H, Potthoff A 2020 Internist 61 115Google Scholar

    [11]

    Nguyen Minh H, Du J, Raum K 2020 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 568Google Scholar

    [12]

    Nowicki A, Gambin B 2014 Arch. Acoust. 39 427Google Scholar

    [13]

    孙宝申, 沈建中 1993 应用声学 3 43Google Scholar

    Sun B S, Shen J Z 1993 Appl. Acoust. 3 43Google Scholar

    [14]

    Renaud G, Kruizinga P, Cassereau D, Laugier P 2018 Phys. Med. Biol. 63 125010Google Scholar

    [15]

    李云清, 江晨, 李颖, 徐峰, 许凯亮, 他得安, 黎仲勋 2019 物理学报 68 184302Google Scholar

    Li Y Q, Jiang C, Li Y, Xu F, Xu K L, Ta D A, Li Z X 2019 Acta Phys. Sin. 68 184302Google Scholar

    [16]

    Jiang C, Li Y, Li B, Liu C, Xu F, Xu K, Ta D 2019 IEEE Access 7 163013Google Scholar

    [17]

    Jiang C, Li Y, Xu K L, Ta D A 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68 72Google Scholar

    [18]

    Li Y F, Shi Q Z, Liu Y, Gu M L, Liu C C, Song X J, Ta D A, Wang W Q 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68 2619Google Scholar

    [19]

    Montaldo G, Tanter M, Bercoff J, Benech N, Fink M 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 489Google Scholar

    [20]

    Bercoff J, Montaldo G, Loupas T, Savery D, Meziere F, Fink M, Tanter M 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 134Google Scholar

    [21]

    Tanter M, Fink M 2014 IEEE Trans. Ultrason. Ferroelect. Freq. Control 61 102Google Scholar

    [22]

    Mace E, Montaldo G, Osmanski B F, Cohen I, Fink M, Tanter M 2013 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 492Google Scholar

    [23]

    Song P F, Trzasko J D, Manduca A, Huang R Q, Kadirvel R, Kallmes D F, Chen S G 2018 IEEE Trans. Ultrason. Ferroelect. Freq. Control 65 149Google Scholar

    [24]

    Rachev R K, Wilcox P D, Velichko A, McAughey K L 2020 IEEE Trans. Ultrason. Ferroelect. Freq. Control 67 1303Google Scholar

    [25]

    Lu J Y 1998 IEEE Trans. Ultrason. Ferroelect. Freq. Control 45 84Google Scholar

    [26]

    Cheng J, Lu J Y 2006 IEEE Trans. Ultrason. Ferroelect. Freq. Control 53 880Google Scholar

    [27]

    Garcia D, Tarnec L L, Muth S, Montagnon E, Poree J, Gloutier G 2013 IEEE Trans. Ultrason. Ferroelect. Freq. Control 60 1853Google Scholar

    [28]

    Le Jeune L, Robert S, Prada C 2016 AIP Conference Proceedings 1706 020010Google Scholar

    [29]

    Rakhmatov D 2021 IEEE International Symposium on Circuits and Systems (ISCAS) Daegu, South Korea, May 22–28, 2021 p22

    [30]

    Lukomski T 2016 Ultrasonics 70 241Google Scholar

    [31]

    Gazdag J 1978 Geophysics 43 1342Google Scholar

    [32]

    Treeby B E, Jaros J, Rohrbac D, Cox B T 2014 IEEE International Ultrasonics Symposium (IUS) Chicago, IL, Sep 03–06, 2014 p146

    [33]

    Peralta L, Cai X, Laugier P, Grimal Q 2017 Ultrasonics 80 119Google Scholar

    [34]

    Li Y F, Xu K L, Li Y, Xu F, Ta D A, Wang W Q 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68 935Google Scholar

    [35]

    van Wijk M C, Thijssen J M 2002 Ultrasonics 40 585Google Scholar

    [36]

    Li H J, Le L H, Sacchi M D, Lou E H M 2013 Ultrasound Med. Biol. 39 1482Google Scholar

    [37]

    Merabet L, Robert S, Prada C 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 772Google Scholar

    [38]

    Zhuang Z Y, Zhang J, Lian G X, Drinkwater B W 2020 Sensors 20 4951Google Scholar

  • 图 1  PSM-PW-VI成像原理图

    Fig. 1.  Schematic diagram of PSM-PW-VI.

    图 2  皮质骨声速模型 (a) 三层模型皮质骨声速模型; (b) 五层模型皮质骨声速模型

    Fig. 2.  Velocity model of cortical bone: (a) Velocity model of cortical bone with three-layer model; (b) velocity model of cortical bone with five-layer model.

    图 3  实验装置示意图

    Fig. 3.  Schematic diagram of the experimental setup.

    图 4  仿真重建结果 (a)三层模型皮质骨重建结果; (b)五层模型皮质骨重建结果. 橙线为从模型提取的结构和边缘

    Fig. 4.  Simulated reconstructed results: (a) Reconstructed result of cortical bone with three-layer model; (b) reconstructed result of cortical bone with five-layer model. Orange lines are the structure and edge extracted from the model

    图 5  仿体重建结果, 其中橙线为从真实模型中提取的结构和边缘

    Fig. 5.  Reconstructed result of phantom experiment. Orange lines are the structure and edge extracted from the true model.

    图 6  离体实验结果 (a)三层模型皮质骨重建结果; (b)五层模型皮质骨重建结果. 橙线为从真实模型中提取的结构和边缘

    Fig. 6.  Results of ex-vivo experiment: (a) Reconstructed result of three-layer model cortical bone; (b) reconstructed result of five-layer model cortical bone. Orange lines are the structure and edge extracted from the true model.

    图 7  复合角度数量对CNR的影响

    Fig. 7.  Effect of the number of compounding angles on the contrast-to-noise ratio.

    图 8  五层模型皮质骨均匀声速重建结果, 其中橙线为从真实模型中提取的结构和边缘

    Fig. 8.  Experiment reconstructed result of cortical bone with five-layer model using uniform velocity model; Orange lines are the structure and edge extracted from the true model

    图 9  重建结果对比 (a) 合成孔径重建结果; (b) 平面波重建结果

    Fig. 9.  Comparison of reconstructed results: (a) Reconstruction result using synthetic aperture method; (b) reconstruction result using plane wave method.

    表 1  模型参数设置

    Table 1.  Model parameter setting.

    参数名称参数值
    仿真骨板模型纵波声速VL⊥/(m·s–1)2900
    质量密度/(kg·m–3)1850
    Sawbones仿体纵波声速VL⊥/(m·s–1)2910[34]
    质量密度/(kg·m–3)1850[34]
    厚度/mm2.50
    外径/mm10
    牛骨板#1纵波声速VL⊥/(m·s–1)3037
    #2纵波声速VL⊥/(m·s–1)3159
    质量密度/(kg·m–3)1850
    厚度/mm2.45
    下载: 导出CSV

    表 2  仿真和实验设置

    Table 2.  Simulation and experiment setup.

    设置仿真研究实验研究
    中心频率/MHz3.53.5
    脉冲周期数22
    采样率/MHz2525
    相邻阵元中心/mm0.30.3
    外推步长/mm0.0440.044
    –6 dB带宽/MHz2.3—4.72.3—4.7
    阵元间距/mm0.10.1
    有效孔径长度/mm38.438.4
    网格尺寸0.02 mm×0.02 mm
    时间步长/s4×10–9
    下载: 导出CSV

    表 3  PSM-SA与PSM-PW-VI方法计算复杂度

    Table 3.  Computational complexity of PSM-SA and PSM-PW-VI algorithms.

    操作PSM-SA复杂度PSM-PW-VI复杂度
    2维插值${N_{\text{e}}}{N_x}{N_z}$${N_{\text{p}}}{N_x}{N_z}$
    ${\mathscr{F} }_{x, t}\{\cdot\}$$2{N_{\text{e}}}{N_{\text{t}}}{\log _2}({N_{\text{e}}}{N_{\text{t}}})$${N_{\text{t}}}{\log _2}({N_{\text{t}}}) + {N_{\text{p}}}{N_{\text{e}}}{\log _2}({N_{\text{e}}})$
    ${\mathscr{F} }_{x}^{-1}\{\cdot\}$$2{N_{\text{e}}}{N_x}{N_z}{\log _2}({N_x})$${N_{\text{p}}}{N_x}{N_z}{\log _2}({N_x})$
    下载: 导出CSV

    表 4  PSM-SA与PSM-PW-VI方法运行时间

    Table 4.  Running time of PSM-SA and PSM-PW-VI imaging algorithms.

    成像深度/mmPSM-SA时间/sPSM-PW-VI时间/s
    7.5158.378.26
    25.0208.279.79
    下载: 导出CSV
  • [1]

    Compston J E, McClung M R, Leslie W D 2019 Lancet 393 364Google Scholar

    [2]

    杨慧林 2022 中华骨与关节外科杂志 15 652Google Scholar

    Yang H L 2022 Chin. J. Bone Joint Surg. 15 652Google Scholar

    [3]

    Langton C M, Njeh C F 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 1546Google Scholar

    [4]

    东蕊, 刘成成, 蔡勋兵, 邵留磊, 李博艺, 他得安 2019 物理学报 68 150Google Scholar

    Dong R, Liu C C, Cai X B, Shao L L, Li B Y, Ta D A 2019 Acta Phys. Sin. 68 150Google Scholar

    [5]

    Moilanen P, Nicholson Patrick H F, Kilappa V, Cheng, Timonen 2007 Ultrasound Med. Biol. 33 254Google Scholar

    [6]

    Minonzio J G, Talmant M, Laugier P 2010 J. Acoust. Soc. Am. 127 2913Google Scholar

    [7]

    Manes G, Tortoli P, Andreuccetti F, Avitabile G, Atzeni C 1988 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35 14Google Scholar

    [8]

    Adams R B 2022 Surg. Open Sci. 10 182Google Scholar

    [9]

    Weismann C, Mayr C, Egger H, Auer A 2011 Breast Care 6 98Google Scholar

    [10]

    Zu Siederdissen C H, Potthoff A 2020 Internist 61 115Google Scholar

    [11]

    Nguyen Minh H, Du J, Raum K 2020 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 568Google Scholar

    [12]

    Nowicki A, Gambin B 2014 Arch. Acoust. 39 427Google Scholar

    [13]

    孙宝申, 沈建中 1993 应用声学 3 43Google Scholar

    Sun B S, Shen J Z 1993 Appl. Acoust. 3 43Google Scholar

    [14]

    Renaud G, Kruizinga P, Cassereau D, Laugier P 2018 Phys. Med. Biol. 63 125010Google Scholar

    [15]

    李云清, 江晨, 李颖, 徐峰, 许凯亮, 他得安, 黎仲勋 2019 物理学报 68 184302Google Scholar

    Li Y Q, Jiang C, Li Y, Xu F, Xu K L, Ta D A, Li Z X 2019 Acta Phys. Sin. 68 184302Google Scholar

    [16]

    Jiang C, Li Y, Li B, Liu C, Xu F, Xu K, Ta D 2019 IEEE Access 7 163013Google Scholar

    [17]

    Jiang C, Li Y, Xu K L, Ta D A 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68 72Google Scholar

    [18]

    Li Y F, Shi Q Z, Liu Y, Gu M L, Liu C C, Song X J, Ta D A, Wang W Q 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68 2619Google Scholar

    [19]

    Montaldo G, Tanter M, Bercoff J, Benech N, Fink M 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 489Google Scholar

    [20]

    Bercoff J, Montaldo G, Loupas T, Savery D, Meziere F, Fink M, Tanter M 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 134Google Scholar

    [21]

    Tanter M, Fink M 2014 IEEE Trans. Ultrason. Ferroelect. Freq. Control 61 102Google Scholar

    [22]

    Mace E, Montaldo G, Osmanski B F, Cohen I, Fink M, Tanter M 2013 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 492Google Scholar

    [23]

    Song P F, Trzasko J D, Manduca A, Huang R Q, Kadirvel R, Kallmes D F, Chen S G 2018 IEEE Trans. Ultrason. Ferroelect. Freq. Control 65 149Google Scholar

    [24]

    Rachev R K, Wilcox P D, Velichko A, McAughey K L 2020 IEEE Trans. Ultrason. Ferroelect. Freq. Control 67 1303Google Scholar

    [25]

    Lu J Y 1998 IEEE Trans. Ultrason. Ferroelect. Freq. Control 45 84Google Scholar

    [26]

    Cheng J, Lu J Y 2006 IEEE Trans. Ultrason. Ferroelect. Freq. Control 53 880Google Scholar

    [27]

    Garcia D, Tarnec L L, Muth S, Montagnon E, Poree J, Gloutier G 2013 IEEE Trans. Ultrason. Ferroelect. Freq. Control 60 1853Google Scholar

    [28]

    Le Jeune L, Robert S, Prada C 2016 AIP Conference Proceedings 1706 020010Google Scholar

    [29]

    Rakhmatov D 2021 IEEE International Symposium on Circuits and Systems (ISCAS) Daegu, South Korea, May 22–28, 2021 p22

    [30]

    Lukomski T 2016 Ultrasonics 70 241Google Scholar

    [31]

    Gazdag J 1978 Geophysics 43 1342Google Scholar

    [32]

    Treeby B E, Jaros J, Rohrbac D, Cox B T 2014 IEEE International Ultrasonics Symposium (IUS) Chicago, IL, Sep 03–06, 2014 p146

    [33]

    Peralta L, Cai X, Laugier P, Grimal Q 2017 Ultrasonics 80 119Google Scholar

    [34]

    Li Y F, Xu K L, Li Y, Xu F, Ta D A, Wang W Q 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68 935Google Scholar

    [35]

    van Wijk M C, Thijssen J M 2002 Ultrasonics 40 585Google Scholar

    [36]

    Li H J, Le L H, Sacchi M D, Lou E H M 2013 Ultrasound Med. Biol. 39 1482Google Scholar

    [37]

    Merabet L, Robert S, Prada C 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 772Google Scholar

    [38]

    Zhuang Z Y, Zhang J, Lian G X, Drinkwater B W 2020 Sensors 20 4951Google Scholar

  • [1] 张林峰, 丁潇川, 侯智善, 曹宇. 激光直写玻璃基平面波导用于荧光成像. 物理学报, 2023, 72(7): 074203. doi: 10.7498/aps.72.20222033
    [2] 唐佳瑶, 罗一涵, 谢宗良, 夏诗烨, 刘雅卿, 徐少雄, 马浩统, 曹雷. 基于中频域维纳滤波的非视域成像算法研究. 物理学报, 2023, 72(1): 014210. doi: 10.7498/aps.72.20221600
    [3] 崔岸婧, 李道京, 吴疆, 周凯, 高敬涵. 频域稀疏采样和激光成像方法. 物理学报, 2022, 71(5): 058705. doi: 10.7498/aps.71.20211408
    [4] 李云清, 江晨, 李颖, 徐峰, 许凯亮, 他得安, 黎仲勋. 基于多层声速模型的合成孔径超声皮质骨成像. 物理学报, 2019, 68(18): 184302. doi: 10.7498/aps.68.20190763
    [5] 金发成, 王兵兵. 频域图像下的强场非序列电离过程. 物理学报, 2016, 65(22): 224205. doi: 10.7498/aps.65.224205
    [6] 李伟恒, 黎维新, 潘飞, 唐国宁. 两层耦合可激发介质中螺旋波转变为平面波. 物理学报, 2014, 63(20): 208201. doi: 10.7498/aps.63.208201
    [7] 包尚联, 杜江, 高嵩. 核磁共振骨皮质成像关键技术研究进展. 物理学报, 2013, 62(8): 088701. doi: 10.7498/aps.62.088701
    [8] 唐友福, 刘树林, 雷娜, 姜锐红, 刘颖慧. 基于广义局部频率的Duffing系统频域特征分析. 物理学报, 2012, 61(17): 170504. doi: 10.7498/aps.61.170504
    [9] 肖玲, 程小劲, 徐剑秋. 分数自成像平面波导的光束组束. 物理学报, 2009, 58(6): 3870-3876. doi: 10.7498/aps.58.3870
    [10] 郝保良, 肖刘, 刘濮鲲, 李国超, 姜勇, 易红霞, 周伟. 螺旋线行波管三维频域非线性注波互作用的计算. 物理学报, 2009, 58(5): 3118-3124. doi: 10.7498/aps.58.3118
    [11] 吕耀平, 顾国锋, 陆华春, 戴瑜, 唐国宁. 振荡介质中平面波的反射. 物理学报, 2009, 58(11): 7573-7578. doi: 10.7498/aps.58.7573
    [12] 孔伟金, 云茂金, 孙 欣, 刘均海, 范正修, 邵建达. 基于严格耦合波理论的多层介质膜光栅衍射特性分析. 物理学报, 2008, 57(8): 4904-4910. doi: 10.7498/aps.57.4904
    [13] 陈宪锋, 沈小明, 蒋美萍, 金 铱. 对称单负介质包层平面波导的模式特征. 物理学报, 2008, 57(6): 3578-3582. doi: 10.7498/aps.57.3578
    [14] 丁 锐, 王志良, 小仓久直. 二维各向同性均匀随机介质中平面波的传播及其局域性. 物理学报, 2008, 57(9): 5519-5528. doi: 10.7498/aps.57.5519
    [15] 姜彦南, 葛德彪. 层状介质时域有限差分方法斜入射平面波引入新方式. 物理学报, 2008, 57(10): 6283-6289. doi: 10.7498/aps.57.6283
    [16] 董慧媛, 刘 楣, 吴宗汉, 汪 静, 王振林. 由介质球构成的三维光子晶体能带结构的平面波研究. 物理学报, 2005, 54(7): 3194-3199. doi: 10.7498/aps.54.3194
    [17] 沈林放, 何赛灵, 吴良. 等效介质理论在光子晶体平面波展开分析方法中的应用. 物理学报, 2002, 51(5): 1133-1138. doi: 10.7498/aps.51.1133
    [18] 吴振森, 王一平. 直接模拟法和统计估计法研究平面波通过离散随机介质的散射. 物理学报, 1988, 37(4): 698-704. doi: 10.7498/aps.37.698
    [19] 林红, 张洪钧, 戴建华. 用四波混频系统通过单层和多层畸变介质传输图象. 物理学报, 1986, 35(10): 1347-1356. doi: 10.7498/aps.35.1347
    [20] 张金标. 分层介质中金属栅的平面波散射. 物理学报, 1976, 25(2): 162-167. doi: 10.7498/aps.25.162
计量
  • 文章访问数:  3930
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-11
  • 修回日期:  2023-05-09
  • 上网日期:  2023-06-02
  • 刊出日期:  2023-08-05

/

返回文章
返回