搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介观统计热力学理论与实验

全海涛 董辉 孙昌璞

引用本文:
Citation:

介观统计热力学理论与实验

全海涛, 董辉, 孙昌璞

Theoretical and experiments of mesoscopic statistical thermodynamics

Quan Hai-Tao, Dong Hui, Sun Chang-Pu
PDF
HTML
导出引用
  • 对于只有有限自由度的介观小系统, 传统的热力学定律是否成立? 温度、熵、做功、传热、等温过程、Carnot循环这些概念还是否有效? 是否需要对原来适用于宏观系统的传统热力学理论进行修改或扩充、以适用于这样的小系统? 在过去近20年里, 我们深入研究了在介观小系统和量子系统中热力学基本概念的推广(例如什么是量子等温过程)以及基本热力学定律的适用性问题. 研究表明, 在系综平均意义上热力学定律仍然适用于小系统; 考虑了Maxwell妖的信息擦除功耗后, 热力学第二定律不会被违反; “小系统”的统计热力学具有一些新的特性, 由于系统和环境之间的耦合不可忽略, 有限系统的平衡态分布偏离正则系综, 这可以描述诸如黑洞等小系统的辐射关联及其信息丢失现象; 在任意远离平衡的情况下, 热力学量的涨落变得十分显著, 并且热力学量的分布函数满足一些严格成立的恒等式. 这些恒等式定义了所谓的涨落定理, 由此通过测量非平衡过程的物理量(如功分布)可以获得平衡过程的物理量相对值(如自由能差等). 此外, 尽管量子属性和信息论的考虑为统计热力学带来一些有别于经典和传统的特性, 有助于理解Gibbs佯谬和Maxwell妖等基本问题, 但需要指出的是, 量子热机和信息辅助热机的效率并没有超越经典热机. 随着在小系统中引入运动方程, 热力学和力学之间的联系变得更加紧密, 能够从第一性原理出发研究非平衡过程的能量耗散和热机的功率、效率优化及其最优调控微分几何化等问题. 在对具体热循环过程熵产生问题的研究中, 对得到的功率-效率约束关系进行了系统性的实验检验.
    Does thermodynamics still hold true for mecroscopic small systems with only limited degrees of freedom? Do concepts such as temperature, entropy, work done, heat transfer, isothermal processes, and the Carnot cycle remain valid? Does the thermodynamic theory for small systems need modifying or supplementing compared with traditional thermodynamics applicable to macroscopic systems? Taking a single-particle system for example, we investigate the applicability of thermodynamic concepts and laws in small systems. We have found that thermodynamic laws still hold true in small systems at an ensemble-averaged level. After considering the information erasure of the Maxwell’s demon, the second law of thermodynamics is not violated. Additionally, ‘small systems’ bring some new features. Fluctuations in thermodynamic quantities become prominent. In any process far from equilibrium, the distribution functions of thermodynamic quantities satisfy certain rigorously established identities. These identities are known as fluctuation theorems. The second law of thermodynamics can be derived from them. Therefore, fluctuation theorems can be considered an upgradation to the second law of thermodynamics. They enable physicists to obtain equilibrium properties (e.g. free energy difference) by measuring physical quantities associated with non-equilibrium processes (e.g. work distributions). Furthermore, despite some distinct quantum features, the performance of quantum heat engine does not outperform that of classical heat engine. The introduction of motion equations into small system makes the relationship between thermodynamics and mechanics closer than before. Physicists can study energy dissipation in non-equilibrium process and optimize the power and efficiency of heat engine from the first principle. These findings enrich the content of thermodynamic theory and provide new ideas for establishing a general framework for non-equilibrium thermodynamics.
      通信作者: 全海涛, htquan@pku.edu.cn ; 孙昌璞, suncp@gscaep.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12088101, 11825501, 12375028, U2330401)资助的课题.
      Corresponding author: Quan Hai-Tao, htquan@pku.edu.cn ; Sun Chang-Pu, suncp@gscaep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12088101, 11825501, 12375028, U2330401).
    [1]

    Scovil H E D, Schulz-DuBois E O 1959 Phys. Rev. Lett. 2 262Google Scholar

    [2]

    Geusic J E, Schulz-DuBios E O, Scovil H E D 1967 Phys. Rev. 156 343Google Scholar

    [3]

    Alicki R 1979 J. Phys. A: Math. Gen. 12 L103

    [4]

    Kosloff R 2013 Entropy 15 2100Google Scholar

    [5]

    Kieu T D 2004 Phys. Rev. Lett. 93 140403Google Scholar

    [6]

    Kieu T D 2006 Eur. Phys. J. D 39 115Google Scholar

    [7]

    Scully M O 2003 Science 299 862Google Scholar

    [8]

    Quan H T, Zhang P, Sun C P 2006 Phys. Rev. E 73 036122Google Scholar

    [9]

    Quan H T, Liu Y xi, Sun C P, Nori F 2007 Phys. Rev. E 76 031105Google Scholar

    [10]

    Binder F, Correa L A, Gogolin C, Anders J, Adesso G 2018 Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions (Cham: Springer International Publishing

    [11]

    Callen H B 1985 Thermodynamics and An Introduction to Thermostatistics (2nd Ed.) (New York: J. Wiley & Sons

    [12]

    Schrödinger E 1989 Statistical Thermodynamics (New York: Dover Publications

    [13]

    Reif F 2009 Fundamentals of Statistical and Thermal Physics (Waveland Press

    [14]

    Hill T L 2013 Thermodynamics of Small Systems (New York: Dover Publications, Inc

    [15]

    Allahverdyan A E, Serral Gracià R, Nieuwenhuizen Th M 2005 Phys. Rev. E 71 046106Google Scholar

    [16]

    Leff H S, Rex A F 2003 Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (Philadelphia: Institute of Physics

    [17]

    Szilard L 1929 Z. Physik 53 840Google Scholar

    [18]

    Landauer R 1961 IBM J. Res. Dev. 5 183Google Scholar

    [19]

    Bennett C H 1982 Int. J. Theor. Phys. 21 905Google Scholar

    [20]

    Bérut A, Arakelyan A, Petrosyan A, Ciliberto S, Dillenschneider R, Lutz E 2012 Nature 483 187Google Scholar

    [21]

    Parrondo J M R, Horowitz J M, Sagawa T 2015 Nat. Phys. 11 131Google Scholar

    [22]

    Quan H T, Wang Y D, Liu Y xi, Sun C P, Nori F 2006 Phys. Rev. Lett. 97 180402Google Scholar

    [23]

    孙昌璞, 全海涛 2013 物理 42 756

    Sun C P, Quan H T 2013 Physics 42 756

    [24]

    Dong H, Xu D Z, Cai C Y, Sun C P 2011 Phys. Rev. E 83 061108Google Scholar

    [25]

    Cai C Y, Dong H, Sun C P 2012 Phys. Rev. E 85 031114Google Scholar

    [26]

    Mandal D, Quan H T, Jarzynski C 2013 Phys. Rev. Lett. 111 030602Google Scholar

    [27]

    Sekimoto K 1997 J. Phys. Soc. Jpn. 66 1234Google Scholar

    [28]

    Jarzynski C 1997 Phys. Rev. Lett. 78 2690Google Scholar

    [29]

    Jarzynski C 2011 Annu. Rev. Condens. Matter Phys. 2 329Google Scholar

    [30]

    Jarzynski C 1997 Phys. Rev. E 56 5018Google Scholar

    [31]

    Sekimoto K 1998 Prog. Theor. Phys. Suppl. 130 17Google Scholar

    [32]

    Seifert U 2012 Rep. Prog. Phys. 75 126001Google Scholar

    [33]

    Oono Y, Paniconi M 1998 Prog. Theor. Phys. Suppl. 130 29Google Scholar

    [34]

    Hatano T, Sasa S ichi 2001 Phys. Rev. Lett. 86 3463Google Scholar

    [35]

    Sekimoto K 2010 Stochastic Energetics (Berlin Heidelberg: Springer

    [36]

    Jiang D Q, Qian M, Qian M P 2004 Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems (Berlin: Springer

    [37]

    Esposito M, van den Broeck C 2010 Phys. Rev. Lett. 104 090601Google Scholar

    [38]

    Kim K H, Qian H 2004 Phys. Rev. Lett. 93 120602Google Scholar

    [39]

    葛颢 2014 数学进展 43 161

    Ge J 2014 Adv. Math. 43 161

    [40]

    Jarzynskia C 2008 Eur. Phys. J. B 64 331Google Scholar

    [41]

    Liphardt J, Dumont S, Smith S B, Tinoco I, Bustamante C 2002 Science 296 1832Google Scholar

    [42]

    Collin D, Ritort F, Jarzynski C, Smith S B, Tinoco I, Bustamante C 2005 Nature 437 231Google Scholar

    [43]

    Crooks G E 1999 Phys. Rev. E 60 2721Google Scholar

    [44]

    Hummer G, Szabo A 2001 Proc. Natl. Acad. Sci. USA 98 3658Google Scholar

    [45]

    Jarzynski C 2000 J. Stat. Phys. 98 77Google Scholar

    [46]

    Maragakis P, Spichty M, Karplus M 2008 J. Phys. Chem. B 112 6168Google Scholar

    [47]

    Hoang T M, Pan R, Ahn J, Bang J, Quan H T, Li T 2018 Phys. Rev. Lett. 120 080602Google Scholar

    [48]

    Jarzynski C, Wójcik D K 2004 Phys. Rev. Lett. 92 230602Google Scholar

    [49]

    Chen J F, Quan H T 2023 Phys. Rev. E 107 024135Google Scholar

    [50]

    Evans D J, Cohen E G D, Morriss G P 1993 Phys. Rev. Lett. 71 2401Google Scholar

    [51]

    Evans D J, Searles D J 1994 Phys. Rev. E 50 1645

    [52]

    Gallavotti G, Cohen E G D 1995 Phys. Rev. Lett. 74 2694Google Scholar

    [53]

    Gallavotti G, Cohen E G D 1995 J. Stat. Phys. 80 931Google Scholar

    [54]

    Barato A C, Seifert U 2015 Phys. Rev. Lett. 114 158101Google Scholar

    [55]

    Timpanaro A M, Guarnieri G, Goold J, Landi G T 2019 Phys. Rev. Lett. 123 090604Google Scholar

    [56]

    Kurchan J 2000 A Quantum Fluctuation Theorem (arXiv:cond-mat/0007360

    [57]

    Tasaki H 2000 Jarzynski Relations for Quantum Systems and Some Applications (arXiv:cond-mat/0009244

    [58]

    Talkner P, Lutz E, Hänggi P 2007 Phys. Rev. E 75 050102Google Scholar

    [59]

    Dorner R, Clark S R, Heaney L, Fazio R, Goold J, Vedral V 2013 Phys. Rev. Lett. 110 230601Google Scholar

    [60]

    Mazzola L, De Chiara G, Paternostro M 2013 Phys. Rev. Lett. 110 230602Google Scholar

    [61]

    Batalhão T B, Souza A M, Mazzola L, Auccaise R, Sarthour R S, Oliveira I S, Goold J, De Chiara G, Paternostro M, Serra R M 2014 Phys. Rev. Lett. 113 140601Google Scholar

    [62]

    An S, Zhang J N, Um M, Lv D, Lu Y, Zhang J, Yin Z Q, Quan H T, Kim K 2015 Nat. Phys. 11 193Google Scholar

    [63]

    Jarzynski C, Quan H T, Rahav S 2015 Phys. Rev. X 5 031038Google Scholar

    [64]

    Funo K, Quan H T 2018 Phys. Rev. Lett. 121 040602Google Scholar

    [65]

    Gong Z, Lan Y, Quan H T 2016 Phys. Rev. Lett. 117 180603Google Scholar

    [66]

    Fei Z, Zhang J, Pan R, Qiu T, Quan H T 2019 Phys. Rev. A 99 052508Google Scholar

    [67]

    Fei Z, Quan H T 2020 Phys. Rev. Lett. 124 240603Google Scholar

    [68]

    Funo K, Quan H T 2018 Phys. Rev. E 98 012113Google Scholar

    [69]

    Chen J F, Qiu T, Quan H T 2021 Entropy 23 1602Google Scholar

    [70]

    Wang B, Zhang J, Quan H T 2018 Phys. Rev. E 97 052136Google Scholar

    [71]

    Chen J, Dong H, Sun C P 2018 Phys. Rev. E 98 062119Google Scholar

    [72]

    Tasaki H 1998 Phys. Rev. Lett. 80 1373Google Scholar

    [73]

    Goldstein S, Lebowitz J L, Tumulka R, Zanghì N 2006 Phys. Rev. Lett. 96 050403Google Scholar

    [74]

    Popescu S, Short A J, Winter A 2006 Nat. Phys. 2 754Google Scholar

    [75]

    Dong H, Yang S, Liu X F, Sun C P 2007 Phys. Rev. A 76 044104Google Scholar

    [76]

    Parikh M K, Wilczek F 2000 Phys. Rev. Lett. 85 5042Google Scholar

    [77]

    Zhang B, Cai Q Y, You L, Zhan M S 2009 Phys. Lett. B 675 98Google Scholar

    [78]

    Dong H, Cai Q Y, Liu X F, Sun C P 2014 Commun. Theor. Phys. 61 289Google Scholar

    [79]

    Ma Y H, Cai Q Y, Dong H, Sun C P 2018 EPL 122 30001Google Scholar

    [80]

    Srednicki M 1994 Phys. Rev. E 50 888Google Scholar

    [81]

    D’Alessio L, Kafri Y, Polkovnikov A, Rigol M 2016 Adv. Phys. 65 239Google Scholar

    [82]

    Yvon J 1955 Proceedings of the International Conference on the Peaceful Uses of Atomic Energy Geneva, Switzerland, August 8—20, 1955

    [83]

    Curzon F L, Ahlborn B 1975 Am. J. Phys. 43 22Google Scholar

    [84]

    Andresen B, Salamon P, Berry R S 1984 Phys. Today 37 62Google Scholar

    [85]

    Chen J C, Su S H, Su G Z 2023 Reflection and Exploration on Hot Issues in Thermodynamics and Statistical Physics (2nd Ed.) (Beijing: Science Press) [陈金灿, 苏山河, 苏国珍 2023 热力学与统计物理学热点问题思考与探索(第二版)(北京: 科学出版社)

    Chen J C, Su S H, Su G Z 2023 Reflection and Exploration on Hot Issues in Thermodynamics and Statistical Physics (2nd Ed.) (Beijing: Science Press)

    [86]

    Esposito M, Kawai R, Lindenberg K, Van den Broeck C 2010 Phys. Rev. Lett. 105 150603Google Scholar

    [87]

    Ma Y H, Xu D, Dong H, Sun C P 2018 Phys. Rev. E 98 042112Google Scholar

    [88]

    Ryabov A, Holubec V 2016 Phys. Rev. E 93 050101Google Scholar

    [89]

    Long R, Liu W 2016 Phys. Rev. E 94 052114Google Scholar

    [90]

    Chen J F, Sun C P, Dong H 2019 Phys. Rev. E 100 062140Google Scholar

    [91]

    Chen J F, Sun C P, Dong H 2019 Phys. Rev. E 100 032144Google Scholar

    [92]

    Ma Y H, Xu D, Dong H, Sun C P 2018 Phys. Rev. E 98 022133Google Scholar

    [93]

    Cavina V, Mari A, Giovannetti V 2017 Phys. Rev. Lett. 119 050601Google Scholar

    [94]

    Ma Y H, Zhai R X, Chen J, Sun C P, Dong H 2020 Phys. Rev. Lett. 125 210601Google Scholar

    [95]

    Blickle V, Bechinger C 2012 Nat. Phys. 8 143Google Scholar

    [96]

    Roßnagel J, Dawkins S T, Tolazzi K N, Abah O, Lutz E, Schmidt-Kaler F, Singer K 2016 Science 352 325Google Scholar

    [97]

    Martínez I A, Roldán É, Dinis L, Petrov D, Parrondo J M R, Rica R A 2016 Nat. Phys. 12 67Google Scholar

    [98]

    Zhai R X, Cui F M, Ma Y H, Sun C P, Dong H 2023 Phys. Rev. E 107 L042101Google Scholar

    [99]

    Tu Z C 2021 Front. Phys. 16 33202Google Scholar

    [100]

    Salamon P, Berry R S 1983 Phys. Rev. Lett. 51 1127Google Scholar

    [101]

    Weinhold F 1975 J. Chem. Phys. 63 2479Google Scholar

    [102]

    Ruppeiner G 1979 Phys. Rev. A 20 1608Google Scholar

    [103]

    Crooks G E 2007 Phys. Rev. Lett. 99 100602Google Scholar

    [104]

    Scandi M, Perarnau-Llobet M 2019 Quantum 3 197Google Scholar

    [105]

    Abiuso P, Miller H J D, Perarnau-Llobet M, Scandi M 2020 Entropy 22 1076Google Scholar

    [106]

    Chen J F, Sun C P, Dong H 2021 Phys. Rev. E 104 034117Google Scholar

    [107]

    Li G, Chen J F, Sun C P, Dong H 2022 Phys. Rev. Lett. 128 230603Google Scholar

    [108]

    Li G, Quan H T, Tu Z C 2017 Phys. Rev. E 96 012144Google Scholar

    [109]

    Chen J F 2022 Phys. Rev. E 106 054108

    [110]

    Van Vu T, Hasegawa Y 2021 Phys. Rev. Lett. 126 010601Google Scholar

    [111]

    Dago S, Pereda J, Barros N, Ciliberto S, Bellon L 2021 Phys. Rev. Lett. 126 170601Google Scholar

    [112]

    Zhen Y Z, Egloff D, Modi K, Dahlsten O 2021 Phys. Rev. Lett. 127 190602Google Scholar

    [113]

    Ma Y H, Chen J F, Sun C P, Dong H 2022 Phys. Rev. E 106 034112Google Scholar

    [114]

    Tsirlin A M, Kazakov V, Zubov D V 2002 J. Phys. Chem. A 106 10926Google Scholar

    [115]

    Chen J F, Zhai R X, Sun C P, Dong H 2023 PRX Energy 2 033003Google Scholar

  • 图 1  统计热力学发展“新相图”

    Fig. 1.  New diagram for the development of statistical thermodynamics.

    图 2  一个基于离散能级系统的量子热力学循环

    Fig. 2.  A quantum thermodynamic cycle based on a discrete system.

    图 3  作为量子热机工作物质的多能级量子系统, 这里展示一个量子绝热过程

    Fig. 3.  A quantum system with discrete energy levels as the working substance, here a quantum adiabatic process is illustrated.

    图 4  一个基于二能级量子系统的量子Carnot热机循环, $ {T}_{{\mathrm{h}}} $和$ {T}_{{\mathrm{l}}} $分别代表高温和低温热库的温度, $ \varDelta $和$ {P}_{{\mathrm{e}}} $代表二能级系统的能级差和激发态上的布居数, $ P $和$ V $代表经典理想气体的压强和体积

    Fig. 4.  A quantum Carnot cycle based on a two-level system, $ {T}_{{\mathrm{h}}} $ and $ {T}_{{\mathrm{l}}} $ denote the temperatures of two reservoirs, $ \varDelta $ and $ {P}_{{\mathrm{e}}} $ denote the level spacing and the probability in the excited state, $ P $ and $ V $ denote the pressure and the volume of the ideal gas.

    图 5  Maxwell妖和Szilard单分子热机模型

    Fig. 5.  Maxwell’s demon and Szilard single-molecule heat engine model.

    图 6  Feynman棘轮, $ {T}_{{\mathrm{A}}} $和$ {T}_{{\mathrm{B}}} $代表两个热库的温度, 有关Feynman棘轮的介绍可参考文献[27]

    Fig. 6.  Feynman’s ratchet. $ {T}_{{\mathrm{A}}} $ and $ {T}_{{\mathrm{B}}} $ denote the temperatures of two reservoirs. For an introduction to Feynman’s ratchet please refer to Ref. [27].

    图 7  涨落定理家族, 这些涨落定理并不互相等价, 箭头代表“可以推导出”, 详情见文献[47]

    Fig. 7.  Hierarchy of fluctuation theorems, these fluctuation theorems are not equivalent to each other. The arrows indicate “can lead to”. Details see Ref. [47].

    图 8  基于两次投影定义的轨道功. 这里显示了一次实验的结果, 从第2个本征态跳到第4个瞬时本征态

    Fig. 8.  Trajectory work based on two-point measurement. This figure illustrates a trajectory: from the 2nd to the 4th instantaneous eigenstate.

    图 9  能壳变形图, 其中红色是无相互作用的能壳, 蓝色为有相互作用的修正

    Fig. 9.  The distortion of the energy shell, the red area shows the case with no interaction, and the blue one shows the case with weak interaction

    图 10  有限时间Carnot循环的功率效率约束关系 (a)基于二能级系统的有限时间量子Carnot循环; (b)量子Carnot循环中功率-效率和一般约束关系的对比, 其中图中的棕色虚线和灰色点线是由(25)式给出, 绿色三角代表最大功率的位置

    Fig. 10.  The power-efficiency constraints of a finite-time Carnot cycle: (a) Finite-time quantum Carnot cycle based on a two-level system; (b) comparison between power-efficiency and general constraint relationships in a quantum Carnot cycle, where the brown dashed line and gray dotted line in the graph are given by Eq. (25), and the green triangles represent the positions of maximum power.

    图 11  有限时间热力学$ 1/\tau $关系的实验验证 (a) 温度50 ℃下做功的$ 1/\tau $ 标度关系; (b) 标度关系的系数对操控方式的依赖关系$ L\left(t\right)={L}_{0}\propto {t}^{\alpha } $, 能量损耗最优操控是匀速控制$ \alpha =1 $

    Fig. 11.  Experimental verification of the finite-time thermodynamic $ 1/\tau $ relationship: (a) The 1/τ scaling relationship for work done at a temperature of 50 ℃; (b) the dependence of the scaling relationship coefficient on the control method $ L\left(t\right)={L}_{0}\propto {t}^{\alpha }, $ with the energy-optimal control being uniform-speed control where $ \alpha =1 $.

    图 12  有限时间Carnot循环 (a)有限时间Carnot循环的工作示意图; (b)循环中功率-效率约束关系; (c)最大功率效率对Carnot效率的依赖关系ηEMP = (0.524 ± 0.034)ηC

    Fig. 12.  Finite-time Carnot cycle: (a) Schematic diagram of the finite-time Carnot cycle; (b) graph of the power-efficiency constraint relationship in the cycle; (c) dependency of maximum power efficiency on Carnot efficiency ηEMP = (0.524 ± 0.034)ηC.

    图 13  能量最小消耗路径的几何描述

    Fig. 13.  Riemann geometry for the minimum energy cost.

  • [1]

    Scovil H E D, Schulz-DuBois E O 1959 Phys. Rev. Lett. 2 262Google Scholar

    [2]

    Geusic J E, Schulz-DuBios E O, Scovil H E D 1967 Phys. Rev. 156 343Google Scholar

    [3]

    Alicki R 1979 J. Phys. A: Math. Gen. 12 L103

    [4]

    Kosloff R 2013 Entropy 15 2100Google Scholar

    [5]

    Kieu T D 2004 Phys. Rev. Lett. 93 140403Google Scholar

    [6]

    Kieu T D 2006 Eur. Phys. J. D 39 115Google Scholar

    [7]

    Scully M O 2003 Science 299 862Google Scholar

    [8]

    Quan H T, Zhang P, Sun C P 2006 Phys. Rev. E 73 036122Google Scholar

    [9]

    Quan H T, Liu Y xi, Sun C P, Nori F 2007 Phys. Rev. E 76 031105Google Scholar

    [10]

    Binder F, Correa L A, Gogolin C, Anders J, Adesso G 2018 Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions (Cham: Springer International Publishing

    [11]

    Callen H B 1985 Thermodynamics and An Introduction to Thermostatistics (2nd Ed.) (New York: J. Wiley & Sons

    [12]

    Schrödinger E 1989 Statistical Thermodynamics (New York: Dover Publications

    [13]

    Reif F 2009 Fundamentals of Statistical and Thermal Physics (Waveland Press

    [14]

    Hill T L 2013 Thermodynamics of Small Systems (New York: Dover Publications, Inc

    [15]

    Allahverdyan A E, Serral Gracià R, Nieuwenhuizen Th M 2005 Phys. Rev. E 71 046106Google Scholar

    [16]

    Leff H S, Rex A F 2003 Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (Philadelphia: Institute of Physics

    [17]

    Szilard L 1929 Z. Physik 53 840Google Scholar

    [18]

    Landauer R 1961 IBM J. Res. Dev. 5 183Google Scholar

    [19]

    Bennett C H 1982 Int. J. Theor. Phys. 21 905Google Scholar

    [20]

    Bérut A, Arakelyan A, Petrosyan A, Ciliberto S, Dillenschneider R, Lutz E 2012 Nature 483 187Google Scholar

    [21]

    Parrondo J M R, Horowitz J M, Sagawa T 2015 Nat. Phys. 11 131Google Scholar

    [22]

    Quan H T, Wang Y D, Liu Y xi, Sun C P, Nori F 2006 Phys. Rev. Lett. 97 180402Google Scholar

    [23]

    孙昌璞, 全海涛 2013 物理 42 756

    Sun C P, Quan H T 2013 Physics 42 756

    [24]

    Dong H, Xu D Z, Cai C Y, Sun C P 2011 Phys. Rev. E 83 061108Google Scholar

    [25]

    Cai C Y, Dong H, Sun C P 2012 Phys. Rev. E 85 031114Google Scholar

    [26]

    Mandal D, Quan H T, Jarzynski C 2013 Phys. Rev. Lett. 111 030602Google Scholar

    [27]

    Sekimoto K 1997 J. Phys. Soc. Jpn. 66 1234Google Scholar

    [28]

    Jarzynski C 1997 Phys. Rev. Lett. 78 2690Google Scholar

    [29]

    Jarzynski C 2011 Annu. Rev. Condens. Matter Phys. 2 329Google Scholar

    [30]

    Jarzynski C 1997 Phys. Rev. E 56 5018Google Scholar

    [31]

    Sekimoto K 1998 Prog. Theor. Phys. Suppl. 130 17Google Scholar

    [32]

    Seifert U 2012 Rep. Prog. Phys. 75 126001Google Scholar

    [33]

    Oono Y, Paniconi M 1998 Prog. Theor. Phys. Suppl. 130 29Google Scholar

    [34]

    Hatano T, Sasa S ichi 2001 Phys. Rev. Lett. 86 3463Google Scholar

    [35]

    Sekimoto K 2010 Stochastic Energetics (Berlin Heidelberg: Springer

    [36]

    Jiang D Q, Qian M, Qian M P 2004 Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems (Berlin: Springer

    [37]

    Esposito M, van den Broeck C 2010 Phys. Rev. Lett. 104 090601Google Scholar

    [38]

    Kim K H, Qian H 2004 Phys. Rev. Lett. 93 120602Google Scholar

    [39]

    葛颢 2014 数学进展 43 161

    Ge J 2014 Adv. Math. 43 161

    [40]

    Jarzynskia C 2008 Eur. Phys. J. B 64 331Google Scholar

    [41]

    Liphardt J, Dumont S, Smith S B, Tinoco I, Bustamante C 2002 Science 296 1832Google Scholar

    [42]

    Collin D, Ritort F, Jarzynski C, Smith S B, Tinoco I, Bustamante C 2005 Nature 437 231Google Scholar

    [43]

    Crooks G E 1999 Phys. Rev. E 60 2721Google Scholar

    [44]

    Hummer G, Szabo A 2001 Proc. Natl. Acad. Sci. USA 98 3658Google Scholar

    [45]

    Jarzynski C 2000 J. Stat. Phys. 98 77Google Scholar

    [46]

    Maragakis P, Spichty M, Karplus M 2008 J. Phys. Chem. B 112 6168Google Scholar

    [47]

    Hoang T M, Pan R, Ahn J, Bang J, Quan H T, Li T 2018 Phys. Rev. Lett. 120 080602Google Scholar

    [48]

    Jarzynski C, Wójcik D K 2004 Phys. Rev. Lett. 92 230602Google Scholar

    [49]

    Chen J F, Quan H T 2023 Phys. Rev. E 107 024135Google Scholar

    [50]

    Evans D J, Cohen E G D, Morriss G P 1993 Phys. Rev. Lett. 71 2401Google Scholar

    [51]

    Evans D J, Searles D J 1994 Phys. Rev. E 50 1645

    [52]

    Gallavotti G, Cohen E G D 1995 Phys. Rev. Lett. 74 2694Google Scholar

    [53]

    Gallavotti G, Cohen E G D 1995 J. Stat. Phys. 80 931Google Scholar

    [54]

    Barato A C, Seifert U 2015 Phys. Rev. Lett. 114 158101Google Scholar

    [55]

    Timpanaro A M, Guarnieri G, Goold J, Landi G T 2019 Phys. Rev. Lett. 123 090604Google Scholar

    [56]

    Kurchan J 2000 A Quantum Fluctuation Theorem (arXiv:cond-mat/0007360

    [57]

    Tasaki H 2000 Jarzynski Relations for Quantum Systems and Some Applications (arXiv:cond-mat/0009244

    [58]

    Talkner P, Lutz E, Hänggi P 2007 Phys. Rev. E 75 050102Google Scholar

    [59]

    Dorner R, Clark S R, Heaney L, Fazio R, Goold J, Vedral V 2013 Phys. Rev. Lett. 110 230601Google Scholar

    [60]

    Mazzola L, De Chiara G, Paternostro M 2013 Phys. Rev. Lett. 110 230602Google Scholar

    [61]

    Batalhão T B, Souza A M, Mazzola L, Auccaise R, Sarthour R S, Oliveira I S, Goold J, De Chiara G, Paternostro M, Serra R M 2014 Phys. Rev. Lett. 113 140601Google Scholar

    [62]

    An S, Zhang J N, Um M, Lv D, Lu Y, Zhang J, Yin Z Q, Quan H T, Kim K 2015 Nat. Phys. 11 193Google Scholar

    [63]

    Jarzynski C, Quan H T, Rahav S 2015 Phys. Rev. X 5 031038Google Scholar

    [64]

    Funo K, Quan H T 2018 Phys. Rev. Lett. 121 040602Google Scholar

    [65]

    Gong Z, Lan Y, Quan H T 2016 Phys. Rev. Lett. 117 180603Google Scholar

    [66]

    Fei Z, Zhang J, Pan R, Qiu T, Quan H T 2019 Phys. Rev. A 99 052508Google Scholar

    [67]

    Fei Z, Quan H T 2020 Phys. Rev. Lett. 124 240603Google Scholar

    [68]

    Funo K, Quan H T 2018 Phys. Rev. E 98 012113Google Scholar

    [69]

    Chen J F, Qiu T, Quan H T 2021 Entropy 23 1602Google Scholar

    [70]

    Wang B, Zhang J, Quan H T 2018 Phys. Rev. E 97 052136Google Scholar

    [71]

    Chen J, Dong H, Sun C P 2018 Phys. Rev. E 98 062119Google Scholar

    [72]

    Tasaki H 1998 Phys. Rev. Lett. 80 1373Google Scholar

    [73]

    Goldstein S, Lebowitz J L, Tumulka R, Zanghì N 2006 Phys. Rev. Lett. 96 050403Google Scholar

    [74]

    Popescu S, Short A J, Winter A 2006 Nat. Phys. 2 754Google Scholar

    [75]

    Dong H, Yang S, Liu X F, Sun C P 2007 Phys. Rev. A 76 044104Google Scholar

    [76]

    Parikh M K, Wilczek F 2000 Phys. Rev. Lett. 85 5042Google Scholar

    [77]

    Zhang B, Cai Q Y, You L, Zhan M S 2009 Phys. Lett. B 675 98Google Scholar

    [78]

    Dong H, Cai Q Y, Liu X F, Sun C P 2014 Commun. Theor. Phys. 61 289Google Scholar

    [79]

    Ma Y H, Cai Q Y, Dong H, Sun C P 2018 EPL 122 30001Google Scholar

    [80]

    Srednicki M 1994 Phys. Rev. E 50 888Google Scholar

    [81]

    D’Alessio L, Kafri Y, Polkovnikov A, Rigol M 2016 Adv. Phys. 65 239Google Scholar

    [82]

    Yvon J 1955 Proceedings of the International Conference on the Peaceful Uses of Atomic Energy Geneva, Switzerland, August 8—20, 1955

    [83]

    Curzon F L, Ahlborn B 1975 Am. J. Phys. 43 22Google Scholar

    [84]

    Andresen B, Salamon P, Berry R S 1984 Phys. Today 37 62Google Scholar

    [85]

    Chen J C, Su S H, Su G Z 2023 Reflection and Exploration on Hot Issues in Thermodynamics and Statistical Physics (2nd Ed.) (Beijing: Science Press) [陈金灿, 苏山河, 苏国珍 2023 热力学与统计物理学热点问题思考与探索(第二版)(北京: 科学出版社)

    Chen J C, Su S H, Su G Z 2023 Reflection and Exploration on Hot Issues in Thermodynamics and Statistical Physics (2nd Ed.) (Beijing: Science Press)

    [86]

    Esposito M, Kawai R, Lindenberg K, Van den Broeck C 2010 Phys. Rev. Lett. 105 150603Google Scholar

    [87]

    Ma Y H, Xu D, Dong H, Sun C P 2018 Phys. Rev. E 98 042112Google Scholar

    [88]

    Ryabov A, Holubec V 2016 Phys. Rev. E 93 050101Google Scholar

    [89]

    Long R, Liu W 2016 Phys. Rev. E 94 052114Google Scholar

    [90]

    Chen J F, Sun C P, Dong H 2019 Phys. Rev. E 100 062140Google Scholar

    [91]

    Chen J F, Sun C P, Dong H 2019 Phys. Rev. E 100 032144Google Scholar

    [92]

    Ma Y H, Xu D, Dong H, Sun C P 2018 Phys. Rev. E 98 022133Google Scholar

    [93]

    Cavina V, Mari A, Giovannetti V 2017 Phys. Rev. Lett. 119 050601Google Scholar

    [94]

    Ma Y H, Zhai R X, Chen J, Sun C P, Dong H 2020 Phys. Rev. Lett. 125 210601Google Scholar

    [95]

    Blickle V, Bechinger C 2012 Nat. Phys. 8 143Google Scholar

    [96]

    Roßnagel J, Dawkins S T, Tolazzi K N, Abah O, Lutz E, Schmidt-Kaler F, Singer K 2016 Science 352 325Google Scholar

    [97]

    Martínez I A, Roldán É, Dinis L, Petrov D, Parrondo J M R, Rica R A 2016 Nat. Phys. 12 67Google Scholar

    [98]

    Zhai R X, Cui F M, Ma Y H, Sun C P, Dong H 2023 Phys. Rev. E 107 L042101Google Scholar

    [99]

    Tu Z C 2021 Front. Phys. 16 33202Google Scholar

    [100]

    Salamon P, Berry R S 1983 Phys. Rev. Lett. 51 1127Google Scholar

    [101]

    Weinhold F 1975 J. Chem. Phys. 63 2479Google Scholar

    [102]

    Ruppeiner G 1979 Phys. Rev. A 20 1608Google Scholar

    [103]

    Crooks G E 2007 Phys. Rev. Lett. 99 100602Google Scholar

    [104]

    Scandi M, Perarnau-Llobet M 2019 Quantum 3 197Google Scholar

    [105]

    Abiuso P, Miller H J D, Perarnau-Llobet M, Scandi M 2020 Entropy 22 1076Google Scholar

    [106]

    Chen J F, Sun C P, Dong H 2021 Phys. Rev. E 104 034117Google Scholar

    [107]

    Li G, Chen J F, Sun C P, Dong H 2022 Phys. Rev. Lett. 128 230603Google Scholar

    [108]

    Li G, Quan H T, Tu Z C 2017 Phys. Rev. E 96 012144Google Scholar

    [109]

    Chen J F 2022 Phys. Rev. E 106 054108

    [110]

    Van Vu T, Hasegawa Y 2021 Phys. Rev. Lett. 126 010601Google Scholar

    [111]

    Dago S, Pereda J, Barros N, Ciliberto S, Bellon L 2021 Phys. Rev. Lett. 126 170601Google Scholar

    [112]

    Zhen Y Z, Egloff D, Modi K, Dahlsten O 2021 Phys. Rev. Lett. 127 190602Google Scholar

    [113]

    Ma Y H, Chen J F, Sun C P, Dong H 2022 Phys. Rev. E 106 034112Google Scholar

    [114]

    Tsirlin A M, Kazakov V, Zubov D V 2002 J. Phys. Chem. A 106 10926Google Scholar

    [115]

    Chen J F, Zhai R X, Sun C P, Dong H 2023 PRX Energy 2 033003Google Scholar

  • [1] 管韵, 王波波. 环面黑洞的热力学函数. 物理学报, 2022, (): . doi: 10.7498/aps.71.20212370
    [2] 管韵, 王波波. 环面黑洞的热力学函数. 物理学报, 2022, 71(11): 110401. doi: 10.7498/aps.70.20212370
    [3] 王子, 任捷. 周期驱动系统的非平衡热输运与热力学几何. 物理学报, 2021, 70(23): 230503. doi: 10.7498/aps.70.20211723
    [4] 沈珏, 刘成周, 朱宁宁, 童一诺, 严晨成, 薛珂磊. 非对易施瓦西黑洞的热力学及其量子修正. 物理学报, 2019, 68(20): 200401. doi: 10.7498/aps.68.20191054
    [5] 金肖, 王利民. 非晶材料玻璃转变过程中记忆效应的热力学. 物理学报, 2017, 66(17): 176406. doi: 10.7498/aps.66.176406
    [6] 袁都奇. 囚禁有限unitary费米气体的热力学性质. 物理学报, 2016, 65(18): 180302. doi: 10.7498/aps.65.180302
    [7] 张天宝, 俞玄平, 陈阿海. 有限温度下一维Gaudin-Yang模型的热力学性质. 物理学报, 2015, 64(15): 156402. doi: 10.7498/aps.64.156402
    [8] 米尔阿里木江, 艾力, 买买提热夏提, 买买提, 亚森江, 吾甫尔. 非对易相空间中谐振子体系热力学性质的探讨. 物理学报, 2015, 64(14): 140201. doi: 10.7498/aps.64.140201
    [9] 孙其诚. 颗粒介质的结构及热力学. 物理学报, 2015, 64(7): 076101. doi: 10.7498/aps.64.076101
    [10] 夏少军, 陈林根, 戈延林, 孙丰瑞. 热漏对换热器(火积)耗散最小化的影响. 物理学报, 2014, 63(2): 020505. doi: 10.7498/aps.63.020505
    [11] 夏少军, 陈林根, 戈延林, 孙丰瑞. 等温节流过程积耗散最小化. 物理学报, 2013, 62(18): 180202. doi: 10.7498/aps.62.180202
    [12] 李俊, 陈林根, 戈延林, 孙丰瑞. 正、反向两源热力循环有限时间热力学性能优化的研究进展. 物理学报, 2013, 62(13): 130501. doi: 10.7498/aps.62.130501
    [13] 林敏, 张美丽. 力与耦合系统的交互作用和随机能量共振. 物理学报, 2011, 60(2): 020501. doi: 10.7498/aps.60.020501
    [14] 杨红卫, 钟万勰, 侯碧辉. 力学、热力学及电磁波导中的正则变换和辛描述. 物理学报, 2010, 59(7): 4437-4441. doi: 10.7498/aps.59.4437
    [15] 张雅男, 晏世雷. 随机横场与晶场作用混合自旋系统的热力学性质. 物理学报, 2003, 52(11): 2890-2895. doi: 10.7498/aps.52.2890
    [16] 肖兴国, 赵峥. 具有内禀自旋的荷电稳态轴对称非Kerr-Newman黑洞的热力学性质. 物理学报, 1995, 44(5): 832-840. doi: 10.7498/aps.44.832
    [17] 欧发. 耗散系统的准热力学模型. 物理学报, 1995, 44(10): 1541-1550. doi: 10.7498/aps.44.1541
    [18] 汪卫华, 白海洋, 张云, 陈红, 王文魁. Ni-Si多层膜中固态非晶化反应的热力学与动力学过程. 物理学报, 1993, 42(9): 1499-1504. doi: 10.7498/aps.42.1499
    [19] 孙鑫, 叶红娟, 黄静宜. 铁磁体的热力学性质. 物理学报, 1964, 20(9): 940-946. doi: 10.7498/aps.20.940
    [20] 程开甲. 内耗的热力学研究(Ⅰ). 物理学报, 1955, 11(2): 163-178. doi: 10.7498/aps.11.163
计量
  • 文章访问数:  4740
  • PDF下载量:  259
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-07
  • 修回日期:  2023-11-06
  • 上网日期:  2023-11-14
  • 刊出日期:  2023-12-05

/

返回文章
返回