搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭圆函数背景下Gerdjikov-Ivanov方程的多呼吸子

姚慧 张海强 熊玮玥

引用本文:
Citation:

椭圆函数背景下Gerdjikov-Ivanov方程的多呼吸子

姚慧, 张海强, 熊玮玥

Breathers of Gerdjikov-Ivanov equation under background of elliptic function

Yao Hui, Zhang Hai-Qiang, Xiong Wei-Yue
PDF
HTML
导出引用
  • 作为非线性发展方程的一种特殊局域解, 呼吸子具有包络振荡结构, 且这种振荡呈现周期性变化. 根据呼吸子在分布方向和演化方向的周期性, 呼吸子主要有3种类型, 即Kuznetsov-Ma呼吸子(Kuznetsov-Ma breather, KMB)、Akhmediev呼吸子(Akhmediev breather, AB)和一般呼吸子(general breather, GB). 近年来, 周期背景下的呼吸子现象在许多非线性物理领域被观察到, 比如在非线性光纤光学、流体力学等. 研究表明背景周期波的调制不稳定性可以激发呼吸子的产生, 且周期背景下的呼吸子具有非常丰富的物理性质和相互作用. 因此, 最近在周期背景下呼吸子的时空结构和相互作用引起了广泛关注. Gerdjikov-Ivanov方程可以被用来描述在量子场理论、弱非线性色散水波、非线性光学等领域中的非线性物理现象. 构造该模型的各种类型的解是非常有意义的工作. 据了解, 在椭圆函数背景下的多呼吸子之前还未被研究过. 本文首先利用修正的平方波(modified squared wave, MSW) 函数法和行波变换法获得该方程的椭圆函数解. 然后, 在椭圆函数解初始条件下得到该方程Lax对的通解. 基于椭圆函数的转换公式以及积分公式, 将势函数周期解化简为只含有Weierstrass椭圆函数. 然后, 利用达布变换构造出在椭圆函数背景下呼吸子的具体表达形式. 在椭圆函数背景下, 推导出3种不同类型的呼吸子, 包括GB, KMB和AB. 最后, 给出3种呼吸子的时空结构三维图, 并且展示它们之间相互作用的过程.
    As one specific type of local solutions of nonlinear evolution equation, the breathers have the characteristic of envelope oscillation structure. This kind of oscillation is periodic. According to the periodicity of the distribution and evolution directions, there are three kinds of breathers, namely, the Kuznetsov-Ma breather (KMB), the Akhmediev breather (AB), and the general breather (GB). In recent years, the propagation of envelope breathers under the periodic background has been observed in many nonlinear physical fields, including nonlinear optical fibers and hydrodynamics. It is believed that the breathers can arise due to the modulational instability of the periodic waves, and they demonstrate many rich physical properties and dynamic behaviors of interactions. Therefore, recently great attention has been paid to the breathers under the periodic background in nonlinear science. As an important integrable model, the Gerdjikov-Ivanov (GI) equation can be used to describe various nonlinear phenomena in many physical fields such as in the quantum field theory, weak nonlinear dispersive water wave, and nonlinear optics. It is very meaningful to solve various types of solutions of this model to describe the propagation of nonlinear waves. As far as we know, the breather solutions for the GI equation have not been given under the elliptic function background. In this study, firstly, elliptic function solutions of the GI equation are solved by the modified squared wave (MSW) function approach and the traveling wave transformation. Then, we obtain the basic solution of the Lax pair corresponding to the Jacobi elliptic function seed solution. Based on the elliptic function transformation formulas and the integral formulas, the potential function solution can be expressed in terms of the Weierstrass elliptic function. Secondly, by the once iterated Darboux transformation, three types of breather solutions under the elliptic function background are constructed including the GB, the KMB and the AB. In addition, we analyze the dynamic behaviors of these three kinds of breathers, and present their three-dimensional space-time structures. By the twice iterated Darboux transformation, under the dn-periodic background we exhibit three types of interactions between two breathers, i.e. a GB and a KMB, an AB and a KMB, and a GB and an AB. Finally, we also present three types of interactions between two breathers under the general periodic background.
      通信作者: 张海强, hqzhang@usst.edu.cn
    • 基金项目: 上海市自然科学基金(批准号: 18ZR1426600)资助的课题.
      Corresponding author: Zhang Hai-Qiang, hqzhang@usst.edu.cn
    • Funds: Project supported by the Shanghai Natural Science Foundation of China (Grant No. 18ZR1426600).
    [1]

    Ablowitz M J, Satsuma J 1978 J. Math. Phys. 19 2180Google Scholar

    [2]

    Wazwaz A M 2009 Partial Differential Equations and Solitary Waves Theory (Berlin: Springer) pp285–413

    [3]

    Zhou T Y, Tian B 2022 Appl. Math. Lett. 133 108280Google Scholar

    [4]

    Li B Q, Ma Y L 2020 Appl. Math. Comput. 386 125469Google Scholar

    [5]

    Kruglov V I, Triki H 2023 Chin. Phys. Lett. 40 090503Google Scholar

    [6]

    Hosseini K, Mirzazadeh M, Ilie M, Radmehr S 2020 Optik 206 164350Google Scholar

    [7]

    Vishnu Priya N, Senthilvelan M, Lakshmanan M 2013 Phys. Rev. E 88 022918Google Scholar

    [8]

    Kuznetsov E A 1977 Sov. Phys. Dokl. 22 507

    [9]

    Ma Y C 1979 Stud. Appl. Math. 60 43Google Scholar

    [10]

    Akhmediev N, Komeev V I 1986 Theor. Math. Phys. 69 1089Google Scholar

    [11]

    Its A R, Rybin A V, Sall M A 1988 Theor. Math. Phys. 74 20Google Scholar

    [12]

    Walczak P, Randoux S, Suret P 2015 Phys. Rev. Lett. 114 143903Google Scholar

    [13]

    Chabchoub A, Hoffmann N P, Akhmediev N 2011 Phys. Rev. Lett. 106 204502Google Scholar

    [14]

    Xiong H, Gan J H, Wu Y 2017 Phys. Rev. Lett. 119 153901Google Scholar

    [15]

    Ding C C, Zhou Q, Xu L, Triki H, Mirzazadeh M, Liu W J 2023 Chin. Phys. Lett. 40 040501Google Scholar

    [16]

    黎旭君 2018 硕士学位论文(武汉: 武汉大学)

    Li X J 2018 M. S. Thesis (Wuhan: Wuhan University

    [17]

    Kaup D J, Newell A C 1978 J. Math. Phys. 19 798Google Scholar

    [18]

    Chen H H, Lee Y C, Liu C S 1979 Phys. Scr. 20 490Google Scholar

    [19]

    Liu C, Wu Y H, Chen S C, Yao X K, Akhmediev N 2021 Phys. Rev. Lett. 127 094102Google Scholar

    [20]

    Gerdzhikov V S, Ivanov M I 1982 Theor. Math. Phys. 52 676

    [21]

    Ji T, Zhai Y Y 2020 Nonlinear Dyn. 101 619Google Scholar

    [22]

    Zhang Z C, Fan E G 2021 Z. Angew. Math. Phys. 72 153Google Scholar

    [23]

    Lou Y, Zhang Y, Ye R S, Li M 2021 Wave Motion 106 102795Google Scholar

    [24]

    Fan E G 2000 J. Math. Phys. 41 7769Google Scholar

    [25]

    Dai H H, Fan E G 2004 Chaos Solitons Fractals 22 93Google Scholar

    [26]

    Xu S W, He J S 2012 J. Math. Phys. 53 063507

    [27]

    Guo L J, Zhang Y S, Xu S W, Wu Z W, He J S 2014 Phys. Scr. 89 035501Google Scholar

    [28]

    Kedziora D J, Ankiewicz A, Akhmediev N 2014 Eur. Phys. J. Spec. Top. 223 43Google Scholar

    [29]

    Chen J B, Pelinovsky D E 2018 Proc. R. Sic. A 474 20170814Google Scholar

    [30]

    Leykam D, Smolina E, Maluckov A, Flach S, Smirnova D A 2021 Phys. Rev. Lett. 126 073901Google Scholar

    [31]

    Chen S C, Liu C, Akhmediev N 2023 Phys. Rev. A 107 063507Google Scholar

    [32]

    Liu C, Chen S C, Yao X K, Akhmediev N 2022 Chin. Phys. Lett. 39 094201Google Scholar

    [33]

    Che W J, Chen S C, Liu C, Zhao L C, Akhmediev N 2022 Phys. Rev. A 105 043526Google Scholar

    [34]

    Chen S C, Liu C 2022 Physica D 438 133364Google Scholar

    [35]

    Che W J, Liu C, Akhmediev N 2023 Phys. Rev. E 107 054206Google Scholar

    [36]

    Liu C, Chen S C, Yao X K, Akhmediev N 2022 Physica D 433 133192Google Scholar

  • 图 1  dn-周期波背景上的AB

    Fig. 1.  AB on the dn-periodic wave background.

    图 2  dn-周期波背景上的KMB

    Fig. 2.  KMB on the dn-periodic wave background.

    图 3  dn-周期波背景上的GB

    Fig. 3.  GB on the dn-periodic wave background.

    图 4  dn-周期波背景上的GB和KMB相互作用

    Fig. 4.  Interaction between GB and KMB on the dn-periodic wave background.

    图 5  dn-周期波背景上的AB和KMB相互作用

    Fig. 5.  Interaction between AB and KMB on the dn-periodic wave background.

    图 6  dn-周期波背景上的AB和GB相互作用

    Fig. 6.  Interaction between AB and GB on the dn-periodic wave background.

    图 7  一般周期波背景上的AB

    Fig. 7.  AB on the general periodic wave background.

    图 8  一般周期波背景上的KMB

    Fig. 8.  KMB on the general periodic wave background.

    图 9  一般周期波背景上的GB

    Fig. 9.  GB on the general periodic wavebackground.

    图 10  一般周期波背景上的两个GB相互作用

    Fig. 10.  Inacteraction between two GBs on the general periodic wave background.

    图 11  一般周期波背景上的KMB和GB相互作用

    Fig. 11.  Inacteraction between KMB and GB on the general periodic wave background.

    图 12  一般周期波背景上的AB和GB相互作用

    Fig. 12.  Interaction between AB and GB on the general periodic wave background.

  • [1]

    Ablowitz M J, Satsuma J 1978 J. Math. Phys. 19 2180Google Scholar

    [2]

    Wazwaz A M 2009 Partial Differential Equations and Solitary Waves Theory (Berlin: Springer) pp285–413

    [3]

    Zhou T Y, Tian B 2022 Appl. Math. Lett. 133 108280Google Scholar

    [4]

    Li B Q, Ma Y L 2020 Appl. Math. Comput. 386 125469Google Scholar

    [5]

    Kruglov V I, Triki H 2023 Chin. Phys. Lett. 40 090503Google Scholar

    [6]

    Hosseini K, Mirzazadeh M, Ilie M, Radmehr S 2020 Optik 206 164350Google Scholar

    [7]

    Vishnu Priya N, Senthilvelan M, Lakshmanan M 2013 Phys. Rev. E 88 022918Google Scholar

    [8]

    Kuznetsov E A 1977 Sov. Phys. Dokl. 22 507

    [9]

    Ma Y C 1979 Stud. Appl. Math. 60 43Google Scholar

    [10]

    Akhmediev N, Komeev V I 1986 Theor. Math. Phys. 69 1089Google Scholar

    [11]

    Its A R, Rybin A V, Sall M A 1988 Theor. Math. Phys. 74 20Google Scholar

    [12]

    Walczak P, Randoux S, Suret P 2015 Phys. Rev. Lett. 114 143903Google Scholar

    [13]

    Chabchoub A, Hoffmann N P, Akhmediev N 2011 Phys. Rev. Lett. 106 204502Google Scholar

    [14]

    Xiong H, Gan J H, Wu Y 2017 Phys. Rev. Lett. 119 153901Google Scholar

    [15]

    Ding C C, Zhou Q, Xu L, Triki H, Mirzazadeh M, Liu W J 2023 Chin. Phys. Lett. 40 040501Google Scholar

    [16]

    黎旭君 2018 硕士学位论文(武汉: 武汉大学)

    Li X J 2018 M. S. Thesis (Wuhan: Wuhan University

    [17]

    Kaup D J, Newell A C 1978 J. Math. Phys. 19 798Google Scholar

    [18]

    Chen H H, Lee Y C, Liu C S 1979 Phys. Scr. 20 490Google Scholar

    [19]

    Liu C, Wu Y H, Chen S C, Yao X K, Akhmediev N 2021 Phys. Rev. Lett. 127 094102Google Scholar

    [20]

    Gerdzhikov V S, Ivanov M I 1982 Theor. Math. Phys. 52 676

    [21]

    Ji T, Zhai Y Y 2020 Nonlinear Dyn. 101 619Google Scholar

    [22]

    Zhang Z C, Fan E G 2021 Z. Angew. Math. Phys. 72 153Google Scholar

    [23]

    Lou Y, Zhang Y, Ye R S, Li M 2021 Wave Motion 106 102795Google Scholar

    [24]

    Fan E G 2000 J. Math. Phys. 41 7769Google Scholar

    [25]

    Dai H H, Fan E G 2004 Chaos Solitons Fractals 22 93Google Scholar

    [26]

    Xu S W, He J S 2012 J. Math. Phys. 53 063507

    [27]

    Guo L J, Zhang Y S, Xu S W, Wu Z W, He J S 2014 Phys. Scr. 89 035501Google Scholar

    [28]

    Kedziora D J, Ankiewicz A, Akhmediev N 2014 Eur. Phys. J. Spec. Top. 223 43Google Scholar

    [29]

    Chen J B, Pelinovsky D E 2018 Proc. R. Sic. A 474 20170814Google Scholar

    [30]

    Leykam D, Smolina E, Maluckov A, Flach S, Smirnova D A 2021 Phys. Rev. Lett. 126 073901Google Scholar

    [31]

    Chen S C, Liu C, Akhmediev N 2023 Phys. Rev. A 107 063507Google Scholar

    [32]

    Liu C, Chen S C, Yao X K, Akhmediev N 2022 Chin. Phys. Lett. 39 094201Google Scholar

    [33]

    Che W J, Chen S C, Liu C, Zhao L C, Akhmediev N 2022 Phys. Rev. A 105 043526Google Scholar

    [34]

    Chen S C, Liu C 2022 Physica D 438 133364Google Scholar

    [35]

    Che W J, Liu C, Akhmediev N 2023 Phys. Rev. E 107 054206Google Scholar

    [36]

    Liu C, Chen S C, Yao X K, Akhmediev N 2022 Physica D 433 133192Google Scholar

  • [1] 侯刘敏, 侯云龙, 刘圆凯, 李渊华, 林佳, 陈险峰. 基于可饱和吸收体锁模激光器中的呼吸子. 物理学报, 2025, 74(4): 044206. doi: 10.7498/aps.74.20241505
    [2] 李再东, 郭奇奇. 铁磁纳米线中磁化强度的磁怪波. 物理学报, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [3] 宋彩芹, 朱佐农. 一个可积的逆空时非局部Sasa-Satsuma方程. 物理学报, 2020, 69(1): 010204. doi: 10.7498/aps.69.20191887
    [4] 谢元栋. 各向异性海森伯自旋链中的超椭圆函数波解. 物理学报, 2018, 67(19): 197502. doi: 10.7498/aps.67.20181005
    [5] 陆大全, 胡巍. 强非局域非线性介质中强光导引的弱光呼吸子传输规律研究. 物理学报, 2013, 62(3): 034205. doi: 10.7498/aps.62.034205
    [6] 陆大全, 胡巍. 椭圆响应强非局域非线性介质中的二维异步分数傅里叶变换及光束传输特性. 物理学报, 2013, 62(8): 084211. doi: 10.7498/aps.62.084211
    [7] 吴海燕, 张 亮, 谭言科, 周小滔. 三类非线性演化方程新的Jacobi椭圆函数精确解. 物理学报, 2008, 57(6): 3312-3318. doi: 10.7498/aps.57.3312
    [8] 李向正, 李修勇, 赵丽英, 张金良. Gerdjikov-Ivanov方程的精确解. 物理学报, 2008, 57(4): 2031-2034. doi: 10.7498/aps.57.2031
    [9] 吴国将, 张 苗, 史良马, 张文亮, 韩家骅. 扩展的Jacobi椭圆函数展开法和Zakharov方程组的新的精确周期解. 物理学报, 2007, 56(9): 5054-5059. doi: 10.7498/aps.56.5054
    [10] 潘军廷, 龚伦训. 组合KdV-mKdV方程的Jacobi椭圆函数解. 物理学报, 2007, 56(10): 5585-5590. doi: 10.7498/aps.56.5585
    [11] 龙学文, 胡 巍, 张 涛, 郭 旗, 兰 胜, 高喜存. 向列相液晶中强非局域空间光孤子传输的理论研究. 物理学报, 2007, 56(3): 1397-1403. doi: 10.7498/aps.56.1397
    [12] 龚伦训. 非线性薛定谔方程的Jacobi椭圆函数解. 物理学报, 2006, 55(9): 4414-4419. doi: 10.7498/aps.55.4414
    [13] 李德生, 张鸿庆. 非线性演化方程椭圆函数解的一种简单求法及其应用. 物理学报, 2006, 55(4): 1565-1570. doi: 10.7498/aps.55.1565
    [14] 吴国将, 韩家骅, 史良马, 张 苗. 一般变换下双Jacobi椭圆函数展开法及应用. 物理学报, 2006, 55(8): 3858-3863. doi: 10.7498/aps.55.3858
    [15] 李德生, 张鸿庆. 构造孤子方程的Weierstrass椭圆函数解的一个新方法. 物理学报, 2005, 54(12): 5540-5543. doi: 10.7498/aps.54.5540
    [16] 吕大昭. 非线性发展方程的丰富的Jacobi椭圆函数解. 物理学报, 2005, 54(10): 4501-4505. doi: 10.7498/aps.54.4501
    [17] 刘成仕, 杜兴华. 耦合Klein-Gordon-Schr?dinger方程新的精确解. 物理学报, 2005, 54(3): 1039-1043. doi: 10.7498/aps.54.1039
    [18] 刘官厅, 范天佑. 一般变换下的Jacobi椭圆函数展开法及应用. 物理学报, 2004, 53(3): 676-679. doi: 10.7498/aps.53.676
    [19] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 . 物理学报, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
    [20] 周振江, 李志斌. Broer-Kaup系统的达布变换和新的精确解. 物理学报, 2003, 52(2): 262-266. doi: 10.7498/aps.52.262
计量
  • 文章访问数:  3073
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-29
  • 修回日期:  2023-10-27
  • 上网日期:  2023-11-16
  • 刊出日期:  2024-02-20

/

返回文章
返回