搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无阀纳米泵中水流的反常堵塞

李伟健 周晓艳 陆杭军

引用本文:
Citation:

无阀纳米泵中水流的反常堵塞

李伟健, 周晓艳, 陆杭军

Abnormal blockage of water flow in valveless nanopumps

Li Wei-Jian, Zhou Xiao-Yan, Lu Hang-Jun
PDF
HTML
导出引用
  • 对于颗粒物质, 在锥形通道的窄口处容易发生堵塞现象, 实验中通常利用机械振动进行疏通. 而对于无孔不入的水却不同, 即使在纳米尺度的碳纳米管中仍然可以快速通透. 本文利用分子动力学模拟研究了由锥形碳纳米管与石墨烯平面构成的无阀纳米泵, 发现水输运在一定条件下也会出现反常堵塞. 与颗粒物质截然不同的是振动方法无法恢复水流, 相反, 它促使水在纳米水泵的通道窄口处发生堵塞. 通过分析堵塞区水的密度分布、氢键寿命、水分子的结构特征, 揭示了反常堵塞是由腔体中振动膜的高频振动引发水的结构相变造成的.
    In the narrow orifice of a cone-shaped channel, blockage can occur for granular matter. However, water molecules can enter into and even permeate through carbon nanotubes of diameters down to 0.8 nm at ultrafast rates. Here we demonstrate by molecular dynamics simulations that clogging can also emerge unexpectedly in the water flowing through a nanoscale valve-less pump. The designed pump features two truncated carbon nanocones, with the narrowest region having a diameter of 1.2 nm (larger than that of (6, 6) carbon nanotube), linked to a fluid cavity volume, and is powered by the vibration of a graphene sheet. In the low frequency range, water molecules can be driven through the nanocones effectively by the vibration of the graphene sheet. The maximum flux reaches 83 ns–1, which is approximately 20 times the measured value of (3.9 ± 0.6) ns–1 for aquaporin-1. However, at higher frequencies, water molecules suffer blockage at the narrow exits. Much unlike granular matter, high-frequency vibration cannot restore water flow. The key to this phenomenon is that in the narrow exits of two nanocones acting as diffuser/nozzle, the number density of water molecules rapidly increases with frequency increasing, the tight hydrogen-bonding network is formed, and the mean lifetime of hydrogen bonds increases dramatically under high-frequency vibrations. High frequency fluctuations in the middle chamber make H-bond network between water molecules in the narrow exits more stable. The probability density distribution of water exhibits a non-equilibrium transition from a disordered state to ordered state. This work reveals a new mechanism of water flowing/blocking in a nanoscale valve-less pump based on two asymmetrical nanocones, offers valuable insights into understanding nonequilibrium jamming transition in nanoscale fluid.
      通信作者: 周晓艳, zxylu@zjnu.cn ; 陆杭军, zjlhjun@zjnu.cn
    • 基金项目: 基金:国家自然科学基金(批准号: 11875237)资助的课题.
      Corresponding author: Zhou Xiao-Yan, zxylu@zjnu.cn ; Lu Hang-Jun, zjlhjun@zjnu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11875237).
    [1]

    Squires T M, Quake S R 2005 Rev. Mod. Phys. 77 977Google Scholar

    [2]

    Laser D J, Santiago J G 2004 J. Micromech. Microeng. 14 R35Google Scholar

    [3]

    Whitesides G M 2006 Nature 442 368Google Scholar

    [4]

    Teh S Y, Lin R, Hung L H, Lee A P 2008 Lab Chip 8 198Google Scholar

    [5]

    蒋丹, 李松晶, 杨平 2013 物理学报 62 224703Google Scholar

    Jiang D, Li S J, Yang P 2013 Acta Phys. Sin. 62 224703Google Scholar

    [6]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188Google Scholar

    [7]

    Ghosh S, Sood A K, Kumar N 2003 Science 299 1042Google Scholar

    [8]

    Chen X, Cao G, Han A, Punyamurtula V K, Qiao Y 2008 Nano Lett. 8 2988Google Scholar

    [9]

    Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O 2006 Science 312 1034Google Scholar

    [10]

    Fang H P, Wan R Z, Gong X J, Lu H J, Li S Y 2008 J. Phys. D: Appl. Phys. 41 103002Google Scholar

    [11]

    Lu H J, Li J Y, Gong X J, Wan R Z, Zeng L, Fang H P 2008 Phys. Rev. B 77 174115Google Scholar

    [12]

    方海平 2016 物理学报 65 186101Google Scholar

    Fang H P 2016 Acta Phys. Sin. 65 186101Google Scholar

    [13]

    Falk K, Sedlmeier F, Joly L, Netz R R, Bocquet L 2010 Nano Lett. 10 4067Google Scholar

    [14]

    Liu C, Li Z G 2010 Phys. Rev. Lett. 105 174501Google Scholar

    [15]

    Qiu H, Shen R, Guo W L 2011 Nano Res. 4 284Google Scholar

    [16]

    Su J, Guo H 2011 ACS Nano 5 351Google Scholar

    [17]

    Wang Y, Zhao Y J, Huang J P 2011 J. Phys. Chem. B 115 13275Google Scholar

    [18]

    Li X P, Kong G P, Zhang X, He G W 2013 Appl. Phys. Lett. 103 143117Google Scholar

    [19]

    Feng J W, Ding H M, Ren C L, Ma Y Q 2014 Nanoscale 6 13606Google Scholar

    [20]

    Cao W, Wang J, Ma M 2018 Microfluid. Nanofluid. 22 125Google Scholar

    [21]

    Leng J T, Ying T Q, Guo Z R, Zhang Y Y, Chang T C, Guo W L, Gao H J 2022 Carbon 191 175Google Scholar

    [22]

    Zhang Q L, Jiang W Z, Liu J, Miao R D, Sheng N 2013 Phys. Rev. Lett. 110 254501Google Scholar

    [23]

    Kou J, Lu H, Wu F, Fan J, Yao J 2014 Nano Lett. 14 4931Google Scholar

    [24]

    Zhou X Y, Wu F M, Liu Y, Kou J L, Lu H, Lu H J 2015 Phys. Rev. E 92 053017Google Scholar

    [25]

    Zhou X Y, Zhu F Q 2018 Phys. Rev. E 98 032410Google Scholar

    [26]

    Zhu Z, Chang C, Shu Y, Song B 2020 J. Phys. Chem. Lett. 11 256Google Scholar

    [27]

    Fan W, Chen J 2020 Phys. Rev. E 101 010101Google Scholar

    [28]

    张忠强, 范晋伟, 张福建, 程广贵, 丁建宁 2020 物理学报 69 110201Google Scholar

    Zhang Z Q, Fan J W, Zhang F J, Cheng G G, Ding J N 2020 Acta Phys. Sin. 69 110201Google Scholar

    [29]

    Olsson A, Stemme G, Stemme E 2000 Sens. Actuators A Phys. 84 165Google Scholar

    [30]

    Chinappi M, De Angelis E, Melchionna S, Casciola C, Succi S, Piva R 2006 Phys. Rev. Lett. 97 144509Google Scholar

    [31]

    Ai B Q, Liu L G 2008 J. Chem. Phys. 128 024706Google Scholar

    [32]

    Tajkhorshid E, Nollert P, Jensen M O, Miercke L J W, O'connell J, Stroud R M, Schulten K 2002 Science 296 525Google Scholar

    [33]

    Kosztin I, Schulten K 2004 Phys. Rev. Lett. 93 238102Google Scholar

    [34]

    Zhou M, Morais-Cabral J H, Mann S, Mackinnon R 2001 Nature 411 657Google Scholar

    [35]

    Tang J, Behringer R P 2011 Chaos 21 041107Google Scholar

    [36]

    麻礼东, 杨光辉, 张晟, 林平, 田园, 杨磊 2018 物理学报 67 044501Google Scholar

    Ma L D, Yang G H, Zhang S, Lin P, Tian Y, Yang L 2018 Acta Phys. Sin. 67 044501Google Scholar

    [37]

    Janda A, Maza D, Garcimartín A, Kolb E, Clément E 2009 Europhys. Lett. 87 24002Google Scholar

    [38]

    Majumder M, Chopra N, Andrews R, Hinds B J 2005 Nature 438 44Google Scholar

    [39]

    Lindahl E, Hess B, Van Der Spoel D 2001 J. Mol. Model. 7 306Google Scholar

    [40]

    Bussi G, Donadio D, Parrinello M 2007 J. Chem. Phys. 126 014101Google Scholar

    [41]

    Zeidel M, Ambudkar S, Smith B, Agre P 1992 Biochemistry 31 7436Google Scholar

  • 图 1  模拟系统图, 由左右两个锥形碳纳米管及中间泵体组成的无阀纳米泵, 通过两个碳平面(灰色小球)连接左右水浴, 红色小球和白色小球分别表示水分子中的氧原子和氢原子; 橘色小球代表振动原子; 左右锥形碳纳米管的窄口端用黄色标记, 分别记为LP (left pore)和RP (right pore)

    Fig. 1.  Simulation system. A valve-less nanopump consists of carbon nanocones on both sides, a fluid cavity in the center, connected by carbon planes (gray spheres) to two reservoirs. Red and white spheres represent oxygen and hydrogen atoms in water molecules, respectively. The orange sphere represents the vibrating atom. The narrow ends of the carbon nanocones are marked in yellow and labeled as LP (left pore) and RP (right pore), respectively.

    图 2  水流量随振动频率的变化

    Fig. 2.  Average water flux as a function of the vibration frequency.

    图 3  在锥形纳米管窄口端0.4 nm厚的区域内水分子的概率密度分布图 (a) f = 384 GHz; (b) f = 625 GHz; (c) f = 833 GHz; (d) f = 1250 GHz

    Fig. 3.  Probability density distributions of water molecules in LP for different vibrational frequency: (a) f = 384 GHz; (b) f = 625 GHz; (c) f = 833 GHz; (d) f = 1250 GHz.

    图 4  LP和RP区域的平均水分子数, 两个区域厚度为0.4 nm, 分别包含2层水分子, L1和R1分别表示两个区域中右侧的(管径最小)水分子层; L2和R2则表示左侧的水分子层

    Fig. 4.  Average number of water molecules in each water layer in LP and RP. L1 and R1 represent the right-side (minimum diameter) water molecule layers in the two regions, while L2 and R2 represent the left-side water molecule layers.

    图 5  (a)氢键的平均寿命随频率的变化, 插图分别为f = 250 GHz和f = 1250 GHz对应的 LP里第1层水的模拟快照(青色小球表示碳原子, 红色和白色小球分别表示水分子中的氧原子和氢原子); (b) LP区域第1层水分子在横截面上的方位角概率分布图

    Fig. 5.  (a) Lifetime of hydrogen bonds as a function of the vibration frequency. Two typical snapshots are shown in insets. The cyan spheres represent carbon atoms, with red and white spheres representing oxygen and hydrogen atoms in water molecules. One is for the low frequency (f = 250 GHz) and the other is for the high frequency (f = 1250 GHz). (b) Probability distribution of the azimuthal angle of water molecules in the first layer in the LP region on the cross-section for f = 250 GHz and f = 1250 GHz.

  • [1]

    Squires T M, Quake S R 2005 Rev. Mod. Phys. 77 977Google Scholar

    [2]

    Laser D J, Santiago J G 2004 J. Micromech. Microeng. 14 R35Google Scholar

    [3]

    Whitesides G M 2006 Nature 442 368Google Scholar

    [4]

    Teh S Y, Lin R, Hung L H, Lee A P 2008 Lab Chip 8 198Google Scholar

    [5]

    蒋丹, 李松晶, 杨平 2013 物理学报 62 224703Google Scholar

    Jiang D, Li S J, Yang P 2013 Acta Phys. Sin. 62 224703Google Scholar

    [6]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188Google Scholar

    [7]

    Ghosh S, Sood A K, Kumar N 2003 Science 299 1042Google Scholar

    [8]

    Chen X, Cao G, Han A, Punyamurtula V K, Qiao Y 2008 Nano Lett. 8 2988Google Scholar

    [9]

    Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O 2006 Science 312 1034Google Scholar

    [10]

    Fang H P, Wan R Z, Gong X J, Lu H J, Li S Y 2008 J. Phys. D: Appl. Phys. 41 103002Google Scholar

    [11]

    Lu H J, Li J Y, Gong X J, Wan R Z, Zeng L, Fang H P 2008 Phys. Rev. B 77 174115Google Scholar

    [12]

    方海平 2016 物理学报 65 186101Google Scholar

    Fang H P 2016 Acta Phys. Sin. 65 186101Google Scholar

    [13]

    Falk K, Sedlmeier F, Joly L, Netz R R, Bocquet L 2010 Nano Lett. 10 4067Google Scholar

    [14]

    Liu C, Li Z G 2010 Phys. Rev. Lett. 105 174501Google Scholar

    [15]

    Qiu H, Shen R, Guo W L 2011 Nano Res. 4 284Google Scholar

    [16]

    Su J, Guo H 2011 ACS Nano 5 351Google Scholar

    [17]

    Wang Y, Zhao Y J, Huang J P 2011 J. Phys. Chem. B 115 13275Google Scholar

    [18]

    Li X P, Kong G P, Zhang X, He G W 2013 Appl. Phys. Lett. 103 143117Google Scholar

    [19]

    Feng J W, Ding H M, Ren C L, Ma Y Q 2014 Nanoscale 6 13606Google Scholar

    [20]

    Cao W, Wang J, Ma M 2018 Microfluid. Nanofluid. 22 125Google Scholar

    [21]

    Leng J T, Ying T Q, Guo Z R, Zhang Y Y, Chang T C, Guo W L, Gao H J 2022 Carbon 191 175Google Scholar

    [22]

    Zhang Q L, Jiang W Z, Liu J, Miao R D, Sheng N 2013 Phys. Rev. Lett. 110 254501Google Scholar

    [23]

    Kou J, Lu H, Wu F, Fan J, Yao J 2014 Nano Lett. 14 4931Google Scholar

    [24]

    Zhou X Y, Wu F M, Liu Y, Kou J L, Lu H, Lu H J 2015 Phys. Rev. E 92 053017Google Scholar

    [25]

    Zhou X Y, Zhu F Q 2018 Phys. Rev. E 98 032410Google Scholar

    [26]

    Zhu Z, Chang C, Shu Y, Song B 2020 J. Phys. Chem. Lett. 11 256Google Scholar

    [27]

    Fan W, Chen J 2020 Phys. Rev. E 101 010101Google Scholar

    [28]

    张忠强, 范晋伟, 张福建, 程广贵, 丁建宁 2020 物理学报 69 110201Google Scholar

    Zhang Z Q, Fan J W, Zhang F J, Cheng G G, Ding J N 2020 Acta Phys. Sin. 69 110201Google Scholar

    [29]

    Olsson A, Stemme G, Stemme E 2000 Sens. Actuators A Phys. 84 165Google Scholar

    [30]

    Chinappi M, De Angelis E, Melchionna S, Casciola C, Succi S, Piva R 2006 Phys. Rev. Lett. 97 144509Google Scholar

    [31]

    Ai B Q, Liu L G 2008 J. Chem. Phys. 128 024706Google Scholar

    [32]

    Tajkhorshid E, Nollert P, Jensen M O, Miercke L J W, O'connell J, Stroud R M, Schulten K 2002 Science 296 525Google Scholar

    [33]

    Kosztin I, Schulten K 2004 Phys. Rev. Lett. 93 238102Google Scholar

    [34]

    Zhou M, Morais-Cabral J H, Mann S, Mackinnon R 2001 Nature 411 657Google Scholar

    [35]

    Tang J, Behringer R P 2011 Chaos 21 041107Google Scholar

    [36]

    麻礼东, 杨光辉, 张晟, 林平, 田园, 杨磊 2018 物理学报 67 044501Google Scholar

    Ma L D, Yang G H, Zhang S, Lin P, Tian Y, Yang L 2018 Acta Phys. Sin. 67 044501Google Scholar

    [37]

    Janda A, Maza D, Garcimartín A, Kolb E, Clément E 2009 Europhys. Lett. 87 24002Google Scholar

    [38]

    Majumder M, Chopra N, Andrews R, Hinds B J 2005 Nature 438 44Google Scholar

    [39]

    Lindahl E, Hess B, Van Der Spoel D 2001 J. Mol. Model. 7 306Google Scholar

    [40]

    Bussi G, Donadio D, Parrinello M 2007 J. Chem. Phys. 126 014101Google Scholar

    [41]

    Zeidel M, Ambudkar S, Smith B, Agre P 1992 Biochemistry 31 7436Google Scholar

  • [1] 黄远志, 杨传浩, 何颂平, 马瑞松, 郇庆. 基于干式制冷的低温扫描探针显微镜研究进展. 物理学报, 2024, 73(22): 228701. doi: 10.7498/aps.73.20241367
    [2] 田晓俊, 孔繁芳, 经士浩, 郁云杰, 张尧, 张杨, 董振超. 单分子瞬时带电态中电子-振动耦合特性的亚纳米荧光成像研究. 物理学报, 2022, 71(6): 063301. doi: 10.7498/aps.71.20212003
    [3] 段铜川, 闫韶健, 赵妍, 孙庭钰, 李阳梅, 朱智. 水的氢键网络动力学与其太赫兹频谱的关系. 物理学报, 2021, 70(24): 248702. doi: 10.7498/aps.70.20211731
    [4] 秦晓玲, 朱栩量, 曹靖雯, 王浩诚, 张鹏. 冰的氢键振动研究. 物理学报, 2021, 70(14): 146301. doi: 10.7498/aps.70.20210013
    [5] 史慧敏, 胡静, 王成会, 凤飞龙, 莫润阳. 有限长管内包膜微泡在磁-声复合场作用下的振动行为. 物理学报, 2021, 70(21): 214303. doi: 10.7498/aps.70.20210559
    [6] 张忠强, 范晋伟, 张福建, 程广贵, 丁建宁. 水流在旋转黑磷纳米管内轴向驱动特性. 物理学报, 2020, 69(11): 110201. doi: 10.7498/aps.69.20200116
    [7] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇. 收集振动能的摩擦纳米发电机设计与输出性能. 物理学报, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [8] 赵章风, 张文俊, 牛丽丽, 孟龙, 郑海荣. 基于微泡共振的快速微流体声学混合方法研究. 物理学报, 2018, 67(19): 194302. doi: 10.7498/aps.67.20180705
    [9] 刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨. 基于振动抑制高精度宽带激光扫频干涉测量方法. 物理学报, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [10] 孙润智, 汪治中, 汪茂胜, 张季谦. 二维格子神经元网络的振动共振和非线性振动共振. 物理学报, 2015, 64(11): 110501. doi: 10.7498/aps.64.110501
    [11] 胡格丽, 倪志鹏, 王秋良. 结合振动控制的柱面纵向梯度线圈目标场设计方法. 物理学报, 2014, 63(1): 018301. doi: 10.7498/aps.63.018301
    [12] 南一冰, 唐义, 张丽君, 常月娥, 陈廷爱. 一种卫星平台振动光谱成像数据分块校正方法. 物理学报, 2014, 63(1): 010701. doi: 10.7498/aps.63.010701
    [13] 张富翁, 王立, 刘传平, 吴平. 竖直振动管中颗粒的上升运动. 物理学报, 2014, 63(1): 014501. doi: 10.7498/aps.63.014501
    [14] 蒋丹, 李松晶, 杨平. 无阀微泵腔内气泡对周期驱动压力的影响. 物理学报, 2013, 62(22): 224703. doi: 10.7498/aps.62.224703
    [15] 唐秋艳, 唐义, 曹玮亮, 王静, 南一冰, 倪国强. 卫星平台复杂振动引起的光谱成像退化仿真研究. 物理学报, 2012, 61(7): 070202. doi: 10.7498/aps.61.070202
    [16] 冯海冉, 李鹏, 郑雨军, 丁世良. 用李代数方法解析研究线性三原子分子振动的动力学纠缠. 物理学报, 2010, 59(8): 5246-5250. doi: 10.7498/aps.59.5246
    [17] 赵永志, 江茂强, 郑津洋. 巴西果效应分离过程的计算颗粒力学模拟研究. 物理学报, 2009, 58(3): 1812-1818. doi: 10.7498/aps.58.1812
    [18] 俞阿龙. 基于小波神经网络的振动速度传感器幅频特性补偿研究. 物理学报, 2007, 56(6): 3166-3171. doi: 10.7498/aps.56.3166
    [19] 姜泽辉, 陆坤权, 厚美瑛, 陈 唯, 陈相君. 振动颗粒混合物中的三明治式分离. 物理学报, 2003, 52(9): 2244-2248. doi: 10.7498/aps.52.2244
    [20] 李宏年, 徐亚伯, 李海洋, 何丕模, 鲍世宁. 单层纳米碳管振动模的拉曼光谱研究. 物理学报, 1999, 48(2): 273-278. doi: 10.7498/aps.48.273
计量
  • 文章访问数:  1400
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-17
  • 修回日期:  2024-02-24
  • 上网日期:  2024-03-08
  • 刊出日期:  2024-05-05

/

返回文章
返回