搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米氧化锌改性纤维素绝缘纸力学和热学性能的分子动力学模拟

张钰业 张镱议 韦文厂 苏至诚 兰丹泉 罗世豪

引用本文:
Citation:

纳米氧化锌改性纤维素绝缘纸力学和热学性能的分子动力学模拟

张钰业, 张镱议, 韦文厂, 苏至诚, 兰丹泉, 罗世豪

Molecular dynamics simulation of mechanical and thermal properties of nano-zinc oxide modified cellulose insulating paper

Zhang Yu-Ye, Zhang Yi-Yi, Wei Wen-Chang, Su Zhi-Cheng, Lan Dan-Quan, Luo Shi-Hao
PDF
HTML
导出引用
  • 随着电力负荷激增和电压水平不断提高, 绝缘纸的力学性能和热稳定性面临着严峻挑战. 然而, 由于缺乏直接的科学理论或模拟指导, 传统低效的“试错性”试验难以快速高效地研发新型纤维素复合绝缘纸. 针对这一问题, 本文提出通过分子动力学模拟, 研究纳米氧化锌(nano-ZnO)对纤维素的力学和热学性能的提升效果. 首先设计了nano-ZnO/纤维素复合材料模型, 然后从微观角度分析了不同nano-ZnO含量的改性纤维素的力学性能和热稳定性, 从而确定nano-ZnO和纤维素的最佳配比. 结果表明, 相比于未改性模型, nano-ZnO改性纤维素模型的力学性能、内聚能密度、玻璃化转变温度和导热系数均有提升, 弹性模量最高提升了45.31%, 导热系数最高提升了41.49%. 因为nano-ZnO的加入能够有效填充纤维网络中的空隙, 并增强纤维素链之间的作用力和导热通道, 从而提升纤维素的热力学性能. 本工作为可快速制备出具有优良热力学性能的改性纤维素绝缘纸提供有价值的理论参考.
    With the surge in electrical loads and increasing voltage levels, the mechanical performance and thermal stability of insulating paper are facing severe challenges. However, due to the lack of direct scientific theories or simulation guidance, traditional inefficient “trial-and-error” experiments are difficult to effectively develop new types of cellulose composite insulating papers. For solving this problem, in this work we are to enhance the effects of nanoscale zinc oxide (nano-ZnO) on the mechanical and thermal properties of cellulose through molecular dynamics simulations. Initially, we model the nano-ZnO/cellulose composite material , then carry out a microscopic analysis of the mechanical performance and thermal stability of modified cellulose with varying nano-ZnO content, thus determining the optimal ratio of nano-ZnO to cellulose. The results indicate that compared with the outcomes from the unmodified model, the mechanical performance, cohesive energy density, glass transition temperature, and thermal conductivity of the nano-ZnO-modified cellulose model are all improved, with the highest increase in elastic modulus reaching 45.31% and the highest increase in thermal conductivity attaining 41.49%. The addition of nano-ZnO effectively fills the gaps in the fiber network and enhances the interactions between cellulose chains and thermal conduction channels, thereby improving the thermodynamic performance of cellulose. This work provides valuable theoretical references for rapidly preparing modified cellulose insulating papers with excellent thermodynamic performance.
      通信作者: 张镱议, yiyizhang@gxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52277138)和广西壮族自治区研究生教育创新计划资助的课题.
      Corresponding author: Zhang Yi-Yi, yiyizhang@gxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52277138) and the Innovation Project of Guangxi Zhuang Autonomous Region Graduate Education, China.
    [1]

    Shadfar H, Pashakolaei M G, Foroud A A 2021 Int. T. Electr. Energy 31 24Google Scholar

    [2]

    Chen Q G, Li C P, Cheng S, Sun W, Chi M H, Zhang H 2022 IEEE T. Dielect. El. In. 29 591Google Scholar

    [3]

    Tang C, Chen R, Zhang J Z, Peng X, Chen B H, Zhang L S 2022 IET Nanodielectrics 5 63Google Scholar

    [4]

    Yang L, Gao J, Peng X, Qin J S, Tang C 2021 Cellulose 28 6023Google Scholar

    [5]

    Tang C, Zhang S, Wang X B, Hao J 2018 Cellulose 25 3619Google Scholar

    [6]

    Chen Q J, Kang M C, Xie Q H, Wang J H 2020 Cellulose 27 7621Google Scholar

    [7]

    Ji D Y, Li T, Hu W P, Fuchs H 2019 Adv. Mater. 31 19Google Scholar

    [8]

    Sun X, Chi M H, Weng L, Shi J H, Zhang X R 2021 J. Mater. SCI-Mater. El. 32 26548Google Scholar

    [9]

    Gao F, Zhang X R, Weng L, Cheng Y J, Shi J H 2022 Pigm. Resin Technol. 51 441Google Scholar

    [10]

    Han Z Q, Qi S L, Liu W, Han L, Wu Z P, Wu D Z 2013 Ind. Eng. Chem. Res. 52 3042Google Scholar

    [11]

    Wei W C, Chen H Q, Zha J W, Zhang Y Y 2023 Front. Chem. Sci. Eeg. 17 991Google Scholar

    [12]

    吕程 2014 博士学位论文 (重庆: 重庆大学)

    Lv C 2014 Ph. D. Dissertation (Chongqing: Chongqing University

    [13]

    张松, 唐超, Chen G, 周渠, 吕程, 李旭 2015 中国科学: 技术科学 45 1167Google Scholar

    Zhang S, Tang C, Chen G, Zhou Q, Lv C, Li X 2015 Sci. Sin. Tech. 45 1167Google Scholar

    [14]

    Huang M, Han Q B, Lv Y Z, Wang L, Shan B L, Ge Y, Qi B, Li C R 2018 IEEE T. Dielect. El. In. 25 1135Google Scholar

    [15]

    Zhang Y Y, Xu C Q, WEI W C, Deng Y K, Nie S X, Zha J W 2023 High Volt. 8 599Google Scholar

    [16]

    Wei W C, Zhang Y Y, Chen H Q, Xu C Q, Zha J W, Nie S X 2023 Mater. Design 233 11Google Scholar

    [17]

    王久亮, 刘宽, 秦秀娟, 邵光杰 2004 哈尔滨工业大学学报 02 226Google Scholar

    Wang J L, Liu K, Qin X J, Shao G J 2004 J. Harbin Instit. Tech. 02 226Google Scholar

    [18]

    李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武 2018 物理学报 67 140701Google Scholar

    Li Y, Li J, Chen L L, Lian X X, Zhu J W 2018 Acta Phys. Sin. 67 140701Google Scholar

    [19]

    李酽, 张琳彬, 李娇, 连晓雪, 朱俊武 2019 物理学报 68 070701Google Scholar

    Li Y, Zhang L B, Li J, Lian X X, Zhu J W 2019 Acta Phys. Sin. 68 070701Google Scholar

    [20]

    Banerjee A, Bose N, Lahiri A 2023 IEEE T. Ind. Appl. 59 479Google Scholar

    [21]

    Lu J Y, Jiang Q S, Zhang J 2009 21st Chinese Control and Decision Conference Guilin, China, June 17–19, 2009 p4823

    [22]

    Naskar M, Dharmendra H M, Meena K P 2021 5th International Conference on Condition Assessment Techniques in Electrical Systems Kozhikode, India, December 3–5, 2021 p186

    [23]

    Kong Y, Li L B, Fu S Y 2022 J. Mater. Chem. A 10 14451Google Scholar

    [24]

    Du D Y, Tang C, Tang Y J, Yang L, Hao J 2021 Compos. Struct. 261 6Google Scholar

    [25]

    Zhang Z X, Zhou H B, Li W T, Tang C 2021 Processes 9 9Google Scholar

    [26]

    Zhang Y Y, Li Y, Zheng H B, Zhu M Z, Liu J F, Yang T, Zhang C H, Li Y 2020 Cellulose 27 2455Google Scholar

    [27]

    Mo Y, Yang L J, Yin F, Gao Y Y 2022 Polym. Composite 43 1698Google Scholar

    [28]

    Inagak T, Siesler H W, Mitsui K, Tsuchikawa S 2010 Biomacromolecules 11 2300Google Scholar

    [29]

    Mazeau K, Heux L 2003 J. Phys. Chem. B 107 2394Google Scholar

    [30]

    Wang X B, Tang C, Wang Q, Li X P, Hao J 2017 Energies 10 11Google Scholar

    [31]

    Bond S D, Leimkuhler B J, Laird B B 1999 J. Comput. Phys. 151 114Google Scholar

    [32]

    吕健, 詹怀宇, 晋华春 2008 中国造纸 5 54Google Scholar

    Lv J, Zhan H Y, Jin H C 2008 China Pulp Paper 5 54Google Scholar

    [33]

    Tanaka F, Okamura K 2005 Cellulose 12 243Google Scholar

    [34]

    Chang K S, Chung Y C, Yang T H, Lue S J, Tung K L, Lin Y F 2012 J. Membrane Sci. 417 119Google Scholar

    [35]

    王有元, 杨涛, 廖瑞金, 张大伟, 刘强, 田苗 2012 高电压技术 38 1199

    Wang Y Y, Yang T, Liao R J, Zhang D W, Liu Q, Tian M 2012 High Volt. Eng. 38 1199

    [36]

    Liu X J, Rao Z H 2019 Int. J. Heat. Mass Tran. 132 362Google Scholar

    [37]

    王振华, 卢咏来, 张立群 2009 橡胶工业 56 581Google Scholar

    Wang Z H, Lu Y L, Zhang L Q 2009 China Rubber Ind. 56 581Google Scholar

  • 图 1  nano-ZnO和纤维素的复合模型 (a) P0; (b) P2; (c) P4; (d) P6; (e) P8; (f) P10

    Fig. 1.  Composite model of nano-ZnO and cellulose: (a) P0; (b) P2; (c) P4; (d) P6; (e) P8; (f) P10.

    图 2  不同nano-ZnO含量的nano-ZnO/纤维素模型的体积模量、剪切模量和弹性模量

    Fig. 2.  Volume modulus, shear modulus, and elastic modulus of nano-ZnO/cellulose model with different nano-ZnO content.

    图 3  (a)不同nano-ZnO含量的nano-ZnO/纤维素模型的内聚能密度; (b) Nano-ZnO填充无定形区域空隙时产生的氢键; (c) Nano-ZnO出现团聚现象时产生的氢键; (d) 6种模型的氢键数量

    Fig. 3.  (a) Cohesion energy density of nano-ZnO/cellulose models with different nano-ZnO contents; (b) hydrogen bonding when Nano-ZnO fills voids in amorphous regions; (c) hydrogen bonds generated when Nano-ZnO is agglomerated; (d) the number of hydrogen bonds in the six models.

    图 4  (a) 6种模型的MSD曲线; (b)各模型样品的最大MSD值

    Fig. 4.  (a) MSD curves for six models; (b) the maximum MSD value of each model sample.

    图 5  nano-ZnO/纤维素复合模型的玻璃化转变温度 (a) P0; (b) P2; (c) P4; (d) P6; (e) P8; (f) P10

    Fig. 5.  Glass transition temperature of nano-ZnO/cellulose models: (a) P0; (b) P2; (c) P4; (d) P6; (e) P8; (f) P10.

    图 6  反向非平衡分子动力学(RNEMD)方法模型图

    Fig. 6.  Model diagram of reverse non-equilibrium molecular dynamics (RNEMD) method.

    图 7  不同添加量下的nano-ZnO/纤维素模型的导热系数模拟结果

    Fig. 7.  Thermal conductivity simulation results of nano-ZnO/cellulose models with different doping ratios.

    表 1  分子动力学计算纯纤维素绝缘纸和改性纤维素绝缘纸的力学参数

    Table 1.  Mechanical parameters of pure cellulose insulating paper and modified cellulose insulating paper calculated by molecular dynamics.

    模型 λ μ E/GPa G/GPa K/GPa K/G
    P0 1.7942 2.7210 6.5232 2.7210 3.6082 1.3261
    P1 2.6659 3.9442 9.4791 3.9442 5.2954 1.3426
    P2 1.1556 3.8840 8.6586 3.8840 3.7449 0.9642
    P3 2.2157 2.7362 6.6967 2.7362 4.0398 1.4764
    P4 0.5645 2.7983 6.0663 2.4300 2.7983 0.8684
    P5 2.6101 2.3187 5.8653 4.1559 2.3187 1.7923
    下载: 导出CSV
  • [1]

    Shadfar H, Pashakolaei M G, Foroud A A 2021 Int. T. Electr. Energy 31 24Google Scholar

    [2]

    Chen Q G, Li C P, Cheng S, Sun W, Chi M H, Zhang H 2022 IEEE T. Dielect. El. In. 29 591Google Scholar

    [3]

    Tang C, Chen R, Zhang J Z, Peng X, Chen B H, Zhang L S 2022 IET Nanodielectrics 5 63Google Scholar

    [4]

    Yang L, Gao J, Peng X, Qin J S, Tang C 2021 Cellulose 28 6023Google Scholar

    [5]

    Tang C, Zhang S, Wang X B, Hao J 2018 Cellulose 25 3619Google Scholar

    [6]

    Chen Q J, Kang M C, Xie Q H, Wang J H 2020 Cellulose 27 7621Google Scholar

    [7]

    Ji D Y, Li T, Hu W P, Fuchs H 2019 Adv. Mater. 31 19Google Scholar

    [8]

    Sun X, Chi M H, Weng L, Shi J H, Zhang X R 2021 J. Mater. SCI-Mater. El. 32 26548Google Scholar

    [9]

    Gao F, Zhang X R, Weng L, Cheng Y J, Shi J H 2022 Pigm. Resin Technol. 51 441Google Scholar

    [10]

    Han Z Q, Qi S L, Liu W, Han L, Wu Z P, Wu D Z 2013 Ind. Eng. Chem. Res. 52 3042Google Scholar

    [11]

    Wei W C, Chen H Q, Zha J W, Zhang Y Y 2023 Front. Chem. Sci. Eeg. 17 991Google Scholar

    [12]

    吕程 2014 博士学位论文 (重庆: 重庆大学)

    Lv C 2014 Ph. D. Dissertation (Chongqing: Chongqing University

    [13]

    张松, 唐超, Chen G, 周渠, 吕程, 李旭 2015 中国科学: 技术科学 45 1167Google Scholar

    Zhang S, Tang C, Chen G, Zhou Q, Lv C, Li X 2015 Sci. Sin. Tech. 45 1167Google Scholar

    [14]

    Huang M, Han Q B, Lv Y Z, Wang L, Shan B L, Ge Y, Qi B, Li C R 2018 IEEE T. Dielect. El. In. 25 1135Google Scholar

    [15]

    Zhang Y Y, Xu C Q, WEI W C, Deng Y K, Nie S X, Zha J W 2023 High Volt. 8 599Google Scholar

    [16]

    Wei W C, Zhang Y Y, Chen H Q, Xu C Q, Zha J W, Nie S X 2023 Mater. Design 233 11Google Scholar

    [17]

    王久亮, 刘宽, 秦秀娟, 邵光杰 2004 哈尔滨工业大学学报 02 226Google Scholar

    Wang J L, Liu K, Qin X J, Shao G J 2004 J. Harbin Instit. Tech. 02 226Google Scholar

    [18]

    李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武 2018 物理学报 67 140701Google Scholar

    Li Y, Li J, Chen L L, Lian X X, Zhu J W 2018 Acta Phys. Sin. 67 140701Google Scholar

    [19]

    李酽, 张琳彬, 李娇, 连晓雪, 朱俊武 2019 物理学报 68 070701Google Scholar

    Li Y, Zhang L B, Li J, Lian X X, Zhu J W 2019 Acta Phys. Sin. 68 070701Google Scholar

    [20]

    Banerjee A, Bose N, Lahiri A 2023 IEEE T. Ind. Appl. 59 479Google Scholar

    [21]

    Lu J Y, Jiang Q S, Zhang J 2009 21st Chinese Control and Decision Conference Guilin, China, June 17–19, 2009 p4823

    [22]

    Naskar M, Dharmendra H M, Meena K P 2021 5th International Conference on Condition Assessment Techniques in Electrical Systems Kozhikode, India, December 3–5, 2021 p186

    [23]

    Kong Y, Li L B, Fu S Y 2022 J. Mater. Chem. A 10 14451Google Scholar

    [24]

    Du D Y, Tang C, Tang Y J, Yang L, Hao J 2021 Compos. Struct. 261 6Google Scholar

    [25]

    Zhang Z X, Zhou H B, Li W T, Tang C 2021 Processes 9 9Google Scholar

    [26]

    Zhang Y Y, Li Y, Zheng H B, Zhu M Z, Liu J F, Yang T, Zhang C H, Li Y 2020 Cellulose 27 2455Google Scholar

    [27]

    Mo Y, Yang L J, Yin F, Gao Y Y 2022 Polym. Composite 43 1698Google Scholar

    [28]

    Inagak T, Siesler H W, Mitsui K, Tsuchikawa S 2010 Biomacromolecules 11 2300Google Scholar

    [29]

    Mazeau K, Heux L 2003 J. Phys. Chem. B 107 2394Google Scholar

    [30]

    Wang X B, Tang C, Wang Q, Li X P, Hao J 2017 Energies 10 11Google Scholar

    [31]

    Bond S D, Leimkuhler B J, Laird B B 1999 J. Comput. Phys. 151 114Google Scholar

    [32]

    吕健, 詹怀宇, 晋华春 2008 中国造纸 5 54Google Scholar

    Lv J, Zhan H Y, Jin H C 2008 China Pulp Paper 5 54Google Scholar

    [33]

    Tanaka F, Okamura K 2005 Cellulose 12 243Google Scholar

    [34]

    Chang K S, Chung Y C, Yang T H, Lue S J, Tung K L, Lin Y F 2012 J. Membrane Sci. 417 119Google Scholar

    [35]

    王有元, 杨涛, 廖瑞金, 张大伟, 刘强, 田苗 2012 高电压技术 38 1199

    Wang Y Y, Yang T, Liao R J, Zhang D W, Liu Q, Tian M 2012 High Volt. Eng. 38 1199

    [36]

    Liu X J, Rao Z H 2019 Int. J. Heat. Mass Tran. 132 362Google Scholar

    [37]

    王振华, 卢咏来, 张立群 2009 橡胶工业 56 581Google Scholar

    Wang Z H, Lu Y L, Zhang L Q 2009 China Rubber Ind. 56 581Google Scholar

  • [1] 徐吉元, 张家滕, 孟睿阳, 陈红升, 方以坤, 董生智, 李卫. 烧结Nd25.5Dy6.5Co13FebalM1.05B0.98磁体温度稳定性和力学性能研究. 物理学报, 2023, 72(7): 077502. doi: 10.7498/aps.72.20222045
    [2] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [3] 朱小芹, 胡益丰. Ge50Te50/Zn15Sb85纳米复合多层薄膜在高热稳定性和低功耗相变存储器中的应用. 物理学报, 2020, 69(14): 146101. doi: 10.7498/aps.69.20200502
    [4] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [5] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [6] 李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武. 外电场极化对纳米氧化锌拉曼活性及气敏性能的影响. 物理学报, 2018, 67(14): 140701. doi: 10.7498/aps.67.20180182
    [7] 李丽丽, 张晓虹, 王玉龙, 国家辉, 张双. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟. 物理学报, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [8] 卢顺顺, 张晋敏, 郭笑天, 高廷红, 田泽安, 何帆, 贺晓金, 吴宏仙, 谢泉. 碳纳米管包裹的硅纳米线复合结构的热稳定性研究. 物理学报, 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [9] 樊倩, 徐建刚, 宋海洋, 张云光. 层厚度和应变率对铜-金复合纳米线力学性能影响的模拟研究. 物理学报, 2015, 64(1): 016201. doi: 10.7498/aps.64.016201
    [10] 刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳. 粗晶和纳米晶Sm3Co合金的制备及其性能研究. 物理学报, 2014, 63(9): 098102. doi: 10.7498/aps.63.098102
    [11] 许蓉, 贾光一, 刘昌龙. Cu, Zn离子注入SiO2纳米颗粒合成及氧气氛围下的热稳定性研究. 物理学报, 2014, 63(7): 078501. doi: 10.7498/aps.63.078501
    [12] 苏锦芳, 宋海洋, 安敏荣. 金纳米管力学性能的分子动力学模拟. 物理学报, 2013, 62(6): 063103. doi: 10.7498/aps.62.063103
    [13] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [14] 张杨, 宋晓艳, 徐文武, 张哲旭. SmCo7纳米晶合金晶粒组织热稳定性的热力学分析与计算机模拟. 物理学报, 2012, 61(1): 016102. doi: 10.7498/aps.61.016102
    [15] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [16] 田惠忱, 刘丽, 文玉华. 立方铂纳米粒子的形状变化与熔化特性的分子动力学研究. 物理学报, 2009, 58(6): 4080-4084. doi: 10.7498/aps.58.4080
    [17] 张凯旺, 孟利军, 李 俊, 刘文亮, 唐 翌, 钟建新. 碳纳米管内金纳米线的结构与热稳定性. 物理学报, 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [18] 马国佳, 刘喜亮, 张华芳, 武洪臣, 彭丽平, 蒋艳莉. 乙炔气体流量对纳米TiC类金刚石复合膜的化学结构及力学性能影响. 物理学报, 2007, 56(4): 2377-2381. doi: 10.7498/aps.56.2377
    [19] 王立群, 王明霞, 李德军, 杨 瑾, 余大书, 宿 杰. N2分压对ZrN/WN纳米多层膜缺陷性质与力学性能的影响. 物理学报, 2007, 56(6): 3435-3439. doi: 10.7498/aps.56.3435
    [20] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
计量
  • 文章访问数:  1942
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-31
  • 修回日期:  2024-04-19
  • 上网日期:  2024-05-06
  • 刊出日期:  2024-06-20

/

返回文章
返回