搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有限差分的部分饱和双重孔隙介质弹性波模拟与分析

石志奇 何晓 刘琳 陈德华

引用本文:
Citation:

基于有限差分的部分饱和双重孔隙介质弹性波模拟与分析

石志奇, 何晓, 刘琳, 陈德华

Simulation and analysis of elastic waves in partially saturated double-porosity media based on finite difference method

Shi Zhi-Qi, He Xiao, Liu Lin, Chen De-Hua
PDF
HTML
导出引用
  • 双重孔隙介质模型考虑了岩石非均质性诱发的介观流对弹性波频散和衰减的影响, 在非均质储层地震资料定量解释中取得良好的应用效果. 基于双重孔隙介质理论模型, 利用数值算法开展弹性波模拟工作不仅可以直观显示波的传播特征, 同时也为后期地震反演成像工作奠定基础. 本文基于Santos-Rayleigh部分饱和双重孔隙介质模型, 利用交错网格有限差分算法模拟并分析了双重孔隙介质中的波场快照和波形曲线. 采用Zener黏弹性模型近似表征介观流机制, 结果表明Zener模型能够较好地反映快纵波传播特征, 却无法表征慢纵波P3波在低频段的衰减特征. 利用时间分裂法解决波动方程的刚性问题, 提高计算效率. 利用解析解验证了有限差分算法正确性的基础上, 模拟了均匀介质和分层介质中的波场快照和波形曲线, 清晰直观地反映了快纵波在地震频段的强衰减特征, 与双重孔隙理论模型预测结果一致. 模拟结果有助于进一步理解非均匀部分饱和孔隙介质中的弹性波传播特征.
    Double-porosity poroelastic model takes into account the effect of mesoscopic flow induced by rock heterogeneity on dispersion and attenuation of elastic waves, and has obtained good application results in the quantitative explanation of seismic data in heterogeneous reservoirs. Wavefield simulation based on double-porosity model not only helps visualize the propagation characteristics of the elastic waves but also lays the foundation for seismic imaging. In this work, we perform wavefield simulation and analysis based on the Santos-Rayleigh model which incorporates mesoscopic and global flow in a partially-saturated double-porosity medium. Specifically, the mesoscopic flow mechanism is represented with a Zener viscoelastic model. The comparison shows that the Zener model can accurately capture the propagation characteristics of fast P-wave, but fails to describe the attenuation characteristics of slow P3 wave in the low-frequency band. It implies that Zener viscoelastic model and slow wave modes follow different mechanisms. Then the staggered grid finite-difference method is used to simulate wave propagation in a double-porosity medium, and the stiff problem is solved with a time-splitting algorithm, which can significantly improve computational efficiency. Based on the above methods, the correctness of our algorithm is verified with derived analytical solution for a P-wave source in a uniform partially saturated poroelastic medium. Analytical and numerical solutions are in good agreement and mean error is 0.33%. We provide some examples of wavefield snapshots and seismograms in homogeneous and layered heterogeneous media at seismic and ultrasonic frequencies. The simulation results demonstrate the strong attenuation of fast P-wave and no change of S-wave in the seismic band due to mesoscopic flow mechanism, which is consistent with the theoretical prediction of double-porosity model. Moreover, the energy of fast P-wave is concentrated in solid phase while slow waves are stronger in fluid phase. This work contributes to the understanding of broadband elastic wave propagation in a heterogeneous partially saturated porous medium and can be applied to the reservoir imaging with broadband geophysical data.
      通信作者: 何晓, hex@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12174421, 42074174, 52227901)资助的课题.
      Corresponding author: He Xiao, hex@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174421, 42074174, 52227901).
    [1]

    Biot M A 1956 J. Acoust. Soc. Am. 28 179Google Scholar

    [2]

    Santos J E, Corberó J M, Douglas J 1990 J. Acoust. Soc. Am. 87 1428Google Scholar

    [3]

    Liu L, Zhang X, Wang X 2022 J. Theor. Comp. Acout. 30 2150002Google Scholar

    [4]

    Berryman J G, Wang H F 2000 Int. J. Rock Mech. Min. 37 63Google Scholar

    [5]

    Huang J D, Yang D H, He X J, Chang Y F 2023 Geophysics 88 T121Google Scholar

    [6]

    Pride S R, Berryman J G, Harris J M 2004 J. Geophys. Res. 109 B01201Google Scholar

    [7]

    Zheng P, Ding B Y, Sun X T 2017 Int. J. Rock Mech. Min. 91 104Google Scholar

    [8]

    Ba J, Carcione J M, Nie J X 2011 J. Geophys. Res. 116 B06202Google Scholar

    [9]

    Sun W T, Ba J, Carcione J M 2016 Geophys. J. Int. 205 22Google Scholar

    [10]

    Ba J, Xu W H, Fu L Y, Carcione J M, Zhang L 2017 J. Geophys. Res. Solid Earth 122 1949Google Scholar

    [11]

    石志奇, 何晓, 刘琳, 陈德华, 王秀明 2023 物理学报 72 069101Google Scholar

    Shi Z Q, He X, Liu L, Chen D H, Wang X M 2023 Acta Phys. Sin. 72 069101Google Scholar

    [12]

    Shi Z Q, He X, Chen D H, Wang X M 2024 Geophys. J. Int. 236 1172Google Scholar

    [13]

    Ba J, Nie J X, Cao H, Yang H Z 2008 Geophys. Res. Lett. 35 L04303Google Scholar

    [14]

    Liu X, Greenhalgh S, Zhou B 2009 Geophys. J. Int. 178 375Google Scholar

    [15]

    Liu X, Greenhalgh S 2019 Geophysics 84 WA59Google Scholar

    [16]

    Wang E, Carcione J M, Ba J 2019 Geophysics 84 WA11Google Scholar

    [17]

    Carcione J M 2015 Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media (Amsterdam Boston: Elsevier

    [18]

    Jiang Y C, Gao Y X, Cheng Q L, Song Y J 2023 Geophys. J. Int. 235 970Google Scholar

    [19]

    Virieux J 1986 Geophysics. 51 889Google Scholar

    [20]

    Wenzlau F, Müller T M 2009 Geophysics 74 T55Google Scholar

    [21]

    Guan W, Hu H 2011 Commun. Comput. Phys. 10 695Google Scholar

    [22]

    孔丽云, 王一博, 杨慧珠 2013 物理学报 62 139101Google Scholar

    Kong L Y, Wang Y B, Yang H Z 2013 Acta Phys. Sin. 62 139101Google Scholar

    [23]

    刘财, 罗玉钦 2023 地球物理学报 66 3840Google Scholar

    Liu C, Luo Y Q 2023 Chin. J. Geophys. 66 3840Google Scholar

    [24]

    Zhao H, Wang X 2008 Sci. China Ser. G-Phys. Mech. Astron. 51 723Google Scholar

    [25]

    Deng W B, Fu L Y, Wang Z W, Hou W T, Han T C 2023 Geophys. J. Int. 235 1218Google Scholar

    [26]

    Carcione J M, Quiroga-Goode G 1995 J. Comput. Acoust. 3 261Google Scholar

    [27]

    Komatitsch D, Martin R 2007 Geophysics 72 SM155Google Scholar

  • 图 1  Santos-Rayleigh模型和黏弹性Santos模型预测的快纵波频散(a)和衰减(b)

    Fig. 1.  Comparison of P1 wave velocities (a) and attenuations (b) as the function of frequencies predicted by Santos-Rayleigh and viscoelastic Santos models.

    图 2  Santos-Rayleigh模型和黏弹性Santos模型预测的慢纵波频散(a)和衰减(b)

    Fig. 2.  Comparison of P2 and P3 wave velocities (a) and attenuations (b) as the function of frequencies predicted by Santos-Rayleigh and viscoelastic Santos models.

    图 3  各场分量在交错网格的相对位置

    Fig. 3.  Relative position of field components on the staggered grids.

    图 4  S2 = 0.9, ${\eta }_{\mathrm{{f}}}^{(1)}={\eta }_{\mathrm{{f}}}^{(2)}=0 $时数值解与解析解比较 (a)固相; (b)非润湿相; (c)润湿相

    Fig. 4.  Comparison of analytical and numerical solutions when S2 = 0.9, ${\eta }_{\mathrm{{f}}}^{(1)}={\eta }_{\mathrm{{f}}}^{(2)}=0 $: (a) Solid phase; (b) non-wetting phase; (c) wetting-phase.

    图 5  fp = 20 Hz, 0.18 s固相垂直速度分量的波场快照 (a) 无介观流影响; (b) 有介观流影响

    Fig. 5.  Snapshots of the vertical components of solid particle velocities at 0.18 s with fp = 20 Hz: (a) Without mesoscopic attenuation; (b) with mesoscopic attenuation.

    图 6  fp = 20 Hz, (270, 270) m处有无介观流两种情况下固相接收的波形对比

    Fig. 6.  Comparison of seismograms of the solid phase at (270, 270) m with fp = 20 Hz.

    图 7  fp = 30 kHz, 0.15 ms时刻固相垂直速度分量的波场快照 (a) 无介观流影响; (b) 有介观流影响

    Fig. 7.  Snapshots of the vertical components of solid particle velocities at 0.15 ms with fp = 30 kHz: (a) Without mesoscopic attenuation; (b) with mesoscopic attenuation.

    图 8  fp = 30 kHz, (0.1, 0.3) m处有无介观流两种情况下$V_z^{(1)} $的波形对比

    Fig. 8.  Comparison of seismograms of the $V_z^{(1)} $ at (0.1, 0.3) m with fp = 30 kHz.

    图 9  fp = 30 kHz, 0.15 ms非润湿相流体的垂向速度分量波场快照

    Fig. 9.  Snapshots of the vertical components of non-wetting particle velocities at 0.15 ms with fp = 30 kHz.

    图 10  fp = 20 Hz, 0.2 s固相垂向速度分量波场快照 (a) 无介观流影响; (b) 有介观流影响

    Fig. 10.  Snapshots of the vertical components of solid velocities at 0.2 s with fp = 20 Hz: (a) Without mesoscopic attenuation; (b) with mesoscopic attenuation.

    图 11  fp = 30 kHz, 0.15 ms时, 流体垂向速度分量波场快照 (a)固相; (b)非润湿相; (c)润湿相

    Fig. 11.  Snapshots of the vertical components of velocities with fp = 30 kHz, 0.15 ms: (a) Solid phase; (b) non-wetting phase; (c) wetting-phase.

    表 1  部分饱和双重孔隙介质物性参数表

    Table 1.  Physical parameters of partially saturated double-porosity media.

    符号 参数 层1 层2
    Ks 基质体积模量/GPa 36 40
    ρs 基质密度/(kg·m–3) 2650 2800
    Km 骨架体积模量/GPa 6.21 9.5
    μm 骨架剪切模量/GPa 4.55 6.2
    ϕ 孔隙度 0.33 0.2
    κ 渗透率/m2 4.93×10–12 2.96×10–12
    ${K}_{\mathrm{{f}}}^{(1)} $ 润湿相流体体积模量/GPa 2.223
    $ {\rho}_{\mathrm{{f}}}^{(1)}$ 润湿相流体密度/(kg·m–3) 1000
    ${\eta}_{\mathrm{{f}}}^{(1)} $ 润湿相流体黏度/(Pa·s) 0.001
    ${K}_{\mathrm{{f}}}^{(2)} $ 非润湿相流体体积模量/GPa 0.022
    ${\rho}_{\mathrm{{f}}}^{(2)} $ 非润湿相流体密度/(kg·m–3) 100
    ${\eta}_{\mathrm{{f}}}^{(2)} $ 非润湿相流体黏度/(Pa·s) 1.5×10–5
    下载: 导出CSV
  • [1]

    Biot M A 1956 J. Acoust. Soc. Am. 28 179Google Scholar

    [2]

    Santos J E, Corberó J M, Douglas J 1990 J. Acoust. Soc. Am. 87 1428Google Scholar

    [3]

    Liu L, Zhang X, Wang X 2022 J. Theor. Comp. Acout. 30 2150002Google Scholar

    [4]

    Berryman J G, Wang H F 2000 Int. J. Rock Mech. Min. 37 63Google Scholar

    [5]

    Huang J D, Yang D H, He X J, Chang Y F 2023 Geophysics 88 T121Google Scholar

    [6]

    Pride S R, Berryman J G, Harris J M 2004 J. Geophys. Res. 109 B01201Google Scholar

    [7]

    Zheng P, Ding B Y, Sun X T 2017 Int. J. Rock Mech. Min. 91 104Google Scholar

    [8]

    Ba J, Carcione J M, Nie J X 2011 J. Geophys. Res. 116 B06202Google Scholar

    [9]

    Sun W T, Ba J, Carcione J M 2016 Geophys. J. Int. 205 22Google Scholar

    [10]

    Ba J, Xu W H, Fu L Y, Carcione J M, Zhang L 2017 J. Geophys. Res. Solid Earth 122 1949Google Scholar

    [11]

    石志奇, 何晓, 刘琳, 陈德华, 王秀明 2023 物理学报 72 069101Google Scholar

    Shi Z Q, He X, Liu L, Chen D H, Wang X M 2023 Acta Phys. Sin. 72 069101Google Scholar

    [12]

    Shi Z Q, He X, Chen D H, Wang X M 2024 Geophys. J. Int. 236 1172Google Scholar

    [13]

    Ba J, Nie J X, Cao H, Yang H Z 2008 Geophys. Res. Lett. 35 L04303Google Scholar

    [14]

    Liu X, Greenhalgh S, Zhou B 2009 Geophys. J. Int. 178 375Google Scholar

    [15]

    Liu X, Greenhalgh S 2019 Geophysics 84 WA59Google Scholar

    [16]

    Wang E, Carcione J M, Ba J 2019 Geophysics 84 WA11Google Scholar

    [17]

    Carcione J M 2015 Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media (Amsterdam Boston: Elsevier

    [18]

    Jiang Y C, Gao Y X, Cheng Q L, Song Y J 2023 Geophys. J. Int. 235 970Google Scholar

    [19]

    Virieux J 1986 Geophysics. 51 889Google Scholar

    [20]

    Wenzlau F, Müller T M 2009 Geophysics 74 T55Google Scholar

    [21]

    Guan W, Hu H 2011 Commun. Comput. Phys. 10 695Google Scholar

    [22]

    孔丽云, 王一博, 杨慧珠 2013 物理学报 62 139101Google Scholar

    Kong L Y, Wang Y B, Yang H Z 2013 Acta Phys. Sin. 62 139101Google Scholar

    [23]

    刘财, 罗玉钦 2023 地球物理学报 66 3840Google Scholar

    Liu C, Luo Y Q 2023 Chin. J. Geophys. 66 3840Google Scholar

    [24]

    Zhao H, Wang X 2008 Sci. China Ser. G-Phys. Mech. Astron. 51 723Google Scholar

    [25]

    Deng W B, Fu L Y, Wang Z W, Hou W T, Han T C 2023 Geophys. J. Int. 235 1218Google Scholar

    [26]

    Carcione J M, Quiroga-Goode G 1995 J. Comput. Acoust. 3 261Google Scholar

    [27]

    Komatitsch D, Martin R 2007 Geophysics 72 SM155Google Scholar

  • [1] 金燕, 石子璇, 金奕扬, 田文得, 张天辉, 陈康. 有限多孔介质诱导活性哑铃的聚集行为. 物理学报, 2024, 73(16): 160502. doi: 10.7498/aps.73.20240784
    [2] 石志奇, 何晓, 刘琳, 陈德华, 王秀明. 毛细管压力作用下的非饱和双重孔隙介质中弹性波传播. 物理学报, 2023, 72(6): 069101. doi: 10.7498/aps.72.20222063
    [3] 周聪, 王庆良. 考虑频散效应的一维非线性地震波数值模拟. 物理学报, 2015, 64(23): 239101. doi: 10.7498/aps.64.239101
    [4] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究. 物理学报, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [5] 王飞, 魏兵, 李林茜. 色散介质电磁特性时域有限差分分析的Newmark方法. 物理学报, 2014, 63(10): 104101. doi: 10.7498/aps.63.104101
    [6] 王飞, 魏兵. 电各向异性色散介质电磁散射时域有限差分分析的半解析递推卷积方法. 物理学报, 2013, 62(4): 044101. doi: 10.7498/aps.62.044101
    [7] 蔡建超, 郭士礼, 游利军, 胡祥云. 裂缝-孔隙型双重介质油藏渗吸机理的分形分析. 物理学报, 2013, 62(1): 014701. doi: 10.7498/aps.62.014701
    [8] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究. 物理学报, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [9] 颛孙旭, 马西奎. 一种适用于任意阶空间差分时域有限差分方法的色散介质通用吸收边界条件算法. 物理学报, 2012, 61(11): 110206. doi: 10.7498/aps.61.110206
    [10] 张玉强, 葛德彪. 一种基于数字信号处理技术的改进通用色散介质移位算子时域有限差分方法. 物理学报, 2009, 58(12): 8243-8248. doi: 10.7498/aps.58.8243
    [11] 魏 兵, 葛德彪, 王 飞. 一种处理色散介质问题的通用时域有限差分方法. 物理学报, 2008, 57(10): 6290-6297. doi: 10.7498/aps.57.6290
    [12] 姜彦南, 葛德彪. 层状介质时域有限差分方法斜入射平面波引入新方式. 物理学报, 2008, 57(10): 6283-6289. doi: 10.7498/aps.57.6283
    [13] 杨利霞, 葛德彪, 魏 兵. 电各向异性色散介质电磁散射的三维递推卷积-时域有限差分方法分析. 物理学报, 2007, 56(8): 4509-4514. doi: 10.7498/aps.56.4509
    [14] 杨光杰, 孔凡敏, 李 康, 梅良模. 金属介质在时域有限差分中的几种处理方法. 物理学报, 2007, 56(7): 4252-4255. doi: 10.7498/aps.56.4252
    [15] 杨利霞, 葛德彪. 磁各向异性色散介质散射的Padé时域有限差分方法分析. 物理学报, 2006, 55(4): 1751-1758. doi: 10.7498/aps.55.1751
    [16] 张端明, 李 莉, 李智华, 关 丽, 侯思普, 谭新玉. 靶材吸收率变化与烧蚀过程熔融前靶材温度分布. 物理学报, 2005, 54(3): 1283-1289. doi: 10.7498/aps.54.1283
    [17] 夏金松, 余金中. 一种新的基于最小平方逼近的广角光束传播方法. 物理学报, 2003, 52(3): 515-521. doi: 10.7498/aps.52.515
    [18] 张端明, 关 丽, 李智华, 钟志成, 侯思普, 杨凤霞, 郑克玉. 脉冲激光制膜过程中等离子体演化规律的研究. 物理学报, 2003, 52(1): 242-246. doi: 10.7498/aps.52.242
    [19] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究. 物理学报, 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
    [20] 马坚伟, 杨慧珠, 朱亚平. 多尺度有限差分法模拟复杂介质波传问题. 物理学报, 2001, 50(8): 1415-1420. doi: 10.7498/aps.50.1415
计量
  • 文章访问数:  1666
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-02
  • 修回日期:  2024-03-26
  • 上网日期:  2024-04-02
  • 刊出日期:  2024-05-20

/

返回文章
返回