搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属光栅覆盖分布式布拉格反射镜结构的透射增强效应

关建飞 俞潇 丁冠天 陈陶 陆云清

引用本文:
Citation:

金属光栅覆盖分布式布拉格反射镜结构的透射增强效应

关建飞, 俞潇, 丁冠天, 陈陶, 陆云清

Transmission enhancement effect of distributed Bragg reflector structure covered with metal grating

Guan Jian-Fei, Yu Xiao, Ding Guan-Tian, Chen Tao, Lu Yun-Qing
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 为了采用易于直接激发的塔姆等离激元(Tamm plasmon polaritons, TPPs)实现透射增强现象, 本文提出了一种由一维金属光栅覆盖分布式布拉格反射镜(distributed Bragg reflector, DBR)构成的层状结构. 采用有限元法分析了入射光波在DBR-金属交界面上激发TPPs并产生能量高度局域的物理过程. 研究表明入射TM光波在金属-DBR交界面上激发的TPPs可以有效地激发金属狭缝内的SPPs模式, 当SPPs模式在狭缝内满足类FP谐振的条件就可以使入射光波在该结构中的产生透射增强. 在此基础上,分析了狭缝宽度及其占空比对透射谱峰的定量影响. 结果显示: 周期确定时随着狭缝宽度的增大, 峰值透射率则呈现先增大后减小的变化趋势; 宽度确定时随着占空比的增大, 峰值透射率会呈现单调降低的变化趋势, 而透射峰中心波长呈现近似线性蓝移趋势, 这为灵活调节异常透射的中心波长提供了一种有效手段.
    In order to observe the extraordinary optical transmission (EOT) through a metal gratings, induced by Tamm plasmon polaritons (TPPs), a layered structure consisting of a distributed Bragg reflector covered with a one-dimensional metal grating is proposed in this work. When an incident light wave passes through DBR regime and impinges on the DBR-metal interface normally, the generation of TPPs and the resulting highly localized energy on the metal-DBR interface are simulated in detail by the finite element method. As a result, the surface plasmon polariton (SPPs) modes accommodated inside the slits of metal gratings can be excited more effectively by the enhanced electromagnetic field associated with TPPs located on the interface. Furthermore, the enhanced transmission of incident light waves in the structure can be achieved when the SPP mode inside the grating slits satisfies the Fabry-Perot (FP)-like resonance condition, which reveals that the EOT in this structure comes from a TPPs-FP hybrid resonance. This inference can be confirmed by the relationships between the central wavelength and the grating height for the two transmission peaks, and the magnetic field modal profiles associated with the two peaks. Quantitative effects of the slit width and duty cycle on the transmission peak of the metal grating are analyzed numerically, and the results demonstrate that when the period is determined, as the slits width increases, the two peak transmittances first increase and then decrease. On the other hand, when the slit widths are chosen to be 40 nm, 50 nm, and 60 nm respectively, the peak transmittance first increases and then decreases with the duty cycle increasing. Meanwhile, it is found that the center wavelengths of the transmission peaks are related to the duty cycle in a nearly linear manner for three slit widths, which can be used to flexibly adjust the center wavelength of extraordinary optical transmission.
      通信作者: 关建飞, guanjf@njupt.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61775102, 61905117)和南京邮电大学科研基金(批准号: NY220050, NY214058)资助的课题.
      Corresponding author: Guan Jian-Fei, guanjf@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775102, 61905117) and the Nanjing University of Posts and Telecommunications Foundation, China (Grant Nos. NY220050, NY214058).
    [1]

    Ebbesen T W, Lezee H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [2]

    Ghaemi H F, Thio Tineke, Grupp D E, Ebbesen T W, Lezec H J 1998 Phys. Rev. B 58 6779Google Scholar

    [3]

    Martín-Moreno L, García-Vidal F J, Lezec H J, PellerinK M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114Google Scholar

    [4]

    Barnes W L, Murray W A, Dintinger J, Devaux E, Ebbesen T W 2004 Phys. Rev. Lett. 92 107401Google Scholar

    [5]

    张鑫, 刘海涛 2016 物理学进展 36 118

    Zhang X, Liu H T 2016 Prog. Phys. 36 118

    [6]

    Takakura Y 2001 Phys. Rev. Lett. 86 5601Google Scholar

    [7]

    Ruan Z C, Qiu M 2006 Phys Rev. Lett. 96 233901Google Scholar

    [8]

    聂俊英, 张宛, 罗李娜, 李贵安, 郑海荣, 张中月 2015 中国科学: 物理学 力学 天文学 45 024202Google Scholar

    Nie J Y, Zhang W, Luo L N, Li G A, Zheng H R, Zhang Z Y 2015 Sci. Sin-Phys. Mech Astron. 45 024202Google Scholar

    [9]

    Genet C, Ebbesen T W 2007 Nature 445 39Google Scholar

    [10]

    王振林 2009 物理学进展 29 287Google Scholar

    Wang Z L 2009 Prog. Phys. 29 287Google Scholar

    [11]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415Google Scholar

    [12]

    Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram A, Chamberlain J M, Egorov A Yu, Vasilev A P, Mikhrin V S, Kavokin A V 2008 Appl. Phys. Lett. 92 251112Google Scholar

    [13]

    Zhou H C, Yang G, Wang K, Long H, Lu P X 2010 Opt. Lett. 35 4112Google Scholar

    [14]

    Afinogenov B I, Bessonov V O, Nikulin A A, Fedyanin A A 2013 Appl. Phys. Lett. 103 061112Google Scholar

    [15]

    Das R, Srivastava T, Jha R 2014 Opt. Lett. 39 896Google Scholar

    [16]

    Das D, Bover P, Salvi J 2021 Appl. Opt. 60 4738Google Scholar

    [17]

    陆云清, 成心怡, 许敏, 许吉, 王瑾 2016 物理学报 65 204207Google Scholar

    Lu Y Q, Cheng X Y, Xu M, Xu J, Wang J 2016 Acta Phys. Sin. 65 204207Google Scholar

    [18]

    祁云平, 周培阳, 张雪伟, 严春满, 王向贤 2018 物理学报 67 107104Google Scholar

    Qi Y P, Zhou P Y, Zhang X W, Yan C M, Wang X X 2018 Acta Phys. Sin. 67 107104Google Scholar

    [19]

    García-Vidal F J, Lezec H J, Ebbesen T W, Martín-Moreno L 2003 Phys. Rev. Lett. 90 213901Google Scholar

    [20]

    丁冠天, 关建飞, 陈陶, 陆云清 2023 光学学报 43 1428002Google Scholar

    Ding G T, Guan J F, Chen T, Lu Y Q 2023 Acta Opt. Sin. 43 1428002Google Scholar

    [21]

    Gordon R 2006 Phys. Rev. B 73 153405Google Scholar

  • 图 1  金属光栅覆盖DBR结构示意图

    Fig. 1.  Schematic diagram of DBR structure coated with a metal grating.

    图 2  TM模式入射金属层覆盖DBR结构及纯TiO2介质产生的透射及反射谱图

    Fig. 2.  Transmission and reflection spectra generated in a perfect metal layer capped the DBR structure and the semi-infinite TiO2 media.

    图 3  1040 nm光波入射到金属银覆盖DBR结构及金属银覆盖TIO2中的能量分布 (a) 周期单元模场分布图; (b) z轴方向磁场截线图

    Fig. 3.  Energy distribution in the silver covered DBR structure and silver capped TiO2 dielectric generated by the incident light wave of 1040 nm: (a)Magnetic field $ \left| {{H_y}} \right| $ distribution at λ = 1040 nm; (b) magnetic field $ \left| {{H_y}} \right| $ profile along z axis.

    图 4  TE及TM光波入射到金属光栅-DBR结构产生的透射及反射谱线图 (a) 透射谱; (b) 反射谱

    Fig. 4.  Transmission and reflection spectra generated by the TE and TM polarized incident light waves in the metal grating capped DBR: (a) Transmission spectra; (b) reflection spectra.

    图 5  (a) TM和TE模式入射产生磁场强度分布; (b)磁场分量$ \left| {{H_y}} \right| $沿中心轴线的分布图

    Fig. 5.  (a) Distribution of the magnetic field component $ \left| {{H_y}} \right| $ for TM and TE waves; (b) the profile of the magnetic component $ \left| {{H_y}} \right| $ along the axis of x = 0.

    图 6  (a) 透射率随金属光栅高度的变化关系; (b) 透射峰值处的模场分布图

    Fig. 6.  (a) The transmittance as a function of the grating heights for TM polarization; (b) magnetic field intensity distributions for the four transmission peaks depicted in Fig. 6(a).

    图 7  不同缝宽的透射谱线随光栅高度的演变规律 (a) w = 40 nm; (b) w = 50 nm; (c) w = 60 nm.

    Fig. 7.  Transmittance against incident wavelengths and grating heights for three slit widths: (a) w = 40 nm; (b) w = 50 nm; (c) w = 60 nm.

    图 8  前两阶谐振透射峰的峰值幅度(a)与中心波长λ (b)随狭缝宽度w的演变规律

    Fig. 8.  Evolution of (a) amplitudes and (b) central wavelengths λ of the transmittance peaks generated by the first and second order resonances with slit widths w.

    图 9  一阶谐振透射峰的峰值透射峰率(a)及中心波长(b)随周期的变化规律

    Fig. 9.  Evolutions of (a) amplitudes and (b) central wavelength λ of the transmittance peak generated by the first order resonance with grating periods for three slit widths.

    图 10  一阶谐振透射峰的峰值透射峰率(a)及中心波长(b)随占空比的变化规律

    Fig. 10.  Evolutions of (a) amplitudes and (b) central wavelength λ of the transmittance peak generated by the first order resonance with duty cycles for three slit widths.

  • [1]

    Ebbesen T W, Lezee H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [2]

    Ghaemi H F, Thio Tineke, Grupp D E, Ebbesen T W, Lezec H J 1998 Phys. Rev. B 58 6779Google Scholar

    [3]

    Martín-Moreno L, García-Vidal F J, Lezec H J, PellerinK M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114Google Scholar

    [4]

    Barnes W L, Murray W A, Dintinger J, Devaux E, Ebbesen T W 2004 Phys. Rev. Lett. 92 107401Google Scholar

    [5]

    张鑫, 刘海涛 2016 物理学进展 36 118

    Zhang X, Liu H T 2016 Prog. Phys. 36 118

    [6]

    Takakura Y 2001 Phys. Rev. Lett. 86 5601Google Scholar

    [7]

    Ruan Z C, Qiu M 2006 Phys Rev. Lett. 96 233901Google Scholar

    [8]

    聂俊英, 张宛, 罗李娜, 李贵安, 郑海荣, 张中月 2015 中国科学: 物理学 力学 天文学 45 024202Google Scholar

    Nie J Y, Zhang W, Luo L N, Li G A, Zheng H R, Zhang Z Y 2015 Sci. Sin-Phys. Mech Astron. 45 024202Google Scholar

    [9]

    Genet C, Ebbesen T W 2007 Nature 445 39Google Scholar

    [10]

    王振林 2009 物理学进展 29 287Google Scholar

    Wang Z L 2009 Prog. Phys. 29 287Google Scholar

    [11]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415Google Scholar

    [12]

    Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram A, Chamberlain J M, Egorov A Yu, Vasilev A P, Mikhrin V S, Kavokin A V 2008 Appl. Phys. Lett. 92 251112Google Scholar

    [13]

    Zhou H C, Yang G, Wang K, Long H, Lu P X 2010 Opt. Lett. 35 4112Google Scholar

    [14]

    Afinogenov B I, Bessonov V O, Nikulin A A, Fedyanin A A 2013 Appl. Phys. Lett. 103 061112Google Scholar

    [15]

    Das R, Srivastava T, Jha R 2014 Opt. Lett. 39 896Google Scholar

    [16]

    Das D, Bover P, Salvi J 2021 Appl. Opt. 60 4738Google Scholar

    [17]

    陆云清, 成心怡, 许敏, 许吉, 王瑾 2016 物理学报 65 204207Google Scholar

    Lu Y Q, Cheng X Y, Xu M, Xu J, Wang J 2016 Acta Phys. Sin. 65 204207Google Scholar

    [18]

    祁云平, 周培阳, 张雪伟, 严春满, 王向贤 2018 物理学报 67 107104Google Scholar

    Qi Y P, Zhou P Y, Zhang X W, Yan C M, Wang X X 2018 Acta Phys. Sin. 67 107104Google Scholar

    [19]

    García-Vidal F J, Lezec H J, Ebbesen T W, Martín-Moreno L 2003 Phys. Rev. Lett. 90 213901Google Scholar

    [20]

    丁冠天, 关建飞, 陈陶, 陆云清 2023 光学学报 43 1428002Google Scholar

    Ding G T, Guan J F, Chen T, Lu Y Q 2023 Acta Opt. Sin. 43 1428002Google Scholar

    [21]

    Gordon R 2006 Phys. Rev. B 73 153405Google Scholar

  • [1] 陈钇成, 张成龙, 张丽超, 祁志美. InSb光栅耦合的太赫兹表面等离激元共振传感方法. 物理学报, 2024, 73(9): 098701. doi: 10.7498/aps.73.20231904
    [2] 胡裕栋, 宋丽军, 王晨曦, 张沛, 周静, 李刚, 张鹏飞, 张天才. 基于纳米光纤的光学法布里-珀罗谐振腔腔内模场的表征. 物理学报, 2022, 71(23): 234203. doi: 10.7498/aps.71.20221538
    [3] 裴思辉, 宋子旋, 林星, 方伟. 开放式法布里-珀罗光学微腔中光与单量子系统的相互作用. 物理学报, 2022, 71(6): 060201. doi: 10.7498/aps.71.20211970
    [4] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [5] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [6] 江孝伟, 武华, 袁寿财. 基于金属光栅实现石墨烯三通道光吸收增强. 物理学报, 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [7] 高健, 桑田, 李俊浪, 王啦. 利用窄刻槽金属光栅实现石墨烯双通道吸收增强. 物理学报, 2018, 67(18): 184210. doi: 10.7498/aps.67.20180848
    [8] 祁云平, 周培阳, 张雪伟, 严春满, 王向贤. 基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射. 物理学报, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [9] 褚金奎, 王倩怡, 王志文, 王立鼎. 双层金属纳米光栅的TE偏振光异常透射特性. 物理学报, 2015, 64(16): 164206. doi: 10.7498/aps.64.164206
    [10] 张振清, 路海, 王少华, 魏泽勇, 江海涛, 李云辉. 平面金属等离激元美特材料对光学Tamm态及相关激射行为的增强作用. 物理学报, 2015, 64(11): 114202. doi: 10.7498/aps.64.114202
    [11] 曾志文, 刘海涛, 张斯文. 基于Fabry-Perot模型设计亚波长金属狭缝阵列光学异常透射折射率传感器. 物理学报, 2012, 61(20): 200701. doi: 10.7498/aps.61.200701
    [12] 王亚伟, 刘明礼, 刘仁杰, 雷海娜, 田相龙. Fabry-Perot腔谐振对横电波激励下亚波长一维金属光栅的异常透射性的作用. 物理学报, 2011, 60(2): 024217. doi: 10.7498/aps.60.024217
    [13] 李卓轩, 裴丽, 祁春慧, 彭万敬, 宁提纲, 赵瑞峰, 高嵩. 光纤光栅法布里-珀罗腔的V-I传输矩阵法研究. 物理学报, 2010, 59(12): 8615-8624. doi: 10.7498/aps.59.8615
    [14] 王亚伟, 刘明礼, 刘仁杰, 雷海娜, 邓晓斌. 横电波激励下亚波长一维金属光栅的异常透射性. 物理学报, 2010, 59(6): 4030-4035. doi: 10.7498/aps.59.4030
    [15] 任文华, 王燕花, 冯素春, 谭中伟, 刘 艳, 简水生. 对光纤布拉格光栅法布里-珀罗腔纵模间隔问题的研究. 物理学报, 2008, 57(12): 7758-7764. doi: 10.7498/aps.57.7758
    [16] 王燕花, 任文华, 刘 艳, 谭中伟, 简水生. 相位修正的耦合模理论用于计算光纤Bragg光栅法布里-珀罗腔透射谱. 物理学报, 2008, 57(10): 6393-6399. doi: 10.7498/aps.57.6393
    [17] 刘敏敏, 张国平, 邹 明. 二元矩形金属光栅衍射增强电磁理论. 物理学报, 2006, 55(9): 4608-4612. doi: 10.7498/aps.55.4608
    [18] 吕昌贵, 崔一平, 王著元, 恽斌峰. 光纤布拉格光栅法布里-珀罗腔纵模特性研究. 物理学报, 2004, 53(1): 145-150. doi: 10.7498/aps.53.145
    [19] 谈春雷, 易永祥, 汪国平. 一维金属光栅的透射光学特性. 物理学报, 2002, 51(5): 1063-1067. doi: 10.7498/aps.51.1063
    [20] 任燕如, 尹道乐. 金属中声学等离激元的产生条件. 物理学报, 1981, 30(4): 545-548. doi: 10.7498/aps.30.545
计量
  • 文章访问数:  2239
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-14
  • 修回日期:  2024-04-06
  • 上网日期:  2024-04-11
  • 刊出日期:  2024-06-05

/

返回文章
返回